import gradio as gr from huggingface_hub import HfApi from unsloth import FastLanguageModel from trl import SFTTrainer from transformers import TrainingArguments, TrainerCallback from unsloth import is_bfloat16_supported import torch from datasets import load_dataset import logging from io import StringIO import time import asyncio # Create a string stream to capture log messages log_stream = StringIO() # Configure logging to use the string stream logging.basicConfig(stream=log_stream, level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) log_contents = log_stream.getvalue() print(log_contents) logger.debug('This is a debug message') hf_user = None hfApi = HfApi() try: hf_user = hfApi.whoami() except Exception as e: hf_user = "not logged in" # Dropdown options model_options = [ "unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster! "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster! "unsloth/llama-3-8b-Instruct-bnb-4bit", "unsloth/llama-3-70b-bnb-4bit", "unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster! "unsloth/Phi-3-medium-4k-instruct", "unsloth/mistral-7b-bnb-4bit", "unsloth/gemma-2-9b-bnb-4bit", "unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster! ] gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) model=None tokenizer = None dataset = None max_seq_length = 2048 class PrinterCallback(TrainerCallback): step = 0 def __init__(self, progress): self.progress = progress def on_log(self, args, state, control, logs=None, **kwargs): _ = logs.pop("total_flos", None) if state.is_local_process_zero: #print(logs) pass def on_step_end(self, args, state, control, **kwargs): if state.is_local_process_zero: self.step = state.global_step self.progress(self.step/60, desc=f"Training {self.step}/60") #print("**Step ", state.global_step) def formatting_prompts_func(examples, prompt): EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN instructions = examples["instruction"] inputs = examples["input"] outputs = examples["output"] texts = [] for instruction, input, output in zip(instructions, inputs, outputs): # Must add EOS_TOKEN, otherwise your generation will go on forever! text = prompt.format(instruction, input, output) + EOS_TOKEN texts.append(text) return { "text" : texts, } def load_model(initial_model_name, load_in_4bit, max_sequence_length): global model, tokenizer, max_seq_length dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ max_seq_length = max_sequence_length model, tokenizer = FastLanguageModel.from_pretrained( model_name = initial_model_name, max_seq_length = max_sequence_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) log_contents = log_stream.getvalue() print(log_contents) return f"Model {initial_model_name} loaded, using {max_sequence_length} as max sequence length.", gr.update(visible=True, interactive=True), gr.update(interactive=True),gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) def load_data(dataset_name, data_template_style, data_template): global dataset dataset = load_dataset(dataset_name, split = "train") dataset = dataset.map(lambda examples: formatting_prompts_func(examples, data_template), batched=True) return f"Data loaded {len(dataset)} records loaded.", gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True) def inference(prompt, input_text): FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ prompt.format( "Continue the fibonnaci sequence.", # instruction "1, 1, 2, 3, 5, 8", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) result = tokenizer.batch_decode(outputs) return result[0], gr.update(visible=True, interactive=True) def save_model(model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub): global model, tokenizer if gguf_custom: gguf_custom_value = gguf_custom_value else: gguf_custom_value = None if gguf_16bit: gguf = "f16" elif gguf_8bit: gguf = "q8_0" elif gguf_4bit: gguf = "q4_k_m" else: gguf = None if merge_16bit: merge = "16bit" elif merge_4bit: merge = "4bit" elif just_lora: merge = "lora" else: merge = None #model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "") if push_to_hub: model.push_to_hub_gguf(hub_model_name, tokenizer, quantization_method=gguf, token=hub_token) return "Model saved", gr.update(visible=True, interactive=True) # Create the Gradio interface with gr.Blocks(title="Unsloth fine-tuning") as demo: with gr.Column(): gr.Image("unsloth.png", width="300px", interactive=False, show_download_button=False, show_label=False) with gr.Column(): gr.Markdown(f"**User:** {hf_user}\n\n**GPU Information:** {gpu_stats.name} ({max_memory} GB)\n\n[Unsloth Docs](http://docs.unsloth.com/)\n\n[Unsloth GitHub](https://github.com/unslothai/unsloth)") with gr.Tab("Base Model Parameters"): with gr.Row(): initial_model_name = gr.Dropdown(choices=model_options, label="Select Base Model", allow_custom_value=True) load_in_4bit = gr.Checkbox(label="Load 4bit model", value=True) gr.Markdown("### Target Model Parameters") with gr.Row(): max_sequence_length = gr.Slider(minimum=128, value=512, step=64, maximum=128*1024, interactive=True, label="Max Sequence Length") load_btn = gr.Button("Load") output = gr.Textbox(label="Model Load Status", value="Model not loaded", interactive=False) gr.Markdown("---") with gr.Tab("Data Preparation"): with gr.Row(): dataset_name = gr.Textbox(label="Dataset Name", value="yahma/alpaca-cleaned") data_template_style = gr.Dropdown(label="Template", choices=["alpaca","custom"], value="alpaca", allow_custom_value=True) with gr.Row(): data_template = gr.TextArea(label="Data Template", value="""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""") gr.Markdown("---") output_load_data = gr.Textbox(label="Data Load Status", value="Data not loaded", interactive=False) load_data_btn = gr.Button("Load Dataset", interactive=True) load_data_btn.click(load_data, inputs=[dataset_name, data_template_style, data_template], outputs=[output_load_data, load_data_btn]) with gr.Tab("Fine-Tuning"): gr.Markdown("""### Fine-Tuned Model Parameters""") with gr.Row(): model_name = gr.Textbox(label="Model Name", value=initial_model_name.value, interactive=True) gr.Markdown("""### Lora Parameters""") with gr.Row(): lora_r = gr.Number(label="R", value=16, interactive=True) lora_alpha = gr.Number(label="Lora Alpha", value=16, interactive=True) lora_dropout = gr.Number(label="Lora Dropout", value=0.1, interactive=True) gr.Markdown("---") gr.Markdown("""### Training Parameters""") with gr.Row(): with gr.Column(): with gr.Row(): per_device_train_batch_size = gr.Number(label="Per Device Train Batch Size", value=2, interactive=True) warmup_steps = gr.Number(label="Warmup Steps", value=5, interactive=True) max_steps = gr.Number(label="Max Steps", value=60, interactive=True) gradient_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=4, interactive=True) with gr.Row(): logging_steps = gr.Number(label="Logging Steps", value=1, interactive=True) log_to_tensorboard = gr.Checkbox(label="Log to Tensorboard", value=True, interactive=True) with gr.Row(): optim = gr.Dropdown(choices=["adamw_8bit", "adamw", "sgd"], label="Optimizer", value="adamw_8bit") learning_rate = gr.Number(label="Learning Rate", value=2e-4, interactive=True) with gr.Row(): weight_decay = gr.Number(label="Weight Decay", value=0.01, interactive=True) lr_scheduler_type = gr.Dropdown(choices=["linear", "cosine", "constant"], label="LR Scheduler Type", value="linear") gr.Markdown("---") with gr.Row(): seed = gr.Number(label="Seed", value=3407, interactive=True) output_dir = gr.Textbox(label="Output Directory", value="outputs", interactive=True) gr.Markdown("---") train_output = gr.Textbox(label="Training Status", value="Model not trained", interactive=False) train_btn = gr.Button("Train", visible=True) def train_model(model_name: str, lora_r: int, lora_alpha: int, lora_dropout: float, per_device_train_batch_size: int, warmup_steps: int, max_steps: int, gradient_accumulation_steps: int, logging_steps: int, log_to_tensorboard: bool, optim, learning_rate, weight_decay, lr_scheduler_type, seed: int, output_dir, progress= gr.Progress()): global model, tokenizer print(f"$$$ Training model {model_name} with {lora_r} R, {lora_alpha} alpha, {lora_dropout} dropout, {per_device_train_batch_size} per device train batch size, {warmup_steps} warmup steps, {max_steps} max steps, {gradient_accumulation_steps} gradient accumulation steps, {logging_steps} logging steps, {log_to_tensorboard} log to tensorboard, {optim} optimizer, {learning_rate} learning rate, {weight_decay} weight decay, {lr_scheduler_type} lr scheduler type, {seed} seed, {output_dir} output dir") iseed = seed model = FastLanguageModel.get_peft_model( model, r = lora_r, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = lora_alpha, lora_dropout = lora_dropout, bias = "none", use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state=iseed, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) progress(0.0, desc="Loading Trainer") time.sleep(1) trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, # Can make training 5x faster for short sequences. callbacks = [PrinterCallback(progress)], args = TrainingArguments( per_device_train_batch_size = per_device_train_batch_size, gradient_accumulation_steps = gradient_accumulation_steps, warmup_steps = warmup_steps, max_steps = 60, # Set num_train_epochs = 1 for full training runs learning_rate = learning_rate, fp16 = not is_bfloat16_supported(), bf16 = is_bfloat16_supported(), logging_steps = logging_steps, optim = "adamw_8bit", weight_decay = weight_decay, lr_scheduler_type = "linear", seed = iseed, report_to="tensorboard" if log_to_tensorboard else None, output_dir = output_dir ), ) trainer.train() progress(1, desc="Training completed") time.sleep(1) return "Model trained 100%",gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=True), gr.update(interactive=True) train_btn.click(train_model, inputs=[model_name, lora_r, lora_alpha, lora_dropout, per_device_train_batch_size, warmup_steps, max_steps, gradient_accumulation_steps, logging_steps, log_to_tensorboard, optim, learning_rate, weight_decay, lr_scheduler_type, seed, output_dir], outputs=[train_output, train_btn]) with gr.Tab("Save & Push Options"): with gr.Row(): gr.Markdown("### Merging Options") with gr.Column(): merge_16bit = gr.Checkbox(label="Merge to 16bit", value=False, interactive=True) merge_4bit = gr.Checkbox(label="Merge to 4bit", value=False, interactive=True) just_lora = gr.Checkbox(label="Just LoRA Adapter", value=False, interactive=True) gr.Markdown("---") with gr.Row(): gr.Markdown("### GGUF Options") with gr.Column(): gguf_16bit = gr.Checkbox(label="Quantize to f16", value=False, interactive=True) gguf_8bit = gr.Checkbox(label="Quantize to 8bit (Q8_0)", value=False, interactive=True) gguf_4bit = gr.Checkbox(label="Quantize to 4bit (q4_k_m)", value=False, interactive=True) with gr.Column(): gguf_custom = gr.Checkbox(label="Custom", value=False, interactive=True) gguf_custom_value = gr.Textbox(label="", value="Q5_K", interactive=True) gr.Markdown("---") with gr.Row(): gr.Markdown("### Hugging Face Hub Options") push_to_hub = gr.Checkbox(label="Push to Hub", value=False, interactive=True) with gr.Column(): hub_model_name = gr.Textbox(label="Hub Model Name", value=f"username/model_name", interactive=True) hub_token = gr.Textbox(label="Hub Token", interactive=True, type="password") gr.Markdown("---") # with gr.Row(): # gr.Markdown("### Ollama options") # with gr.Column(): # ollama_create_local = gr.Checkbox(label="Create in Ollama (local)", value=False, interactive=True) # ollama_push_to_hub = gr.Checkbox(label="Push to Ollama", value=False, interactive=True) # with gr.Column(): # ollama_model_name = gr.Textbox(label="Ollama Model Name", value="user/model_name") # ollama_pub_key = gr.Button("Ollama Pub Key") save_output = gr.Markdown("---") save_button = gr.Button("Save Model", visible=True, interactive=True) save_button.click(save_model, inputs=[model_name, hub_model_name, hub_token, gguf_16bit, gguf_8bit, gguf_4bit, gguf_custom, gguf_custom_value, merge_16bit, merge_4bit, just_lora, push_to_hub], outputs=[save_output, save_button]) with gr.Tab("Inference"): with gr.Row(): input_text = gr.Textbox(label="Input Text", lines=4, value="""\ Continue the fibonnaci sequence. # instruction 1, 1, 2, 3, 5, 8 # input """, interactive=True) output_text = gr.Textbox(label="Output Text", lines=4, value="", interactive=False) inference_button = gr.Button("Inference", visible=True, interactive=True) inference_button.click(inference, inputs=[data_template, input_text], outputs=[output_text, inference_button]) load_btn.click(load_model, inputs=[initial_model_name, load_in_4bit, max_sequence_length], outputs=[output, load_btn, train_btn, initial_model_name, load_in_4bit, max_sequence_length]) demo.launch()