seawolf2357 commited on
Commit
d726220
Β·
verified Β·
1 Parent(s): 9872f0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -23
app.py CHANGED
@@ -1,23 +1,15 @@
 
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
  from sentence_transformers import SentenceTransformer
3
  from datasets import load_dataset
4
  import faiss
5
  import gradio as gr
6
  from accelerate import Accelerator
7
- import os
8
- import torch
9
 
10
- # ν™˜κ²½ λ³€μˆ˜μ—μ„œ Hugging Face API ν‚€ λ‘œλ“œ
11
  hf_api_key = os.getenv('HF_API_KEY')
12
-
13
- # λͺ¨λΈ 및 ν† ν¬λ‚˜μ΄μ € μ„€μ •
14
  model_id = "microsoft/phi-2"
15
  tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key, trust_remote_code=True)
16
-
17
- # ν† ν¬λ‚˜μ΄μ €μ— νŒ¨λ”© 토큰 μ„€μ •
18
- if tokenizer.pad_token is None:
19
- tokenizer.pad_token = tokenizer.eos_token # EOS 토큰을 νŒ¨λ”© ν† ν°μœΌλ‘œ μ‚¬μš©
20
-
21
  model = AutoModelForCausalLM.from_pretrained(
22
  model_id,
23
  token=hf_api_key,
@@ -44,19 +36,6 @@ def format_prompt(prompt, retrieved_documents, k):
44
  PROMPT += f"{retrieved_documents['text'][idx]}\n"
45
  return PROMPT
46
 
47
- def generate(formatted_prompt):
48
- prompt_text = f"{SYS_PROMPT} {formatted_prompt}"
49
- input_ids = tokenizer(prompt_text, return_tensors="pt", padding="max_length", max_length=512).input_ids.to(accelerator.device)
50
- outputs = model.generate(
51
- input_ids,
52
- max_new_tokens=1024,
53
- eos_token_id=tokenizer.eos_token_id,
54
- do_sample=True,
55
- temperature=0.6,
56
- top_p=0.9
57
- )
58
- return tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
59
-
60
  def rag_chatbot_interface(prompt: str, k: int = 2):
61
  scores, retrieved_documents = search(prompt, k)
62
  formatted_prompt = format_prompt(prompt, retrieved_documents, k)
 
1
+ import os
2
+ import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  from sentence_transformers import SentenceTransformer
5
  from datasets import load_dataset
6
  import faiss
7
  import gradio as gr
8
  from accelerate import Accelerator
 
 
9
 
 
10
  hf_api_key = os.getenv('HF_API_KEY')
 
 
11
  model_id = "microsoft/phi-2"
12
  tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key, trust_remote_code=True)
 
 
 
 
 
13
  model = AutoModelForCausalLM.from_pretrained(
14
  model_id,
15
  token=hf_api_key,
 
36
  PROMPT += f"{retrieved_documents['text'][idx]}\n"
37
  return PROMPT
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  def rag_chatbot_interface(prompt: str, k: int = 2):
40
  scores, retrieved_documents = search(prompt, k)
41
  formatted_prompt = format_prompt(prompt, retrieved_documents, k)