|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
learn = load_learner('model.pkl') |
|
|
|
categories = ['abraham_grampa_simpson', 'agnes_skinner', 'apu_nahasapeemapetilon', 'barney_gumble', |
|
'bart_simpson', 'carl_carlson', 'charles_montgomery_burns', 'chief_wiggum', |
|
'cletus_spuckler', 'comic_book_guy', 'disco_stu', 'edna_krabappel', 'fat_tony', |
|
'gil', 'groundskeeper_willie', 'homer_simpson', 'kent_brockman', 'krusty_the_clown', |
|
'lenny_leonard', 'lionel_hutz', 'lisa_simpson', 'maggie_simpson', 'marge_simpson', |
|
'martin_prince', 'mayor_quimby', 'milhouse_van_houten', 'miss_hoover', 'moe_szyslak', |
|
'ned_flanders', 'nelson_muntz', 'otto_mann', 'patty_bouvier', 'principal_skinner', |
|
'professor_john_frink', 'rainier_wolfcastle', 'ralph_wiggum', 'selma_bouvier', |
|
'sideshow_bob', 'sideshow_mel', 'snake_jailbird', 'troy_mcclure', 'waylon_smithers'] |
|
|
|
def classify_image(img): |
|
pred, idx, probs = learn.predict(img) |
|
return {cat: float(prob) for cat, prob in zip(categories, probs)} |
|
|
|
demo = gr.Interface( |
|
fn=classify_image, |
|
inputs=gr.Image(), |
|
outputs=gr.Label(), |
|
examples=[ |
|
'ednar.jpg', |
|
'maggie.jpg', |
|
'bart.jpg' |
|
] |
|
) |
|
|
|
demo.launch() |