File size: 1,511 Bytes
d64a508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import torch

def plot_matrix(tensor, ax, title, vmin=0, vmax=1, cmap=None):
    """
    Plot a heatmap of tensors using seaborn
    """
    sns.heatmap(tensor.cpu().numpy(), ax=ax, vmin=vmin, vmax=vmax, cmap=cmap, annot=True, fmt=".2f", cbar=False)
    ax.set_title(title)
    ax.set_yticklabels([])
    ax.set_xticklabels([])


def plot_quantization_errors(original_tensor, quantized_tensor, dequantized_tensor, dtype = torch.int8, n_bits = 8):
    """
    A method that plots 4 matrices, the original tensor, the quantized tensor
    the de-quantized tensor and the error tensor.
    """
    # Get a figure of 4 plots
    fig, axes = plt.subplots(1, 4, figsize=(15, 4))

    # Plot the first matrix
    plot_matrix(original_tensor, axes[0], 'Original Tensor', cmap=ListedColormap(['white']))

    # Get the quantization range and plot the quantized tensor
    q_min, q_max = torch.iinfo(dtype).min, torch.iinfo(dtype).max
    plot_matrix(quantized_tensor, axes[1], f'{n_bits}-bit Linear Quantized Tensor', vmin=q_min, vmax=q_max, cmap='coolwarm')

    # Plot the de-quantized tensors
    plot_matrix(dequantized_tensor, axes[2], 'Dequantized Tensor', cmap='coolwarm')

    # Get the quantization errors
    q_error_tensor = abs(original_tensor - dequantized_tensor)
    plot_matrix(q_error_tensor, axes[3], 'Quantization Error Tensor', cmap=ListedColormap(['white']))

    fig.tight_layout()
    plt.show()