from fastai.vision.all import * import gradio as gr learn = load_learner('model.pkl') categories = (['calling', 'clapping', 'cycling', 'dancing', 'drinking', 'eating', 'fighting', 'hugging', 'laughing', 'listening_to_music', 'running', 'sitting', 'sleeping', 'texting', 'using_laptop']) def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['laughing.jpg', 'dancing.jpg', 'drinking.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)