Spaces:
Running
Running
import glob | |
import os | |
import torch | |
import torch.nn as nn | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
def get_padding_2d(kernel_size, dilation=(1, 1)): | |
return (int((kernel_size[0]*dilation[0] - dilation[0])/2), int((kernel_size[1]*dilation[1] - dilation[1])/2)) | |
def load_checkpoint(filepath, device): | |
assert os.path.isfile(filepath) | |
print("Loading '{}'".format(filepath)) | |
checkpoint_dict = torch.load(filepath, map_location=device) | |
print("Complete.") | |
return checkpoint_dict | |
def save_checkpoint(filepath, obj): | |
print("Saving checkpoint to {}".format(filepath)) | |
torch.save(obj, filepath) | |
print("Complete.") | |
def scan_checkpoint(cp_dir, prefix): | |
pattern = os.path.join(cp_dir, prefix + '????????') | |
cp_list = glob.glob(pattern) | |
if len(cp_list) == 0: | |
return None | |
return sorted(cp_list)[-1] | |
class LearnableSigmoid_1d(nn.Module): | |
def __init__(self, in_features, beta=1): | |
super().__init__() | |
self.beta = beta | |
self.slope = nn.Parameter(torch.ones(in_features)) | |
self.slope.requiresGrad = True | |
def forward(self, x): | |
return self.beta * torch.sigmoid(self.slope * x) | |
class LearnableSigmoid_2d(nn.Module): | |
def __init__(self, in_features, beta=1): | |
super().__init__() | |
self.beta = beta | |
self.slope = nn.Parameter(torch.ones(in_features, 1)) | |
self.slope.requiresGrad = True | |
def forward(self, x): | |
return self.beta * torch.sigmoid(self.slope * x) | |