Spaces:
Running
Running
Sang-Hoon Lee
commited on
Commit
·
6ed416b
1
Parent(s):
6d99823
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
from scipy.io.wavfile import write
|
6 |
+
import torchaudio
|
7 |
+
import utils
|
8 |
+
from Mels_preprocess import MelSpectrogramFixed
|
9 |
+
|
10 |
+
from hierspeechpp_speechsynthesizer import (
|
11 |
+
SynthesizerTrn
|
12 |
+
)
|
13 |
+
from ttv_v1.text import text_to_sequence
|
14 |
+
from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
|
15 |
+
from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
|
16 |
+
from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
|
17 |
+
from denoiser.generator import MPNet
|
18 |
+
from denoiser.infer import denoise
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
|
22 |
+
def load_text(fp):
|
23 |
+
with open(fp, 'r') as f:
|
24 |
+
filelist = [line.strip() for line in f.readlines()]
|
25 |
+
return filelist
|
26 |
+
def load_checkpoint(filepath, device):
|
27 |
+
print(filepath)
|
28 |
+
assert os.path.isfile(filepath)
|
29 |
+
print("Loading '{}'".format(filepath))
|
30 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
31 |
+
print("Complete.")
|
32 |
+
return checkpoint_dict
|
33 |
+
def get_param_num(model):
|
34 |
+
num_param = sum(param.numel() for param in model.parameters())
|
35 |
+
return num_param
|
36 |
+
def intersperse(lst, item):
|
37 |
+
result = [item] * (len(lst) * 2 + 1)
|
38 |
+
result[1::2] = lst
|
39 |
+
return result
|
40 |
+
def add_blank_token(text):
|
41 |
+
|
42 |
+
text_norm = intersperse(text, 0)
|
43 |
+
text_norm = torch.LongTensor(text_norm)
|
44 |
+
return text_norm
|
45 |
+
|
46 |
+
def tts(text,
|
47 |
+
prompt,
|
48 |
+
ttv_temperature,
|
49 |
+
vc_temperature,
|
50 |
+
duratuion_temperature,
|
51 |
+
duratuion_length,
|
52 |
+
denoise_ratio,
|
53 |
+
random_seed):
|
54 |
+
|
55 |
+
torch.manual_seed(random_seed)
|
56 |
+
torch.cuda.manual_seed(random_seed)
|
57 |
+
np.random.seed(random_seed)
|
58 |
+
|
59 |
+
text_len = len(text)
|
60 |
+
if text_len > 200:
|
61 |
+
raise gr.Error("Text length limited to 200 characters for this demo. Current text length is " + str(text_len))
|
62 |
+
|
63 |
+
else:
|
64 |
+
text = text_to_sequence(str(text), ["english_cleaners2"])
|
65 |
+
|
66 |
+
token = add_blank_token(text).unsqueeze(0).cuda()
|
67 |
+
token_length = torch.LongTensor([token.size(-1)]).cuda()
|
68 |
+
|
69 |
+
# Prompt load
|
70 |
+
# sample_rate, audio = prompt
|
71 |
+
# audio = torch.FloatTensor([audio]).cuda()
|
72 |
+
# if audio.shape[0] != 1:
|
73 |
+
# audio = audio[:1,:]
|
74 |
+
# audio = audio / 32768
|
75 |
+
audio, sample_rate = torchaudio.load(prompt)
|
76 |
+
|
77 |
+
# support only single channel
|
78 |
+
|
79 |
+
# Resampling
|
80 |
+
if sample_rate != 16000:
|
81 |
+
audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
|
82 |
+
|
83 |
+
# We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
|
84 |
+
ori_prompt_len = audio.shape[-1]
|
85 |
+
p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
|
86 |
+
audio = torch.nn.functional.pad(audio, (0, p), mode='constant').data
|
87 |
+
|
88 |
+
# If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
|
89 |
+
# We will have a plan to replace a memory-efficient denoiser
|
90 |
+
if denoise == 0:
|
91 |
+
audio = torch.cat([audio.cuda(), audio.cuda()], dim=0)
|
92 |
+
else:
|
93 |
+
with torch.no_grad():
|
94 |
+
|
95 |
+
if ori_prompt_len > 80000:
|
96 |
+
denoised_audio = []
|
97 |
+
for i in range((ori_prompt_len//80000)):
|
98 |
+
denoised_audio.append(denoise(audio.squeeze(0).cuda()[i*80000:(i+1)*80000], denoiser, hps_denoiser))
|
99 |
+
|
100 |
+
denoised_audio.append(denoise(audio.squeeze(0).cuda()[(i+1)*80000:], denoiser, hps_denoiser))
|
101 |
+
denoised_audio = torch.cat(denoised_audio, dim=1)
|
102 |
+
else:
|
103 |
+
denoised_audio = denoise(audio.squeeze(0).cuda(), denoiser, hps_denoiser)
|
104 |
+
|
105 |
+
audio = torch.cat([audio.cuda(), denoised_audio[:,:audio.shape[-1]]], dim=0)
|
106 |
+
|
107 |
+
audio = audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
|
108 |
+
|
109 |
+
if audio.shape[-1]<48000:
|
110 |
+
audio = torch.cat([audio,audio,audio,audio,audio], dim=1)
|
111 |
+
|
112 |
+
src_mel = mel_fn(audio.cuda())
|
113 |
+
|
114 |
+
src_length = torch.LongTensor([src_mel.size(2)]).to(device)
|
115 |
+
src_length2 = torch.cat([src_length,src_length], dim=0)
|
116 |
+
|
117 |
+
## TTV (Text --> W2V, F0)
|
118 |
+
with torch.no_grad():
|
119 |
+
w2v_x, pitch = text2w2v.infer_noise_control(token, token_length, src_mel, src_length2,
|
120 |
+
noise_scale=ttv_temperature, noise_scale_w=duratuion_temperature,
|
121 |
+
length_scale=duratuion_length, denoise_ratio=denoise_ratio)
|
122 |
+
src_length = torch.LongTensor([w2v_x.size(2)]).cuda()
|
123 |
+
|
124 |
+
pitch[pitch<torch.log(torch.tensor([55]).cuda())] = 0
|
125 |
+
|
126 |
+
## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
|
127 |
+
converted_audio = \
|
128 |
+
net_g.voice_conversion_noise_control(w2v_x, src_length, src_mel, src_length2, pitch, noise_scale=vc_temperature, denoise_ratio=denoise_ratio)
|
129 |
+
|
130 |
+
converted_audio = speechsr(converted_audio)
|
131 |
+
|
132 |
+
converted_audio = converted_audio.squeeze()
|
133 |
+
|
134 |
+
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
|
135 |
+
converted_audio = converted_audio.cpu().numpy().astype('int16')
|
136 |
+
|
137 |
+
write('output.wav', 48000, converted_audio)
|
138 |
+
return 'output.wav'
|
139 |
+
|
140 |
+
def main():
|
141 |
+
print('Initializing Inference Process..')
|
142 |
+
|
143 |
+
parser = argparse.ArgumentParser()
|
144 |
+
parser.add_argument('--input_prompt', default='example/steve-jobs-2005.wav')
|
145 |
+
parser.add_argument('--input_txt', default='example/abstract.txt')
|
146 |
+
parser.add_argument('--output_dir', default='output')
|
147 |
+
parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
|
148 |
+
parser.add_argument('--ckpt_text2w2v', '-ct', help='text2w2v checkpoint path', default='./logs/ttv_libritts_v1/ttv_lt960_ckpt.pth')
|
149 |
+
parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
|
150 |
+
parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
|
151 |
+
parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
|
152 |
+
parser.add_argument('--scale_norm', type=str, default='max')
|
153 |
+
parser.add_argument('--output_sr', type=float, default=48000)
|
154 |
+
parser.add_argument('--noise_scale_ttv', type=float,
|
155 |
+
default=0.333)
|
156 |
+
parser.add_argument('--noise_scale_vc', type=float,
|
157 |
+
default=0.333)
|
158 |
+
parser.add_argument('--denoise_ratio', type=float,
|
159 |
+
default=0.8)
|
160 |
+
parser.add_argument('--duration_ratio', type=float,
|
161 |
+
default=0.8)
|
162 |
+
parser.add_argument('--seed', type=int,
|
163 |
+
default=1111)
|
164 |
+
a = parser.parse_args()
|
165 |
+
|
166 |
+
global device, hps, hps_t2w2v,h_sr,h_sr48, hps_denoiser
|
167 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
168 |
+
|
169 |
+
hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
|
170 |
+
hps_t2w2v = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_text2w2v)[0], 'config.json'))
|
171 |
+
h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
|
172 |
+
h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
|
173 |
+
hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
|
174 |
+
|
175 |
+
global mel_fn, net_g, text2w2v, speechsr, denoiser
|
176 |
+
|
177 |
+
mel_fn = MelSpectrogramFixed(
|
178 |
+
sample_rate=hps.data.sampling_rate,
|
179 |
+
n_fft=hps.data.filter_length,
|
180 |
+
win_length=hps.data.win_length,
|
181 |
+
hop_length=hps.data.hop_length,
|
182 |
+
f_min=hps.data.mel_fmin,
|
183 |
+
f_max=hps.data.mel_fmax,
|
184 |
+
n_mels=hps.data.n_mel_channels,
|
185 |
+
window_fn=torch.hann_window
|
186 |
+
).cuda()
|
187 |
+
|
188 |
+
net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
|
189 |
+
hps.train.segment_size // hps.data.hop_length,
|
190 |
+
**hps.model).cuda()
|
191 |
+
net_g.load_state_dict(torch.load(a.ckpt))
|
192 |
+
_ = net_g.eval()
|
193 |
+
|
194 |
+
text2w2v = Text2W2V(hps.data.filter_length // 2 + 1,
|
195 |
+
hps.train.segment_size // hps.data.hop_length,
|
196 |
+
**hps_t2w2v.model).cuda()
|
197 |
+
text2w2v.load_state_dict(torch.load(a.ckpt_text2w2v))
|
198 |
+
text2w2v.eval()
|
199 |
+
|
200 |
+
speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
|
201 |
+
h_sr48.train.segment_size // h_sr48.data.hop_length,
|
202 |
+
**h_sr48.model).cuda()
|
203 |
+
utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
|
204 |
+
speechsr.eval()
|
205 |
+
|
206 |
+
denoiser = MPNet(hps_denoiser).cuda()
|
207 |
+
state_dict = load_checkpoint(a.denoiser_ckpt, device)
|
208 |
+
denoiser.load_state_dict(state_dict['generator'])
|
209 |
+
denoiser.eval()
|
210 |
+
|
211 |
+
demo_play = gr.Interface(fn = tts,
|
212 |
+
inputs = [gr.Textbox(max_lines=6, label="Input Text", value="HierSpeech is a zero shot speech synthesis model, which can generate high-quality audio", info="Up to 200 characters"),
|
213 |
+
gr.Audio(type='filepath', value="./example/3_rick_gt.wav"),
|
214 |
+
gr.Slider(0,1,0.333),
|
215 |
+
gr.Slider(0,1,0.333),
|
216 |
+
gr.Slider(0,1,1.0),
|
217 |
+
gr.Slider(0.5,2,1.0),
|
218 |
+
gr.Slider(0,1,0),
|
219 |
+
gr.Slider(0,9999,1111)],
|
220 |
+
outputs = 'audio',
|
221 |
+
title = 'HierSpeech++',
|
222 |
+
description = '''<div>
|
223 |
+
<p style="text-align: left"> HierSpeech++ is a zero-shot speech synthesis model.</p>
|
224 |
+
<p style="text-align: left"> Our model is trained with LibriTTS dataset so this model only supports english. We will release a multi-lingual HierSpeech++ soon.</p>
|
225 |
+
<p style="text-align: left"> <a href="https://sh-lee-prml.github.io/HierSpeechpp-demo/">[Demo Page]</a> <a href="https://github.com/sh-lee-prml/HierSpeechpp">[Source Code]</a></p>
|
226 |
+
</div>''',
|
227 |
+
examples=[["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/3_rick_gt.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
228 |
+
["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/ex01_whisper_00359.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
229 |
+
["Hi there, I'm your new voice clone. Try your best to upload quality audio", "./example/female.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
230 |
+
["Hello I'm HierSpeech++", "./example/reference_1.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
231 |
+
]
|
232 |
+
)
|
233 |
+
demo_play.launch(share=True, server_port=8888)
|
234 |
+
|
235 |
+
if __name__ == '__main__':
|
236 |
+
main()
|