Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain import FAISS | |
from gradio_pdf import PDF # Import PDF from gradio_pdf | |
# Function to process uploaded PDF and generate responses based on the document and user input | |
def chat_with_pdf(pdf_file, api_key, user_question): | |
# Set the Google API key | |
os.environ["GOOGLE_API_KEY"] = api_key | |
# Load the document | |
loader = PyPDFLoader(pdf_file.name) | |
pages = loader.load_and_split() | |
# Create a vector db index | |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
db = FAISS.from_documents(pages, embeddings) | |
# Search relevant docs based on user question | |
docs = db.similarity_search(user_question) | |
# Prepare the context for the API request | |
content = "\n".join([x.page_content for x in docs]) | |
qa_prompt = "Use the following pieces of context to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer.----------------" | |
input_text = qa_prompt + "\nContext:" + content + "\nUser question:\n" + user_question | |
# Call Gemini API (ChatGoogleGenerativeAI) to generate a response | |
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash") | |
result = llm.invoke(input_text) | |
# Return the bot's response (without chat history) | |
return result.content | |
# Create a Gradio interface with a split layout | |
with gr.Blocks() as iface: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
pdf_input = gr.File(label="Upload PDF") # Upload PDF file | |
pdf_display = PDF(label="PDF Preview") # PDF preview using gradio_pdf | |
with gr.Column(scale=1): | |
response_output = gr.Textbox(label="Bot Response") # Output for the bot response | |
question_box = gr.Textbox(label="Ask a question", placeholder="Enter your question here") | |
api_key_box = gr.Textbox(label="API Key", type="password", placeholder="Enter your Google API Key here") | |
# Directly display the PDF once uploaded without using the 'upload' method | |
pdf_input.change(lambda pdf_file: pdf_file.name, inputs=pdf_input, outputs=pdf_display) | |
# When the user submits a question, process it and return the bot's response | |
question_box.submit( | |
chat_with_pdf, | |
inputs=[pdf_input, api_key_box, question_box], | |
outputs=response_output | |
) | |
# Launch the Gradio app | |
iface.launch() |