Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from denoiser.conformer import ConformerBlock | |
from denoiser.utils import get_padding_2d, LearnableSigmoid_2d | |
from pesq import pesq | |
from joblib import Parallel, delayed | |
class DenseBlock(nn.Module): | |
def __init__(self, h, kernel_size=(3, 3), depth=4): | |
super(DenseBlock, self).__init__() | |
self.h = h | |
self.depth = depth | |
self.dense_block = nn.ModuleList([]) | |
for i in range(depth): | |
dil = 2 ** i | |
dense_conv = nn.Sequential( | |
nn.Conv2d(h.dense_channel*(i+1), h.dense_channel, kernel_size, dilation=(dil, 1), | |
padding=get_padding_2d(kernel_size, (dil, 1))), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel) | |
) | |
self.dense_block.append(dense_conv) | |
def forward(self, x): | |
skip = x | |
for i in range(self.depth): | |
x = self.dense_block[i](skip) | |
skip = torch.cat([x, skip], dim=1) | |
return x | |
class DenseEncoder(nn.Module): | |
def __init__(self, h, in_channel): | |
super(DenseEncoder, self).__init__() | |
self.h = h | |
self.dense_conv_1 = nn.Sequential( | |
nn.Conv2d(in_channel, h.dense_channel, (1, 1)), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel)) | |
self.dense_block = DenseBlock(h, depth=4) # [b, h.dense_channel, ndim_time, h.n_fft//2+1] | |
self.dense_conv_2 = nn.Sequential( | |
nn.Conv2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel)) | |
def forward(self, x): | |
x = self.dense_conv_1(x) # [b, 64, T, F] | |
x = self.dense_block(x) # [b, 64, T, F] | |
x = self.dense_conv_2(x) # [b, 64, T, F//2] | |
return x | |
class MaskDecoder(nn.Module): | |
def __init__(self, h, out_channel=1): | |
super(MaskDecoder, self).__init__() | |
self.dense_block = DenseBlock(h, depth=4) | |
self.mask_conv = nn.Sequential( | |
nn.ConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)), | |
nn.Conv2d(h.dense_channel, out_channel, (1, 1)), | |
nn.InstanceNorm2d(out_channel, affine=True), | |
nn.PReLU(out_channel), | |
nn.Conv2d(out_channel, out_channel, (1, 1)) | |
) | |
self.lsigmoid = LearnableSigmoid_2d(h.n_fft//2+1, beta=h.beta) | |
def forward(self, x): | |
x = self.dense_block(x) | |
x = self.mask_conv(x) | |
x = x.permute(0, 3, 2, 1).squeeze(-1) | |
x = self.lsigmoid(x).permute(0, 2, 1).unsqueeze(1) | |
return x | |
class PhaseDecoder(nn.Module): | |
def __init__(self, h, out_channel=1): | |
super(PhaseDecoder, self).__init__() | |
self.dense_block = DenseBlock(h, depth=4) | |
self.phase_conv = nn.Sequential( | |
nn.ConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)), | |
nn.InstanceNorm2d(h.dense_channel, affine=True), | |
nn.PReLU(h.dense_channel) | |
) | |
self.phase_conv_r = nn.Conv2d(h.dense_channel, out_channel, (1, 1)) | |
self.phase_conv_i = nn.Conv2d(h.dense_channel, out_channel, (1, 1)) | |
def forward(self, x): | |
x = self.dense_block(x) | |
x = self.phase_conv(x) | |
x_r = self.phase_conv_r(x) | |
x_i = self.phase_conv_i(x) | |
x = torch.atan2(x_i, x_r) | |
return x | |
class TSConformerBlock(nn.Module): | |
def __init__(self, h): | |
super(TSConformerBlock, self).__init__() | |
self.h = h | |
self.time_conformer = ConformerBlock(dim=h.dense_channel, n_head=4, ccm_kernel_size=31, | |
ffm_dropout=0.2, attn_dropout=0.2) | |
self.freq_conformer = ConformerBlock(dim=h.dense_channel, n_head=4, ccm_kernel_size=31, | |
ffm_dropout=0.2, attn_dropout=0.2) | |
def forward(self, x): | |
b, c, t, f = x.size() | |
x = x.permute(0, 3, 2, 1).contiguous().view(b*f, t, c) | |
x = self.time_conformer(x) + x | |
x = x.view(b, f, t, c).permute(0, 2, 1, 3).contiguous().view(b*t, f, c) | |
x = self.freq_conformer(x) + x | |
x = x.view(b, t, f, c).permute(0, 3, 1, 2) | |
return x | |
class MPNet(nn.Module): | |
def __init__(self, h, num_tscblocks=4): | |
super(MPNet, self).__init__() | |
self.h = h | |
self.num_tscblocks = num_tscblocks | |
self.dense_encoder = DenseEncoder(h, in_channel=2) | |
self.TSConformer = nn.ModuleList([]) | |
for i in range(num_tscblocks): | |
self.TSConformer.append(TSConformerBlock(h)) | |
self.mask_decoder = MaskDecoder(h, out_channel=1) | |
self.phase_decoder = PhaseDecoder(h, out_channel=1) | |
def forward(self, noisy_mag, noisy_pha): # [B, F, T] | |
noisy_mag = noisy_mag.unsqueeze(-1).permute(0, 3, 2, 1) # [B, 1, T, F] | |
noisy_pha = noisy_pha.unsqueeze(-1).permute(0, 3, 2, 1) # [B, 1, T, F] | |
x = torch.cat((noisy_mag, noisy_pha), dim=1) # [B, 2, T, F] | |
x = self.dense_encoder(x) | |
for i in range(self.num_tscblocks): | |
x = self.TSConformer[i](x) | |
denoised_mag = (noisy_mag * self.mask_decoder(x)).permute(0, 3, 2, 1).squeeze(-1) | |
denoised_pha = self.phase_decoder(x).permute(0, 3, 2, 1).squeeze(-1) | |
denoised_com = torch.stack((denoised_mag*torch.cos(denoised_pha), | |
denoised_mag*torch.sin(denoised_pha)), dim=-1) | |
return denoised_mag, denoised_pha, denoised_com | |
def phase_losses(phase_r, phase_g, h): | |
dim_freq = h.n_fft // 2 + 1 | |
dim_time = phase_r.size(-1) | |
gd_matrix = (torch.triu(torch.ones(dim_freq, dim_freq), diagonal=1) - torch.triu(torch.ones(dim_freq, dim_freq), diagonal=2) - torch.eye(dim_freq)).to(phase_g.device) | |
gd_r = torch.matmul(phase_r.permute(0, 2, 1), gd_matrix) | |
gd_g = torch.matmul(phase_g.permute(0, 2, 1), gd_matrix) | |
iaf_matrix = (torch.triu(torch.ones(dim_time, dim_time), diagonal=1) - torch.triu(torch.ones(dim_time, dim_time), diagonal=2) - torch.eye(dim_time)).to(phase_g.device) | |
iaf_r = torch.matmul(phase_r, iaf_matrix) | |
iaf_g = torch.matmul(phase_g, iaf_matrix) | |
ip_loss = torch.mean(anti_wrapping_function(phase_r-phase_g)) | |
gd_loss = torch.mean(anti_wrapping_function(gd_r-gd_g)) | |
iaf_loss = torch.mean(anti_wrapping_function(iaf_r-iaf_g)) | |
return ip_loss, gd_loss, iaf_loss | |
def anti_wrapping_function(x): | |
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi) | |
def pesq_score(utts_r, utts_g, h): | |
pesq_score = Parallel(n_jobs=30)(delayed(eval_pesq)( | |
utts_r[i].squeeze().cpu().numpy(), | |
utts_g[i].squeeze().cpu().numpy(), | |
h.sampling_rate) | |
for i in range(len(utts_r))) | |
pesq_score = np.mean(pesq_score) | |
return pesq_score | |
def eval_pesq(clean_utt, esti_utt, sr): | |
try: | |
pesq_score = pesq(sr, clean_utt, esti_utt) | |
except: | |
# error can happen due to silent period | |
pesq_score = -1 | |
return pesq_score | |