gemini_chat_pdf / app.py
segestic's picture
Create app.py
2436b20 verified
raw
history blame
2.58 kB
import gradio as gr
import os
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain import FAISS
from gradio_pdf import PDF # Import PDF from gradio_pdf
# Function to process uploaded PDF and generate responses based on the document and user input
def chat_with_pdf(pdf_file, api_key, user_question):
# Set the Google API key
os.environ["GOOGLE_API_KEY"] = api_key
# Load the document
loader = PyPDFLoader(pdf_file.name)
pages = loader.load_and_split()
# Create a vector db index
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
db = FAISS.from_documents(pages, embeddings)
# Search relevant docs based on user question
docs = db.similarity_search(user_question)
# Prepare the context for the API request
content = "\n".join([x.page_content for x in docs])
qa_prompt = "Use the following pieces of context to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer.----------------"
input_text = qa_prompt + "\nContext:" + content + "\nUser question:\n" + user_question
# Call Gemini API (ChatGoogleGenerativeAI) to generate a response
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
result = llm.invoke(input_text)
# Return the bot's response (without chat history)
return result.content
# Create a Gradio interface with a split layout
with gr.Blocks() as iface:
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="Upload PDF") # Upload PDF file
pdf_display = PDF(label="PDF Preview") # PDF preview using gradio_pdf
with gr.Column(scale=1):
response_output = gr.Textbox(label="Bot Response") # Output for the bot response
question_box = gr.Textbox(label="Ask a question", placeholder="Enter your question here")
api_key_box = gr.Textbox(label="API Key", type="password", placeholder="Enter your Google API Key here")
# Directly display the PDF once uploaded without using the 'upload' method
pdf_input.change(lambda pdf_file: pdf_file.name, inputs=pdf_input, outputs=pdf_display)
# When the user submits a question, process it and return the bot's response
question_box.submit(
chat_with_pdf,
inputs=[pdf_input, api_key_box, question_box],
outputs=response_output
)
# Launch the Gradio app
iface.launch()