Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from datasets import load_dataset
|
6 |
import faiss
|
7 |
import gradio as gr
|
8 |
from accelerate import Accelerator
|
|
|
|
|
9 |
|
10 |
# νκ²½ λ³μμμ Hugging Face API ν€ λ‘λ
|
11 |
hf_api_key = os.getenv('HF_API_KEY')
|
12 |
|
13 |
-
# λͺ¨λΈ
|
14 |
model_id = "microsoft/phi-2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key, trust_remote_code=True)
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -20,11 +20,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
20 |
torch_dtype=torch.float32
|
21 |
)
|
22 |
|
23 |
-
# Accelerator μ€μ
|
24 |
accelerator = Accelerator()
|
25 |
model = accelerator.prepare(model)
|
26 |
|
27 |
-
# λ°μ΄ν°μ
λ° FAISS μΈλ±μ€ λ‘λ
|
28 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
29 |
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
|
30 |
data = dataset["train"]
|
@@ -44,7 +42,14 @@ def format_prompt(prompt, retrieved_documents, k):
|
|
44 |
def generate(formatted_prompt):
|
45 |
prompt_text = f"{SYS_PROMPT} {formatted_prompt}"
|
46 |
input_ids = tokenizer(prompt_text, return_tensors="pt", padding=True).input_ids.to(accelerator.device)
|
47 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
49 |
|
50 |
def rag_chatbot_interface(prompt: str, k: int = 2):
|
@@ -59,8 +64,7 @@ iface = gr.Interface(
|
|
59 |
inputs="text",
|
60 |
outputs="text",
|
61 |
title="Retrieval-Augmented Generation Chatbot",
|
62 |
-
description="This chatbot provides more accurate answers by searching relevant documents and generating responses."
|
63 |
-
share=True # κ³΅κ° λ§ν¬ μμ±
|
64 |
)
|
65 |
|
66 |
-
iface.launch()
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
from datasets import load_dataset
|
4 |
import faiss
|
5 |
import gradio as gr
|
6 |
from accelerate import Accelerator
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
|
10 |
# νκ²½ λ³μμμ Hugging Face API ν€ λ‘λ
|
11 |
hf_api_key = os.getenv('HF_API_KEY')
|
12 |
|
13 |
+
# λͺ¨λΈ λ° ν ν¬λμ΄μ μ€μ
|
14 |
model_id = "microsoft/phi-2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key, trust_remote_code=True)
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
20 |
torch_dtype=torch.float32
|
21 |
)
|
22 |
|
|
|
23 |
accelerator = Accelerator()
|
24 |
model = accelerator.prepare(model)
|
25 |
|
|
|
26 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
27 |
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
|
28 |
data = dataset["train"]
|
|
|
42 |
def generate(formatted_prompt):
|
43 |
prompt_text = f"{SYS_PROMPT} {formatted_prompt}"
|
44 |
input_ids = tokenizer(prompt_text, return_tensors="pt", padding=True).input_ids.to(accelerator.device)
|
45 |
+
outputs = model.generate(
|
46 |
+
input_ids,
|
47 |
+
max_new_tokens=1024,
|
48 |
+
eos_token_id=tokenizer.eos_token_id,
|
49 |
+
do_sample=True,
|
50 |
+
temperature=0.6,
|
51 |
+
top_p=0.9
|
52 |
+
)
|
53 |
return tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
54 |
|
55 |
def rag_chatbot_interface(prompt: str, k: int = 2):
|
|
|
64 |
inputs="text",
|
65 |
outputs="text",
|
66 |
title="Retrieval-Augmented Generation Chatbot",
|
67 |
+
description="This chatbot provides more accurate answers by searching relevant documents and generating responses."
|
|
|
68 |
)
|
69 |
|
70 |
+
iface.launch(share=True) # μ¬κΈ°μμ share=Trueλ₯Ό μ€μ νμ¬ κ³΅κ° λ§ν¬λ₯Ό μμ±
|