Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
|
5 |
+
learn = load_learner('model.pkl')
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
categories = (['calling', 'clapping', 'cycling', 'dancing', 'drinking', 'eating', 'fighting', 'hugging',
|
10 |
+
'laughing', 'listening_to_music', 'running', 'sitting', 'sleeping', 'texting', 'using_laptop'])
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
def classify_image(img):
|
15 |
+
pred,idx,probs = learn.predict(img)
|
16 |
+
return dict(zip(categories, map(float,probs)))
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
image = gr.inputs.Image(shape=(192,192))
|
21 |
+
label = gr.outputs.Label()
|
22 |
+
examples = ['laughing.jpg', 'dancing.jpg', 'drinking.jpg']
|
23 |
+
|
24 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
25 |
+
intf.launch(inline=False)
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|