sebastiansarasti
commited on
Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from huggingface_hub import PyTorchModelHubMixin
|
3 |
+
|
4 |
+
class ModelColorization(nn.Module, PyTorchModelHubMixin):
|
5 |
+
def __init__(self):
|
6 |
+
super(ModelColorization, self).__init__()
|
7 |
+
self.encoder = nn.Sequential(
|
8 |
+
nn.Conv2d(1, 256, kernel_size=3, stride=1, padding=1),
|
9 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
10 |
+
nn.ReLU(),
|
11 |
+
nn.BatchNorm2d(256),
|
12 |
+
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
|
13 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
14 |
+
nn.ReLU(),
|
15 |
+
nn.BatchNorm2d(128),
|
16 |
+
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
|
17 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
18 |
+
nn.ReLU(),
|
19 |
+
nn.BatchNorm2d(64),
|
20 |
+
nn.Flatten(),
|
21 |
+
nn.Linear(64 * 16 * 16, 1024),
|
22 |
+
)
|
23 |
+
self.decoder = nn.Sequential(
|
24 |
+
nn.Linear(1024, 64 * 16 * 16),
|
25 |
+
nn.ReLU(),
|
26 |
+
nn.Unflatten(1, (64, 16, 16)),
|
27 |
+
nn.ConvTranspose2d(64, 128, kernel_size=2, stride=2),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.BatchNorm2d(128),
|
30 |
+
nn.ConvTranspose2d(128, 256, kernel_size=2, stride=2),
|
31 |
+
nn.ReLU(),
|
32 |
+
nn.BatchNorm2d(256),
|
33 |
+
nn.ConvTranspose2d(256, 3, kernel_size=2, stride=2),
|
34 |
+
nn.Sigmoid(),
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x = self.encoder(x)
|
39 |
+
x = self.decoder(x)
|
40 |
+
return x
|