|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
|
|
learn = load_learner('model.pkl') |
|
|
|
|
|
|
|
categories = (['calling', 'clapping', 'cycling', 'dancing', 'drinking', 'eating', 'fighting', 'hugging', |
|
'laughing', 'listening_to_music', 'running', 'sitting', 'sleeping', 'texting', 'using_laptop']) |
|
|
|
|
|
|
|
def classify_image(img): |
|
pred,idx,probs = learn.predict(img) |
|
return dict(zip(categories, map(float,probs))) |
|
|
|
|
|
|
|
image = gr.inputs.Image(shape=(192,192)) |
|
label = gr.outputs.Label() |
|
examples = ['laughing.jpg', 'dancing.jpg', 'drinking.jpg'] |
|
|
|
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) |
|
intf.launch(inline=False) |
|
|
|
|
|
|
|
|
|
|