Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +199 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,201 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
"""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import io
|
3 |
+
import csv
|
4 |
+
from segments import SegmentsClient
|
5 |
+
from get_labels_from_samples import (
|
6 |
+
get_samples as get_samples_objects,
|
7 |
+
export_frames_and_annotations,
|
8 |
+
export_sensor_frames_and_annotations,
|
9 |
+
export_all_sensor_frames_and_annotations
|
10 |
+
)
|
11 |
|
12 |
+
def init_session_state():
|
13 |
+
if 'csv_content' not in st.session_state:
|
14 |
+
st.session_state.csv_content = None
|
15 |
+
if 'error' not in st.session_state:
|
16 |
+
st.session_state.error = None
|
17 |
+
|
18 |
+
|
19 |
+
def init_client(api_key: str) -> SegmentsClient:
|
20 |
+
"""Initialize the Segments.ai API client using the provided API key."""
|
21 |
+
return SegmentsClient(api_key)
|
22 |
+
|
23 |
+
|
24 |
+
def parse_classes(input_str: str) -> list:
|
25 |
+
"""
|
26 |
+
Parse user input for classes (ranges and comma-separated lists). Returns unique sorted list of ints.
|
27 |
+
"""
|
28 |
+
classes = []
|
29 |
+
tokens = input_str.split(',')
|
30 |
+
for token in tokens:
|
31 |
+
token = token.strip()
|
32 |
+
if '-' in token:
|
33 |
+
try:
|
34 |
+
start, end = map(int, token.split('-'))
|
35 |
+
classes.extend(range(start, end + 1))
|
36 |
+
except ValueError:
|
37 |
+
continue
|
38 |
+
else:
|
39 |
+
try:
|
40 |
+
classes.append(int(token))
|
41 |
+
except ValueError:
|
42 |
+
continue
|
43 |
+
return sorted(set(classes))
|
44 |
+
|
45 |
+
|
46 |
+
def generate_csv(metrics: list, dataset_identifier: str) -> str:
|
47 |
+
"""
|
48 |
+
Generate CSV content from list of per-sample metrics.
|
49 |
+
Columns: name, sample_url, sensor, num_frames, total_annotations,
|
50 |
+
matching_annotations, labeled_by, reviewed_by
|
51 |
+
"""
|
52 |
+
output = io.StringIO()
|
53 |
+
writer = csv.writer(output)
|
54 |
+
writer.writerow([
|
55 |
+
'name', 'sample_url', 'sensor', 'num_frames',
|
56 |
+
'total_annotations', 'matching_annotations',
|
57 |
+
'labeled_by', 'reviewed_by'
|
58 |
+
])
|
59 |
+
for m in metrics:
|
60 |
+
url = f"https://app.segments.ai/{dataset_identifier}/samples/{m['uuid']}/{m['labelset']}"
|
61 |
+
writer.writerow([
|
62 |
+
m['name'], url, m['sensor'],
|
63 |
+
m['num_frames'], m['total_annotations'],
|
64 |
+
m['matching_annotations'], m['labeled_by'],
|
65 |
+
m['reviewed_by']
|
66 |
+
])
|
67 |
+
content = output.getvalue()
|
68 |
+
output.close()
|
69 |
+
return content
|
70 |
+
|
71 |
+
# ----------------------
|
72 |
+
# Streamlit UI
|
73 |
+
# ----------------------
|
74 |
+
|
75 |
+
init_session_state()
|
76 |
+
st.title("Per-Sample Annotation Counts by Class")
|
77 |
+
|
78 |
+
api_key = st.text_input("API Key", type="password", key="api_key_input")
|
79 |
+
dataset_identifier = st.text_input("Dataset Identifier (e.g., username/dataset)", key="dataset_identifier_input")
|
80 |
+
classes_input = st.text_input("Classes (e.g., 1,2,5 or 1-3)", key="classes_input")
|
81 |
+
run_button = st.button("Generate CSV", key="run_button")
|
82 |
+
|
83 |
+
sensor_names = []
|
84 |
+
is_multisensor = False
|
85 |
+
sensor_select = None
|
86 |
+
samples_objects = []
|
87 |
+
|
88 |
+
if api_key and dataset_identifier:
|
89 |
+
try:
|
90 |
+
client = init_client(api_key)
|
91 |
+
samples_objects = get_samples_objects(client, dataset_identifier)
|
92 |
+
if samples_objects:
|
93 |
+
label = client.get_label(samples_objects[0].uuid)
|
94 |
+
sensors = getattr(getattr(label, 'attributes', None), 'sensors', None)
|
95 |
+
if sensors is not None:
|
96 |
+
is_multisensor = True
|
97 |
+
sensor_names = [getattr(sensor, 'name', 'Unknown') for sensor in sensors]
|
98 |
+
except Exception as e:
|
99 |
+
st.warning(f"Could not inspect dataset sensors: {e}")
|
100 |
+
|
101 |
+
if is_multisensor:
|
102 |
+
sensor_select = st.selectbox("Choose sensor (optional)", options=['All sensors'] + sensor_names)
|
103 |
+
|
104 |
+
if run_button:
|
105 |
+
st.session_state.csv_content = None
|
106 |
+
st.session_state.error = None
|
107 |
+
if not api_key:
|
108 |
+
st.session_state.error = "API Key is required."
|
109 |
+
elif not dataset_identifier:
|
110 |
+
st.session_state.error = "Dataset identifier is required."
|
111 |
+
elif not classes_input:
|
112 |
+
st.session_state.error = "Please specify at least one class."
|
113 |
+
elif is_multisensor and not sensor_select:
|
114 |
+
st.session_state.error = "Please select a sensor or 'All sensors' before generating CSV."
|
115 |
+
else:
|
116 |
+
with st.spinner("Processing samples..."):
|
117 |
+
try:
|
118 |
+
target_classes = parse_classes(classes_input)
|
119 |
+
client = init_client(api_key)
|
120 |
+
metrics = []
|
121 |
+
for sample in samples_objects:
|
122 |
+
try:
|
123 |
+
label = client.get_label(sample.uuid)
|
124 |
+
labelset = getattr(label, 'labelset', '') or ''
|
125 |
+
labeled_by = getattr(label, 'created_by', '') or ''
|
126 |
+
reviewed_by = getattr(label, 'reviewed_by', '') or ''
|
127 |
+
if is_multisensor and sensor_select and sensor_select != 'All sensors':
|
128 |
+
frames_list = export_sensor_frames_and_annotations(label, sensor_select)
|
129 |
+
sensor_val = sensor_select
|
130 |
+
num_frames = len(frames_list)
|
131 |
+
total_annotations = sum(len(f['annotations']) for f in frames_list)
|
132 |
+
matching_annotations = sum(
|
133 |
+
1
|
134 |
+
for f in frames_list
|
135 |
+
for ann in f['annotations']
|
136 |
+
if getattr(ann, 'category_id', None) in target_classes
|
137 |
+
)
|
138 |
+
elif is_multisensor and (not sensor_select or sensor_select == 'All sensors'):
|
139 |
+
all_sensor_frames = export_all_sensor_frames_and_annotations(label)
|
140 |
+
for sensor_name, frames_list in all_sensor_frames.items():
|
141 |
+
num_frames = len(frames_list)
|
142 |
+
total_annotations = sum(len(f['annotations']) for f in frames_list)
|
143 |
+
matching_annotations = sum(
|
144 |
+
1
|
145 |
+
for f in frames_list
|
146 |
+
for ann in f['annotations']
|
147 |
+
if getattr(ann, 'category_id', None) in target_classes
|
148 |
+
)
|
149 |
+
metrics.append({
|
150 |
+
'name': getattr(sample, 'name', sample.uuid),
|
151 |
+
'uuid': sample.uuid,
|
152 |
+
'labelset': labelset,
|
153 |
+
'sensor': sensor_name,
|
154 |
+
'num_frames': num_frames,
|
155 |
+
'total_annotations': total_annotations,
|
156 |
+
'matching_annotations': matching_annotations,
|
157 |
+
'labeled_by': labeled_by,
|
158 |
+
'reviewed_by': reviewed_by
|
159 |
+
})
|
160 |
+
continue
|
161 |
+
else:
|
162 |
+
frames_list = export_frames_and_annotations(label)
|
163 |
+
sensor_val = ''
|
164 |
+
num_frames = len(frames_list)
|
165 |
+
total_annotations = sum(len(f['annotations']) for f in frames_list)
|
166 |
+
matching_annotations = sum(
|
167 |
+
1
|
168 |
+
for f in frames_list
|
169 |
+
for ann in f['annotations']
|
170 |
+
if getattr(ann, 'category_id', None) in target_classes
|
171 |
+
)
|
172 |
+
metrics.append({
|
173 |
+
'name': getattr(sample, 'name', sample.uuid),
|
174 |
+
'uuid': sample.uuid,
|
175 |
+
'labelset': labelset,
|
176 |
+
'sensor': sensor_val if is_multisensor else '',
|
177 |
+
'num_frames': num_frames,
|
178 |
+
'total_annotations': total_annotations,
|
179 |
+
'matching_annotations': matching_annotations,
|
180 |
+
'labeled_by': labeled_by,
|
181 |
+
'reviewed_by': reviewed_by
|
182 |
+
})
|
183 |
+
except Exception as e:
|
184 |
+
continue
|
185 |
+
if not metrics:
|
186 |
+
st.session_state.error = "No metrics could be generated for the dataset."
|
187 |
+
else:
|
188 |
+
st.session_state.csv_content = generate_csv(metrics, dataset_identifier)
|
189 |
+
except Exception as e:
|
190 |
+
st.session_state.error = f"An error occurred: {e}"
|
191 |
+
|
192 |
+
if st.session_state.error:
|
193 |
+
st.error(st.session_state.error)
|
194 |
+
|
195 |
+
if st.session_state.csv_content:
|
196 |
+
st.download_button(
|
197 |
+
label="Download Metrics CSV",
|
198 |
+
data=st.session_state.csv_content,
|
199 |
+
file_name="sample_metrics.csv",
|
200 |
+
mime="text/csv"
|
201 |
+
)
|