Spaces:
Paused
Paused
File size: 3,071 Bytes
0164e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import os
import torch
import argparse
import numpy as np
from scipy.io.wavfile import write
import torchaudio
import utils
from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
seed = 1111
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def SuperResoltuion(a, hierspeech):
speechsr = hierspeech
os.makedirs(a.output_dir, exist_ok=True)
# Prompt load
audio, sample_rate = torchaudio.load(a.input_speech)
# support only single channel
audio = audio[:1,:]
# Resampling
if sample_rate != 16000:
audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
file_name = os.path.splitext(os.path.basename(a.input_speech))[0]
## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
with torch.no_grad():
converted_audio = speechsr(audio.unsqueeze(1).cuda())
converted_audio = converted_audio.squeeze()
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 0.999 * 32767.0
converted_audio = converted_audio.cpu().numpy().astype('int16')
file_name2 = "{}.wav".format(file_name)
output_file = os.path.join(a.output_dir, file_name2)
if a.output_sr == 48000:
write(output_file, 48000, converted_audio)
else:
write(output_file, 24000, converted_audio)
def model_load(a):
if a.output_sr == 48000:
speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
h_sr48.train.segment_size // h_sr48.data.hop_length,
**h_sr48.model).cuda()
utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
speechsr.eval()
else:
# 24000 Hz
speechsr = SpeechSR24(h_sr.data.n_mel_channels,
h_sr.train.segment_size // h_sr.data.hop_length,
**h_sr.model).cuda()
utils.load_checkpoint(a.ckpt_sr, speechsr, None)
speechsr.eval()
return speechsr
def inference(a):
speechsr = model_load(a)
SuperResoltuion(a, speechsr)
def main():
print('Initializing Inference Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--input_speech', default='example/reference_4.wav')
parser.add_argument('--output_dir', default='SR_results')
parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
parser.add_argument('--output_sr', type=float, default=48000)
a = parser.parse_args()
global device, h_sr, h_sr48
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
inference(a)
if __name__ == '__main__':
main() |