import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "seonglae/yokhal-md" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda" if torch.cuda.is_available() else "cpu") def chatbot_response(input_text): chat_input = [{'role': 'user', 'content': f'한국어로 대답해\n{input_text}'}] prompt = tokenizer.apply_chat_template(chat_input, tokenize=False, add_generation_prompt=True) input_ids = tokenizer(prompt, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu") outputs = model.generate(**input_ids, max_new_tokens=100, repetition_penalty=1.05) response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return response_text iface = gr.Interface( fn=chatbot_response, inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), outputs=gr.Textbox(), title="Korean Chatbot", description="Ask anything!" ) iface.launch()