Spaces:
Paused
Paused
File size: 2,860 Bytes
0164e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import torch
import torch.nn as nn
from einops.layers.torch import Rearrange
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
class FeedForwardModule(nn.Module):
def __init__(self, dim, mult=4, dropout=0):
super(FeedForwardModule, self).__init__()
self.ffm = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * mult),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.ffm(x)
class ConformerConvModule(nn.Module):
def __init__(self, dim, expansion_factor=2, kernel_size=31, dropout=0.):
super(ConformerConvModule, self).__init__()
inner_dim = dim * expansion_factor
self.ccm = nn.Sequential(
nn.LayerNorm(dim),
Rearrange('b n c -> b c n'),
nn.Conv1d(dim, inner_dim*2, 1),
nn.GLU(dim=1),
nn.Conv1d(inner_dim, inner_dim, kernel_size=kernel_size,
padding=get_padding(kernel_size), groups=inner_dim), # DepthWiseConv1d
nn.BatchNorm1d(inner_dim),
nn.SiLU(),
nn.Conv1d(inner_dim, dim, 1),
Rearrange('b c n -> b n c'),
nn.Dropout(dropout)
)
def forward(self, x):
return self.ccm(x)
class AttentionModule(nn.Module):
def __init__(self, dim, n_head=8, dropout=0.):
super(AttentionModule, self).__init__()
self.attn = nn.MultiheadAttention(dim, n_head, dropout=dropout)
self.layernorm = nn.LayerNorm(dim)
def forward(self, x, attn_mask=None, key_padding_mask=None):
x = self.layernorm(x)
x, _ = self.attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask)
return x
class ConformerBlock(nn.Module):
def __init__(self, dim, n_head=8, ffm_mult=4, ccm_expansion_factor=2, ccm_kernel_size=31,
ffm_dropout=0., attn_dropout=0., ccm_dropout=0.):
super(ConformerBlock, self).__init__()
self.ffm1 = FeedForwardModule(dim, ffm_mult, dropout=ffm_dropout)
self.attn = AttentionModule(dim, n_head, dropout=attn_dropout)
self.ccm = ConformerConvModule(dim, ccm_expansion_factor, ccm_kernel_size, dropout=ccm_dropout)
self.ffm2 = FeedForwardModule(dim, ffm_mult, dropout=ffm_dropout)
self.post_norm = nn.LayerNorm(dim)
def forward(self, x):
x = x + 0.5 * self.ffm1(x)
x = x + self.attn(x)
x = x + self.ccm(x)
x = x + 0.5 * self.ffm2(x)
x = self.post_norm(x)
return x
def main():
x = torch.ones(10, 100, 64)
conformer = ConformerBlock(dim=64)
print(conformer(x))
if __name__ == '__main__':
main() |