Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
import numpy as np
|
8 |
+
from torch import nn
|
9 |
+
print(torch.__version__)
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
print(device)
|
12 |
+
|
13 |
+
from transformers import GPT2Tokenizer,GPT2LMHeadModel,DataCollatorWithPadding
|
14 |
+
|
15 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
16 |
+
tokenizer.pad_token_id = 0
|
17 |
+
collator = DataCollatorWithPadding(tokenizer = tokenizer)
|
18 |
+
|
19 |
+
class EncoderAttention(nn.Module):
|
20 |
+
def __init__(self,embed_dim=768, num_heads=8, dropout=0.1):
|
21 |
+
super().__init__()
|
22 |
+
self.mha = nn.MultiheadAttention(embed_dim, num_heads,batch_first=True, dropout=dropout)
|
23 |
+
self.layernorm = nn.LayerNorm(embed_dim)
|
24 |
+
|
25 |
+
def forward(self,x):
|
26 |
+
|
27 |
+
attn, _ = self.mha(query=x,
|
28 |
+
value=x,
|
29 |
+
key=x,
|
30 |
+
need_weights=False,
|
31 |
+
)
|
32 |
+
x = x + attn
|
33 |
+
return self.layernorm(x)
|
34 |
+
|
35 |
+
|
36 |
+
class FeedForward(nn.Module):
|
37 |
+
def __init__(self, embed_dim=768, dropout_rate=0.1):
|
38 |
+
super().__init__()
|
39 |
+
self.seq = nn.Sequential(
|
40 |
+
nn.Linear(embed_dim, embed_dim*2),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Linear(embed_dim*2, embed_dim),
|
43 |
+
nn.Dropout(dropout_rate)
|
44 |
+
)
|
45 |
+
|
46 |
+
self.layernorm = nn.LayerNorm(embed_dim)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
x = x + self.seq(x)
|
50 |
+
return self.layernorm(x)
|
51 |
+
|
52 |
+
|
53 |
+
class MapperLayer(nn.Module):
|
54 |
+
def __init__(self, embed_dim=768, num_heads=8, dropout_rate=0.1):
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.attn = EncoderAttention( num_heads=num_heads,
|
58 |
+
embed_dim=embed_dim,
|
59 |
+
dropout=dropout_rate)
|
60 |
+
self.ff = FeedForward(embed_dim=embed_dim,
|
61 |
+
dropout_rate=dropout_rate)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
x = self.attn(x)
|
65 |
+
x = self.ff(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
class Transformer(nn.Module):
|
70 |
+
def __init__(self,
|
71 |
+
num_layers=8,
|
72 |
+
num_heads=8,
|
73 |
+
embed_dim=768,
|
74 |
+
dropout_rate=0.1
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
layers = [MapperLayer(embed_dim=embed_dim,
|
79 |
+
num_heads=num_heads,
|
80 |
+
dropout_rate=dropout_rate) for i in range(num_layers)]
|
81 |
+
self.layers = nn.ModuleList(layers)
|
82 |
+
|
83 |
+
|
84 |
+
def forward(self,x):
|
85 |
+
for layer in self.layers:
|
86 |
+
x = layer(x)
|
87 |
+
return x
|
88 |
+
|
89 |
+
class TransformerMapper(nn.Module):
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
|
93 |
+
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) # (B,prefix_len,embed_dim)
|
94 |
+
prefix = torch.cat((x, prefix), dim=1)
|
95 |
+
return self.transformer(prefix)[:, self.clip_length:]
|
96 |
+
|
97 |
+
|
98 |
+
def __init__(self,
|
99 |
+
dim_clip = 768,
|
100 |
+
embed_dim = 768,
|
101 |
+
prefix_length = 16,
|
102 |
+
clip_length = 10,
|
103 |
+
num_layers = 8,
|
104 |
+
num_heads = 8,
|
105 |
+
dropout_rate = 0.1
|
106 |
+
):
|
107 |
+
super().__init__()
|
108 |
+
self.clip_length = clip_length
|
109 |
+
self.transformer = Transformer(
|
110 |
+
num_layers=num_layers,
|
111 |
+
num_heads=num_heads,
|
112 |
+
embed_dim=embed_dim,
|
113 |
+
dropout_rate=dropout_rate
|
114 |
+
)
|
115 |
+
self.linear = nn.Linear(dim_clip, self.clip_length * embed_dim) # CLIP prefixes (clip_length prefixes) (B,clip_len*768)
|
116 |
+
self.prefix_const = nn.Parameter(torch.randn(prefix_length, embed_dim), requires_grad=True)
|
117 |
+
|
118 |
+
class ClipCaptionModel(nn.Module):
|
119 |
+
|
120 |
+
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
|
121 |
+
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
|
122 |
+
|
123 |
+
def forward(self,
|
124 |
+
tokens: torch.Tensor,
|
125 |
+
prefix: torch.Tensor,
|
126 |
+
mask: torch.Tensor,
|
127 |
+
labels=None):
|
128 |
+
# create embeddings for the gpt model
|
129 |
+
embedding_text = self.gpt.transformer.wte(tokens)
|
130 |
+
prefix_projections = self.clip_project(prefix)
|
131 |
+
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
|
132 |
+
|
133 |
+
# prepare mask
|
134 |
+
if mask.shape[1] != embedding_cat.shape[1]:
|
135 |
+
dummy_mask = torch.ones(tokens.shape[0],self.prefix_length, dtype=torch.int64, device=self.gpt.device)
|
136 |
+
mask = torch.cat([dummy_mask,mask],dim=1)
|
137 |
+
|
138 |
+
if labels is not None:
|
139 |
+
dummy_token = torch.zeros(tokens.shape[0],self.prefix_length, dtype=torch.int64, device=device)
|
140 |
+
labels = torch.cat((dummy_token, tokens), dim=1)
|
141 |
+
|
142 |
+
return self.gpt(inputs_embeds=embedding_cat,
|
143 |
+
labels=labels,
|
144 |
+
attention_mask=mask)
|
145 |
+
|
146 |
+
|
147 |
+
def __init__(self,
|
148 |
+
dim_clip = 768,
|
149 |
+
embed_dim = 768,
|
150 |
+
prefix_length = 16,
|
151 |
+
clip_length = 10,
|
152 |
+
num_layers = 8,
|
153 |
+
num_heads = 8,
|
154 |
+
dropout_rate = 0.1,
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
self.prefix_length = prefix_length
|
158 |
+
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
|
159 |
+
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
160 |
+
self.clip_project = TransformerMapper(
|
161 |
+
dim_clip = dim_clip,
|
162 |
+
embed_dim = self.gpt_embedding_size,
|
163 |
+
prefix_length = prefix_length,
|
164 |
+
clip_length = clip_length,
|
165 |
+
num_layers = num_layers,
|
166 |
+
num_heads = num_heads,
|
167 |
+
dropout_rate = dropout_rate)
|
168 |
+
|
169 |
+
|
170 |
+
## Prepare Model
|
171 |
+
CliPGPT = ClipCaptionModel()
|
172 |
+
path = "files/model_epoch_1.pt"
|
173 |
+
state_dict = torch.load(path)
|
174 |
+
|
175 |
+
# Apply the weights to the model
|
176 |
+
CliPGPT.load_state_dict(state_dict)
|
177 |
+
CliPGPT.to(device)
|
178 |
+
|
179 |
+
from transformers import CLIPProcessor, CLIPModel
|
180 |
+
|
181 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
182 |
+
model.eval()
|
183 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
184 |
+
|
185 |
+
def sample_from_logits(logits, temperature=0.3):
|
186 |
+
logits = logits / temperature
|
187 |
+
probabilities = torch.softmax(logits, dim=-1)
|
188 |
+
return torch.multinomial(probabilities, 1).squeeze()
|
189 |
+
|
190 |
+
def generate(image,
|
191 |
+
device=device,
|
192 |
+
max_tokens=48,
|
193 |
+
temperature=0.3,
|
194 |
+
verbose=True,
|
195 |
+
sample=True,
|
196 |
+
):
|
197 |
+
model.to(device)
|
198 |
+
CliPGPT.to(device)
|
199 |
+
# encode image
|
200 |
+
with torch.inference_mode():
|
201 |
+
input = torch.tensor(np.stack(processor.image_processor(image).pixel_values,axis=0)).to(device)
|
202 |
+
embeds = model.vision_model(input)
|
203 |
+
embeds = embeds.pooler_output
|
204 |
+
|
205 |
+
CliPGPT.eval()
|
206 |
+
prefix_length = CliPGPT.prefix_length
|
207 |
+
|
208 |
+
# prepare initial token '#' used as token to begin generation of caption
|
209 |
+
tokens = ['#']
|
210 |
+
input_ids,attention_mask = collator(tokenizer(tokens)).values()
|
211 |
+
|
212 |
+
# forward pass
|
213 |
+
for i in tqdm(range(max_tokens),desc='generating... '):
|
214 |
+
|
215 |
+
input_ids = input_ids.to(device)
|
216 |
+
embeds = embeds.to(device)
|
217 |
+
attention_mask = attention_mask.to(device)
|
218 |
+
|
219 |
+
with torch.inference_mode():
|
220 |
+
out = CliPGPT(
|
221 |
+
tokens= input_ids,
|
222 |
+
prefix= embeds,
|
223 |
+
mask= attention_mask,
|
224 |
+
)
|
225 |
+
logits = out.logits
|
226 |
+
logits = logits[:,prefix_length:,:]
|
227 |
+
|
228 |
+
# Sampling Technique
|
229 |
+
if sample:
|
230 |
+
next_token = sample_from_logits(logits[:, -1, :],
|
231 |
+
temperature=temperature)
|
232 |
+
else:
|
233 |
+
next_token = torch.argmax(logits[:,-1,:],dim=-1).squeeze()
|
234 |
+
token = next_token.item()
|
235 |
+
|
236 |
+
if token == tokenizer.eos_token_id:
|
237 |
+
break
|
238 |
+
# update string
|
239 |
+
tokens = [tokens[0] + tokenizer.decode(next_token)]
|
240 |
+
# update tokens
|
241 |
+
input_ids,attention_mask = collator(tokenizer(tokens)).values()
|
242 |
+
|
243 |
+
if verbose:
|
244 |
+
print(token)
|
245 |
+
print(tokens[0])
|
246 |
+
print()
|
247 |
+
return tokens[0].replace('#','').strip()
|
248 |
+
|
249 |
+
|
250 |
+
st.title("CLIP GPT2 Image Captionning")
|
251 |
+
st.write("This is a web app for generating captions for images using a model built with CLIP & GPT2.")
|
252 |
+
|
253 |
+
# Image upload section
|
254 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
255 |
+
|
256 |
+
if uploaded_file is not None:
|
257 |
+
# Display the uploaded image
|
258 |
+
image = Image.open(uploaded_file)
|
259 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
260 |
+
|
261 |
+
# Generate caption button
|
262 |
+
if st.button('Submit'):
|
263 |
+
with st.spinner('Generating caption...'):
|
264 |
+
start_time = time.time()
|
265 |
+
caption = generate(image)
|
266 |
+
end_time = time.time()
|
267 |
+
|
268 |
+
st.text_area('Output', caption)
|
269 |
+
st.write(f"Inference time: {end_time - start_time:.2f} seconds")
|