Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection, pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Carga el procesador de im谩genes y el modelo
|
6 |
+
image_processor = AutoImageProcessor.from_pretrained("seayala/practica_2") # Reemplaza con la ruta de tu modelo
|
7 |
+
model = AutoModelForObjectDetection.from_pretrained("seayala/practica_2") # Reemplaza con la ruta de tu modelo
|
8 |
+
|
9 |
+
# Crea el pipeline de detecci贸n de objetos
|
10 |
+
detector = pipeline("object-detection", model=model, image_processor=image_processor)
|
11 |
+
|
12 |
+
# Crea la funci贸n de predicci贸n
|
13 |
+
def predict(image):
|
14 |
+
results = detector(image)
|
15 |
+
return results
|
16 |
+
|
17 |
+
# Crea la interfaz de usuario
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=predict,
|
20 |
+
inputs=gr.Image(type="pil"),
|
21 |
+
outputs=gr.Label(num_top_classes=5),
|
22 |
+
title="Detector de objetos",
|
23 |
+
description="Sube una imagen para detectar objetos.",
|
24 |
+
)
|
25 |
+
|
26 |
+
# Inicia la interfaz de usuario
|
27 |
+
iface.launch()
|