Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection, pipeline
|
3 |
-
import torch
|
4 |
|
5 |
# Carga el procesador de im谩genes y el modelo
|
6 |
-
image_processor = AutoImageProcessor.from_pretrained("seayala/practica_2")
|
7 |
-
model = AutoModelForObjectDetection.from_pretrained("seayala/practica_2")
|
8 |
|
9 |
# Crea el pipeline de detecci贸n de objetos
|
10 |
detector = pipeline("object-detection", model=model, image_processor=image_processor)
|
11 |
|
12 |
-
#
|
13 |
def predict(image):
|
14 |
-
|
15 |
-
return results
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
iface = gr.Interface(
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection, pipeline
|
|
|
3 |
|
4 |
# Carga el procesador de im谩genes y el modelo
|
5 |
+
image_processor = AutoImageProcessor.from_pretrained("seayala/practica_2")
|
6 |
+
model = AutoModelForObjectDetection.from_pretrained("seayala/practica_2")
|
7 |
|
8 |
# Crea el pipeline de detecci贸n de objetos
|
9 |
detector = pipeline("object-detection", model=model, image_processor=image_processor)
|
10 |
|
11 |
+
# Funci贸n para procesar la imagen y generar anotaciones
|
12 |
def predict(image):
|
13 |
+
results = detector(image)
|
|
|
14 |
|
15 |
+
# Extrae cajas en formato xmin, ymin, xmax, ymax
|
16 |
+
boxes = []
|
17 |
+
for obj in results:
|
18 |
+
box = obj["box"]
|
19 |
+
label = f'{obj["label"]} ({obj["score"]:.2f})'
|
20 |
+
# Convierte el formato si es necesario
|
21 |
+
if "x" in box and "y" in box and "width" in box and "height" in box:
|
22 |
+
xmin = box["x"]
|
23 |
+
ymin = box["y"]
|
24 |
+
xmax = xmin + box["width"]
|
25 |
+
ymax = ymin + box["height"]
|
26 |
+
else:
|
27 |
+
xmin = box.get("xmin", 0)
|
28 |
+
ymin = box.get("ymin", 0)
|
29 |
+
xmax = box.get("xmax", 0)
|
30 |
+
ymax = box.get("ymax", 0)
|
31 |
+
|
32 |
+
boxes.append({"label": label, "box": [xmin, ymin, xmax, ymax]})
|
33 |
+
|
34 |
+
return image, boxes
|
35 |
+
|
36 |
+
# Interfaz Gradio
|
37 |
iface = gr.Interface(
|
38 |
+
fn=predict,
|
39 |
+
inputs=gr.Image(type="pil", label="Sube una imagen"),
|
40 |
+
outputs=gr.AnnotatedImage(label="Resultados de detecci贸n"),
|
41 |
+
title="Detector de objetos",
|
42 |
+
description="Sube una imagen para detectar objetos con tu modelo personalizado."
|
43 |
+
)
|
44 |
+
|
45 |
+
iface.launch()
|
|