Spaces:
Paused
Paused
File size: 9,546 Bytes
0164e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import torch
import argparse
import numpy as np
from scipy.io.wavfile import write
import torchaudio
import utils
from Mels_preprocess import MelSpectrogramFixed
from torch.nn import functional as F
from hierspeechpp_speechsynthesizer import (
SynthesizerTrn, Wav2vec2
)
from ttv_v1.text import text_to_sequence
from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
from denoiser.generator import MPNet
from denoiser.infer import denoise
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT
seed = 1111
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
def get_yaapt_f0(audio, rate=16000, interp=False):
frame_length = 20.0
to_pad = int(frame_length / 1000 * rate) // 2
f0s = []
for y in audio.astype(np.float64):
y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
signal = basic.SignalObj(y_pad, rate)
pitch = pYAAPT.yaapt(signal, **{'frame_length': frame_length, 'frame_space': 5.0, 'nccf_thresh1': 0.25,
'tda_frame_length': 25.0, 'f0_max':1100})
if interp:
f0s += [pitch.samp_interp[None, None, :]]
else:
f0s += [pitch.samp_values[None, None, :]]
f0 = np.vstack(f0s)
return f0
def load_text(fp):
with open(fp, 'r') as f:
filelist = [line.strip() for line in f.readlines()]
return filelist
def load_checkpoint(filepath, device):
print(filepath)
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def add_blank_token(text):
text_norm = intersperse(text, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def VC(a, hierspeech):
net_g, speechsr, denoiser, mel_fn, w2v = hierspeech
os.makedirs(a.output_dir, exist_ok=True)
source_audio, sample_rate = torchaudio.load(a.source_speech)
if sample_rate != 16000:
source_audio = torchaudio.functional.resample(source_audio, sample_rate, 16000, resampling_method="kaiser_window")
p = (source_audio.shape[-1] // 1280 + 1) * 1280 - source_audio.shape[-1]
source_audio = torch.nn.functional.pad(source_audio, (0, p), mode='constant').data
file_name_s = os.path.splitext(os.path.basename(a.source_speech))[0]
try:
f0 = get_yaapt_f0(source_audio.numpy())
except:
f0 = np.zeros((1, 1, source_audio.shape[-1] // 80))
f0 = f0.astype(np.float32)
f0 = f0.squeeze(0)
ii = f0 != 0
f0[ii] = (f0[ii] - f0[ii].mean()) / f0[ii].std()
y_pad = F.pad(source_audio, (40, 40), "reflect")
x_w2v = w2v(y_pad.cuda())
x_length = torch.LongTensor([x_w2v.size(2)]).to(device)
# Prompt load
target_audio, sample_rate = torchaudio.load(a.target_speech)
# support only single channel
target_audio = target_audio[:1,:]
# Resampling
if sample_rate != 16000:
target_audio = torchaudio.functional.resample(target_audio, sample_rate, 16000, resampling_method="kaiser_window")
if a.scale_norm == 'prompt':
prompt_audio_max = torch.max(target_audio.abs())
try:
t_f0 = get_yaapt_f0(target_audio.numpy())
except:
t_f0 = np.zeros((1, 1, target_audio.shape[-1] // 80))
t_f0 = t_f0.astype(np.float32)
t_f0 = t_f0.squeeze(0)
j = t_f0 != 0
f0[ii] = ((f0[ii] * t_f0[j].std()) + t_f0[j].mean()).clip(min=0)
denorm_f0 = torch.log(torch.FloatTensor(f0+1).cuda())
# We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
ori_prompt_len = target_audio.shape[-1]
p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
target_audio = torch.nn.functional.pad(target_audio, (0, p), mode='constant').data
file_name_t = os.path.splitext(os.path.basename(a.target_speech))[0]
# If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
# We will have a plan to replace a memory-efficient denoiser
if a.denoise_ratio == 0:
target_audio = torch.cat([target_audio.cuda(), target_audio.cuda()], dim=0)
else:
with torch.no_grad():
denoised_audio = denoise(target_audio.squeeze(0).cuda(), denoiser, hps_denoiser)
target_audio = torch.cat([target_audio.cuda(), denoised_audio[:,:target_audio.shape[-1]]], dim=0)
target_audio = target_audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
trg_mel = mel_fn(target_audio.cuda())
trg_length = torch.LongTensor([trg_mel.size(2)]).to(device)
trg_length2 = torch.cat([trg_length,trg_length], dim=0)
with torch.no_grad():
## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
converted_audio = \
net_g.voice_conversion_noise_control(x_w2v, x_length, trg_mel, trg_length2, denorm_f0, noise_scale=a.noise_scale_vc, denoise_ratio=a.denoise_ratio)
## SpeechSR (Optional) (16k Audio --> 24k or 48k Audio)
if a.output_sr == 48000 or 24000:
converted_audio = speechsr(converted_audio)
converted_audio = converted_audio.squeeze()
if a.scale_norm == 'prompt':
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * prompt_audio_max
else:
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
converted_audio = converted_audio.cpu().numpy().astype('int16')
file_name2 = "{}.wav".format(file_name_s+"_to_"+file_name_t)
output_file = os.path.join(a.output_dir, file_name2)
if a.output_sr == 48000:
write(output_file, 48000, converted_audio)
elif a.output_sr == 24000:
write(output_file, 24000, converted_audio)
else:
write(output_file, 16000, converted_audio)
def model_load(a):
mel_fn = MelSpectrogramFixed(
sample_rate=hps.data.sampling_rate,
n_fft=hps.data.filter_length,
win_length=hps.data.win_length,
hop_length=hps.data.hop_length,
f_min=hps.data.mel_fmin,
f_max=hps.data.mel_fmax,
n_mels=hps.data.n_mel_channels,
window_fn=torch.hann_window
).cuda()
w2v = Wav2vec2().cuda()
net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
net_g.load_state_dict(torch.load(a.ckpt))
_ = net_g.eval()
if a.output_sr == 48000:
speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
h_sr48.train.segment_size // h_sr48.data.hop_length,
**h_sr48.model).cuda()
utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
speechsr.eval()
elif a.output_sr == 24000:
speechsr = SpeechSR24(h_sr.data.n_mel_channels,
h_sr.train.segment_size // h_sr.data.hop_length,
**h_sr.model).cuda()
utils.load_checkpoint(a.ckpt_sr, speechsr, None)
speechsr.eval()
else:
speechsr = None
denoiser = MPNet(hps_denoiser).cuda()
state_dict = load_checkpoint(a.denoiser_ckpt, device)
denoiser.load_state_dict(state_dict['generator'])
denoiser.eval()
return net_g, speechsr, denoiser, mel_fn, w2v
def inference(a):
hierspeech = model_load(a)
VC(a, hierspeech)
def main():
print('Initializing Inference Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--source_speech', default='example/reference_2.wav')
parser.add_argument('--target_speech', default='example/reference_1.wav')
parser.add_argument('--output_dir', default='output')
parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
parser.add_argument('--scale_norm', type=str, default='max')
parser.add_argument('--output_sr', type=float, default=48000)
parser.add_argument('--noise_scale_ttv', type=float,
default=0.333)
parser.add_argument('--noise_scale_vc', type=float,
default=0.333)
parser.add_argument('--denoise_ratio', type=float,
default=0.8)
a = parser.parse_args()
global device, hps, h_sr,h_sr48, hps_denoiser
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
inference(a)
if __name__ == '__main__':
main() |