Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
5 |
+
|
6 |
+
dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
7 |
+
|
8 |
+
data = dataset["train"]
|
9 |
+
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
|
10 |
+
|
11 |
+
def search(query: str, k: int = 3 ):
|
12 |
+
"""a function that embeds a new query and returns the most probable results"""
|
13 |
+
embedded_query = ST.encode(query) # embed new query
|
14 |
+
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
|
15 |
+
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
|
16 |
+
k=k # get only top k results
|
17 |
+
)
|
18 |
+
return scores, retrieved_examples
|
19 |
+
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
21 |
+
import torch
|
22 |
+
|
23 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
24 |
+
|
25 |
+
# use quantization to lower GPU usage
|
26 |
+
bnb_config = BitsAndBytesConfig(
|
27 |
+
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
28 |
+
)
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
model_id,
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
device_map="auto",
|
35 |
+
quantization_config=bnb_config
|
36 |
+
)
|
37 |
+
terminators = [
|
38 |
+
tokenizer.eos_token_id,
|
39 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
40 |
+
]
|
41 |
+
SYS_PROMPT = """You are an assistant for answering questions.
|
42 |
+
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
43 |
+
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
44 |
+
|
45 |
+
def format_prompt(prompt,retrieved_documents,k):
|
46 |
+
"""using the retrieved documents we will prompt the model to generate our responses"""
|
47 |
+
PROMPT = f"Question:{prompt}\nContext:"
|
48 |
+
for idx in range(k) :
|
49 |
+
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
|
50 |
+
return PROMPT
|
51 |
+
|
52 |
+
def generate(formatted_prompt):
|
53 |
+
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
|
54 |
+
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
|
55 |
+
# tell the model to generate
|
56 |
+
input_ids = tokenizer.apply_chat_template(
|
57 |
+
messages,
|
58 |
+
add_generation_prompt=True,
|
59 |
+
return_tensors="pt"
|
60 |
+
).to(model.device)
|
61 |
+
outputs = model.generate(
|
62 |
+
input_ids,
|
63 |
+
max_new_tokens=1024,
|
64 |
+
eos_token_id=terminators,
|
65 |
+
do_sample=True,
|
66 |
+
temperature=0.6,
|
67 |
+
top_p=0.9,
|
68 |
+
)
|
69 |
+
response = outputs[0][input_ids.shape[-1]:]
|
70 |
+
return tokenizer.decode(response, skip_special_tokens=True)
|
71 |
+
|
72 |
+
def rag_chatbot(prompt:str,k:int=2):
|
73 |
+
scores , retrieved_documents = search(prompt, k)
|
74 |
+
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
|
75 |
+
return generate(formatted_prompt)
|
76 |
+
|
77 |
+
rag_chatbot("what's anarchy ?", k = 2)
|