Update src/streamlit_app.py
Browse files- src/streamlit_app.py +435 -30
src/streamlit_app.py
CHANGED
@@ -2,39 +2,444 @@ import altair as alt
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
"""
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
If
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
"""
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
+
import os
|
6 |
+
import io
|
7 |
+
import json
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import requests
|
11 |
+
from segments import SegmentsClient
|
12 |
|
13 |
"""
|
14 |
+
# Copy images from one frame to other frames in the same sample
|
15 |
+
|
16 |
+
This HF-application first updates selected frames for a given sample UUID by
|
17 |
+
replacing each annotation’s id with its track_id and updating the segmentation bitmap
|
18 |
+
accordingly (to avoid potential conflicts). Only the frames specified by the source or target
|
19 |
+
frame numbers are processed.
|
20 |
+
|
21 |
+
Then it copies annotations from one source frame to one or more target frames. When copying:
|
22 |
+
- The annotations from the source frame are merged with the target's annotations,
|
23 |
+
adding only those from the source that are not already present (based on id).
|
24 |
+
- The segmentation bitmap is merged: for each pixel, if the target's r-value is 0, the corresponding
|
25 |
+
r-value from the source is used.
|
26 |
+
- After merging, the bitmap is scanned for unique r-values and any annotation in the target
|
27 |
+
frame whose id is not present in these unique values is deleted.
|
28 |
+
Finally, the updated datalabel is uploaded.
|
29 |
|
30 |
+
**Important**
|
31 |
+
If a loop is detected in any frame’s id mappings, or if any track_id in the
|
32 |
+
selected frames is greater than 255, no changes are made and nothing is uploaded to Segments.ai.
|
33 |
+
For each track_id higher than 255, the warning will include:
|
34 |
+
- Which track_id is too high and the first frame (1-indexed) where it appears.
|
35 |
+
- The lowest available id values (searched across all frames) – one for each offending track_id.
|
36 |
+
The user must resolve these issues before updating.
|
37 |
|
|
|
38 |
"""
|
39 |
|
40 |
+
# ---------------- Utility Functions ----------------
|
41 |
+
|
42 |
+
def download_image(url: str) -> Image.Image:
|
43 |
+
"""Download an image from the given URL and return a PIL Image in RGB mode."""
|
44 |
+
resp = requests.get(url)
|
45 |
+
resp.raise_for_status()
|
46 |
+
return Image.open(io.BytesIO(resp.content)).convert("RGB")
|
47 |
+
|
48 |
+
def topological_sort(mapping: dict) -> list:
|
49 |
+
"""
|
50 |
+
Given a mapping (original id -> new id) for non-trivial changes,
|
51 |
+
compute a processing order so that if a new id exists among the original ids,
|
52 |
+
it is processed first.
|
53 |
+
Returns the order as a list, or None if a cycle is detected.
|
54 |
+
"""
|
55 |
+
nodes = set(mapping.keys())
|
56 |
+
graph = {}
|
57 |
+
for x in mapping:
|
58 |
+
new_id = mapping[x]
|
59 |
+
if new_id in nodes:
|
60 |
+
graph.setdefault(new_id, set()).add(x)
|
61 |
+
visited = {}
|
62 |
+
result = []
|
63 |
+
cycle_found = False
|
64 |
+
|
65 |
+
def dfs(node):
|
66 |
+
nonlocal cycle_found
|
67 |
+
if cycle_found:
|
68 |
+
return
|
69 |
+
if node in visited:
|
70 |
+
if visited[node] == "visiting":
|
71 |
+
cycle_found = True
|
72 |
+
return
|
73 |
+
visited[node] = "visiting"
|
74 |
+
for neighbor in graph.get(node, set()):
|
75 |
+
dfs(neighbor)
|
76 |
+
visited[node] = "visited"
|
77 |
+
result.append(node)
|
78 |
+
|
79 |
+
for node in nodes:
|
80 |
+
if node not in visited:
|
81 |
+
dfs(node)
|
82 |
+
if cycle_found:
|
83 |
+
return None
|
84 |
+
return result[::-1]
|
85 |
+
|
86 |
+
def detect_cycle(mapping: dict):
|
87 |
+
"""
|
88 |
+
For each chain in the mapping (original id -> new id), follow it.
|
89 |
+
If a cycle is detected, return the first conflicting mapping as a tuple (original, new).
|
90 |
+
Otherwise, return None.
|
91 |
+
"""
|
92 |
+
for orig in mapping:
|
93 |
+
visited = set()
|
94 |
+
current = orig
|
95 |
+
while current in mapping:
|
96 |
+
if current in visited:
|
97 |
+
return (orig, mapping[orig])
|
98 |
+
visited.add(current)
|
99 |
+
current = mapping[current]
|
100 |
+
return None
|
101 |
+
|
102 |
+
def parse_frame_numbers(frame_str: str):
|
103 |
+
"""
|
104 |
+
Parse a string representing frame numbers.
|
105 |
+
Accepts comma-separated values and ranges (e.g., "2,4-6,8").
|
106 |
+
Returns a list of integers (1-indexed).
|
107 |
+
"""
|
108 |
+
result = []
|
109 |
+
for part in frame_str.split(","):
|
110 |
+
part = part.strip()
|
111 |
+
if not part:
|
112 |
+
continue
|
113 |
+
if "-" in part:
|
114 |
+
tokens = part.split("-")
|
115 |
+
start = int(tokens[0].strip())
|
116 |
+
end = int(tokens[1].strip())
|
117 |
+
result.extend(range(start, end+1))
|
118 |
+
else:
|
119 |
+
result.append(int(part))
|
120 |
+
return result
|
121 |
+
|
122 |
+
# ---------------- Update Ids and Bitmaps ----------------
|
123 |
+
|
124 |
+
def update_frame_annotations_and_bitmap(client, frame: dict) -> (int, bool, tuple):
|
125 |
+
"""
|
126 |
+
For a given frame, update annotations (set id = track_id) and update the segmentation bitmap.
|
127 |
+
Only non-trivial mappings (where original id != track_id) are processed.
|
128 |
+
The bitmap's R channel is updated accordingly.
|
129 |
+
|
130 |
+
IMPORTANT: If a loop is detected in the mapping, the function returns immediately without
|
131 |
+
modifying any values in the frame.
|
132 |
+
|
133 |
+
Returns a tuple:
|
134 |
+
(collision_count, cycle_detected, conflict_pair)
|
135 |
+
"""
|
136 |
+
annotations = frame.get("annotations", [])
|
137 |
+
mapping = {}
|
138 |
+
original_ids = set()
|
139 |
+
for ann in annotations:
|
140 |
+
try:
|
141 |
+
orig_id = int(ann.get("id"))
|
142 |
+
new_id = int(ann.get("track_id"))
|
143 |
+
if orig_id != new_id:
|
144 |
+
mapping[orig_id] = new_id
|
145 |
+
original_ids.add(orig_id)
|
146 |
+
except (ValueError, TypeError):
|
147 |
+
continue
|
148 |
+
|
149 |
+
# Check for a cycle first. If a cycle is detected, do not modify the frame.
|
150 |
+
conflict = detect_cycle(mapping)
|
151 |
+
if conflict is not None:
|
152 |
+
return 0, True, conflict
|
153 |
+
|
154 |
+
collision_count = sum(1 for orig, new in mapping.items() if new in original_ids)
|
155 |
+
if mapping:
|
156 |
+
order = topological_sort(mapping)
|
157 |
+
if order is not None:
|
158 |
+
seg_info = frame.get("segmentation_bitmap", {})
|
159 |
+
seg_url = seg_info.get("url")
|
160 |
+
if seg_url:
|
161 |
+
try:
|
162 |
+
image = download_image(seg_url)
|
163 |
+
arr = np.array(image)
|
164 |
+
r_channel = arr[:, :, 0]
|
165 |
+
for orig in order:
|
166 |
+
new = mapping[orig]
|
167 |
+
r_channel[r_channel == orig] = new
|
168 |
+
arr[:, :, 0] = r_channel
|
169 |
+
updated_image = Image.fromarray(arr.astype(np.uint8))
|
170 |
+
buf = io.BytesIO()
|
171 |
+
updated_image.save(buf, format="PNG")
|
172 |
+
buf.seek(0)
|
173 |
+
base = os.path.basename(seg_url)
|
174 |
+
name, _ = os.path.splitext(base)
|
175 |
+
new_filename = f"{name}_updated.png"
|
176 |
+
asset = client.upload_asset(buf, filename=new_filename)
|
177 |
+
new_url = asset.url
|
178 |
+
frame.setdefault("segmentation_bitmap", {})["url"] = new_url
|
179 |
+
except Exception:
|
180 |
+
pass
|
181 |
+
# Update all annotations: set id = track_id.
|
182 |
+
for ann in annotations:
|
183 |
+
ann["id"] = ann.get("track_id")
|
184 |
+
return collision_count, False, None
|
185 |
+
|
186 |
+
def update_datalabel(sample_uuid: str, api_key: str, frames_to_update: set, labelset: str = "ground-truth") -> str:
|
187 |
+
"""
|
188 |
+
Retrieves the label for the given sample UUID, updates only the specified frames by modifying annotations
|
189 |
+
and updating the segmentation bitmap (via update_frame_annotations_and_bitmap), then uploads
|
190 |
+
the updated datalabel.
|
191 |
+
|
192 |
+
IMPORTANT: If a loop is detected in any processed frame, no changes are applied and nothing is uploaded.
|
193 |
+
The user must resolve the loop before updating Segments.ai.
|
194 |
+
|
195 |
+
frames_to_update: a set of 0-indexed frame indices that should be processed.
|
196 |
+
|
197 |
+
Returns a single summary line describing the operation with extra newlines for readability.
|
198 |
+
"""
|
199 |
+
client = SegmentsClient(api_key)
|
200 |
+
try:
|
201 |
+
label = client.get_label(sample_uuid)
|
202 |
+
except Exception as e:
|
203 |
+
return f"Error retrieving label for sample {sample_uuid}: {e}"
|
204 |
+
|
205 |
+
attributes = label.attributes.model_dump()
|
206 |
+
frames = attributes.get("frames", [])
|
207 |
+
|
208 |
+
total_collisions = 0
|
209 |
+
conflict_found = None
|
210 |
+
for i, frame in enumerate(frames):
|
211 |
+
if i in frames_to_update:
|
212 |
+
collisions, cycle, conflict_pair = update_frame_annotations_and_bitmap(client, frame)
|
213 |
+
if cycle:
|
214 |
+
conflict_found = conflict_pair
|
215 |
+
break
|
216 |
+
total_collisions += collisions
|
217 |
+
|
218 |
+
if conflict_found is not None:
|
219 |
+
return (f"Error: Cycle detected in annotation id mappings: original id {conflict_found[0]} -> new id {conflict_found[1]}.\n"
|
220 |
+
"Please resolve the loop before updating. No changes have been uploaded to Segments.ai.")
|
221 |
+
|
222 |
+
try:
|
223 |
+
client.update_label(sample_uuid, labelset=labelset, attributes=attributes)
|
224 |
+
except Exception as e:
|
225 |
+
return f"Error updating label on Segments.ai: {e}"
|
226 |
+
|
227 |
+
if total_collisions > 0:
|
228 |
+
summary = ("Updated annotation ids with track_ids and updated bitmap for the specified frames.\n"
|
229 |
+
"Collisions in ids were detected and resolved using logical processing.")
|
230 |
+
else:
|
231 |
+
summary = "Updated annotation ids with track_ids and updated bitmap for the specified frames."
|
232 |
+
|
233 |
+
return summary
|
234 |
+
|
235 |
+
# ---------------- Copy Annotations ----------------
|
236 |
+
|
237 |
+
def copy_annotations_to_frames(client, attributes: dict, sample_uuid: str, source_index: int, target_indexes: list) -> str:
|
238 |
+
"""
|
239 |
+
Copies annotations from the source frame to each target frame and merges the segmentation bitmap.
|
240 |
+
For each target frame:
|
241 |
+
- The annotations from the source frame are merged with the target's annotations.
|
242 |
+
Only those annotations from the source that are not already present (based on id) are added.
|
243 |
+
- The segmentation bitmap is merged: for each pixel, if the target's r-value is 0, the corresponding
|
244 |
+
r-value from the source is used.
|
245 |
+
- After merging, only annotations whose id appears in the set of unique r-values in the merged bitmap are kept.
|
246 |
+
After processing all target frames, the updated label is uploaded.
|
247 |
+
Returns a single summary line with extra newlines.
|
248 |
+
"""
|
249 |
+
frames = attributes.get("frames", [])
|
250 |
+
if source_index < 0 or source_index >= len(frames):
|
251 |
+
return f"Source frame index {source_index+1} is out of range."
|
252 |
+
source_frame = frames[source_index]
|
253 |
+
|
254 |
+
for tgt in target_indexes:
|
255 |
+
if tgt < 0 or tgt >= len(frames):
|
256 |
+
return f"Target frame index {tgt+1} is out of range."
|
257 |
+
target_frame = frames[tgt]
|
258 |
+
# Merge annotations: keep existing target annotations and add source annotations not already present.
|
259 |
+
target_annotations = target_frame.get("annotations", [])
|
260 |
+
source_annotations = source_frame.get("annotations", [])
|
261 |
+
existing_ids = {ann.get("id") for ann in target_annotations}
|
262 |
+
for ann in source_annotations:
|
263 |
+
if ann.get("id") not in existing_ids:
|
264 |
+
target_annotations.append(ann)
|
265 |
+
target_frame["annotations"] = target_annotations
|
266 |
+
|
267 |
+
# Merge segmentation bitmaps if both exist.
|
268 |
+
source_seg_url = source_frame.get("segmentation_bitmap", {}).get("url")
|
269 |
+
target_seg_url = target_frame.get("segmentation_bitmap", {}).get("url")
|
270 |
+
if source_seg_url and target_seg_url:
|
271 |
+
try:
|
272 |
+
source_img = download_image(source_seg_url)
|
273 |
+
target_img = download_image(target_seg_url)
|
274 |
+
arr_source = np.array(source_img)
|
275 |
+
arr_target = np.array(target_img)
|
276 |
+
if arr_source.shape != arr_target.shape:
|
277 |
+
# If shapes differ, simply use source bitmap.
|
278 |
+
target_frame["segmentation_bitmap"] = source_frame.get("segmentation_bitmap", {})
|
279 |
+
else:
|
280 |
+
# For pixels where the target's r-value is 0, use the source's pixel.
|
281 |
+
r_target = arr_target[:, :, 0]
|
282 |
+
mask = (r_target == 0)
|
283 |
+
merged_arr = arr_target.copy()
|
284 |
+
merged_arr[mask] = arr_source[mask]
|
285 |
+
# Upload the merged image.
|
286 |
+
merged_img = Image.fromarray(merged_arr.astype(np.uint8))
|
287 |
+
buf = io.BytesIO()
|
288 |
+
merged_img.save(buf, format="PNG")
|
289 |
+
buf.seek(0)
|
290 |
+
base = os.path.basename(target_seg_url)
|
291 |
+
name, _ = os.path.splitext(base)
|
292 |
+
new_filename = f"{name}_merged.png"
|
293 |
+
asset = client.upload_asset(buf, filename=new_filename)
|
294 |
+
merged_url = asset.url
|
295 |
+
target_frame.setdefault("segmentation_bitmap", {})["url"] = merged_url
|
296 |
+
# Determine unique r-values from the merged bitmap.
|
297 |
+
unique_vals = set(np.unique(merged_arr[:, :, 0])) - {0}
|
298 |
+
# Filter annotations: keep only those whose id (as int) is in unique_vals.
|
299 |
+
filtered_annotations = []
|
300 |
+
for ann in target_frame.get("annotations", []):
|
301 |
+
try:
|
302 |
+
ann_id = int(ann.get("id"))
|
303 |
+
if ann_id in unique_vals:
|
304 |
+
filtered_annotations.append(ann)
|
305 |
+
except (ValueError, TypeError):
|
306 |
+
pass
|
307 |
+
target_frame["annotations"] = filtered_annotations
|
308 |
+
except Exception:
|
309 |
+
# If any error occurs during merge, fall back to using the source segmentation bitmap.
|
310 |
+
target_frame["segmentation_bitmap"] = source_frame.get("segmentation_bitmap", {})
|
311 |
+
else:
|
312 |
+
# If one of the bitmaps is missing, use the source's.
|
313 |
+
target_frame["segmentation_bitmap"] = source_frame.get("segmentation_bitmap", {})
|
314 |
+
|
315 |
+
try:
|
316 |
+
client.update_label(sample_uuid, labelset="ground-truth", attributes=attributes)
|
317 |
+
except Exception as e:
|
318 |
+
return f"Error updating label on Segments.ai during annotation copy: {e}"
|
319 |
+
|
320 |
+
target_frames_str = ", ".join(str(tgt+1) for tgt in target_indexes)
|
321 |
+
return (f"Annotations merged from frame {source_index+1} into frames {target_frames_str}.\n"
|
322 |
+
f"Bitmap updated with merged r-values and annotations filtered accordingly.")
|
323 |
+
|
324 |
+
# ---------------------- Main UI ----------------------
|
325 |
+
|
326 |
+
st.title("Copy/Merge Annotations to Target Frames")
|
327 |
+
|
328 |
+
# Prompt user for API key as the first input (use type="password" for security if desired)
|
329 |
+
api_key = st.text_input("API Key", type="password")
|
330 |
+
sample_uuid = st.text_input("Sample UUID", value="")
|
331 |
+
source_frame_num = st.number_input("Source Frame Number (1-indexed)", min_value=1, step=1)
|
332 |
+
target_frames_str = st.text_input("Target Frame Numbers (comma-separated or range, e.g., '2,4-6')", value="2")
|
333 |
+
|
334 |
+
if "result" not in st.session_state:
|
335 |
+
st.session_state["result"] = ""
|
336 |
+
if "original_label" not in st.session_state:
|
337 |
+
st.session_state["original_label"] = ""
|
338 |
+
if "new_label" not in st.session_state:
|
339 |
+
st.session_state["new_label"] = ""
|
340 |
+
|
341 |
+
if st.button("Update and Copy Annotations"):
|
342 |
+
if not api_key:
|
343 |
+
st.error("Please enter your API Key.")
|
344 |
+
else:
|
345 |
+
client = SegmentsClient(api_key)
|
346 |
+
try:
|
347 |
+
orig_label_obj = client.get_label(sample_uuid)
|
348 |
+
except Exception as e:
|
349 |
+
st.error("Error retrieving original label: " + str(e))
|
350 |
+
orig_label_obj = None
|
351 |
+
if orig_label_obj is not None:
|
352 |
+
original_label_json = json.dumps(orig_label_obj.attributes.model_dump(), indent=4)
|
353 |
+
try:
|
354 |
+
target_frames_nums = parse_frame_numbers(target_frames_str)
|
355 |
+
except Exception as e:
|
356 |
+
st.error(f"Error parsing target frame numbers: {e}")
|
357 |
+
target_frames_nums = []
|
358 |
+
source_index = int(source_frame_num) - 1
|
359 |
+
target_indexes = [n - 1 for n in target_frames_nums]
|
360 |
+
# Only update the frames that are in the source or target list.
|
361 |
+
frames_to_update = set([source_index] + target_indexes)
|
362 |
+
|
363 |
+
# --- Warning Check: Verify no track_id > 255 in selected frames ---
|
364 |
+
attributes = orig_label_obj.attributes.model_dump()
|
365 |
+
frames = attributes.get("frames", [])
|
366 |
+
# Dictionary to record offending track_id -> first (1-indexed) frame number where it appears
|
367 |
+
track_id_warnings = {}
|
368 |
+
# Also accumulate id and track_id values in the selected frames (for reference)
|
369 |
+
selected_existing_values = set()
|
370 |
+
for i in sorted(frames_to_update):
|
371 |
+
if i < 0 or i >= len(frames):
|
372 |
+
continue
|
373 |
+
frame = frames[i]
|
374 |
+
for ann in frame.get("annotations", []):
|
375 |
+
try:
|
376 |
+
t_id = int(ann.get("track_id"))
|
377 |
+
selected_existing_values.add(t_id)
|
378 |
+
selected_existing_values.add(int(ann.get("id")))
|
379 |
+
if t_id > 255 and t_id not in track_id_warnings:
|
380 |
+
track_id_warnings[t_id] = i + 1 # record first appearance (1-indexed)
|
381 |
+
except Exception:
|
382 |
+
continue
|
383 |
+
|
384 |
+
# Compute available lowest values across ALL frames.
|
385 |
+
all_existing_values = set()
|
386 |
+
for frame in frames:
|
387 |
+
for ann in frame.get("annotations", []):
|
388 |
+
try:
|
389 |
+
t_id = int(ann.get("track_id"))
|
390 |
+
all_existing_values.add(t_id)
|
391 |
+
all_existing_values.add(int(ann.get("id")))
|
392 |
+
except Exception:
|
393 |
+
continue
|
394 |
+
num_offending = len(track_id_warnings)
|
395 |
+
lowest_available_list = []
|
396 |
+
candidate = 1
|
397 |
+
while len(lowest_available_list) < num_offending:
|
398 |
+
if candidate not in all_existing_values:
|
399 |
+
lowest_available_list.append(candidate)
|
400 |
+
candidate += 1
|
401 |
+
|
402 |
+
if track_id_warnings:
|
403 |
+
warning_message = "Warning: The following track_id values exceed 255:\n"
|
404 |
+
for t_id, frame_no in sorted(track_id_warnings.items()):
|
405 |
+
warning_message += f" - Track_id {t_id} appears first in frame {frame_no}.\n"
|
406 |
+
warning_message += "\nPlease change these values on Segments.ai before proceeding.\n"
|
407 |
+
warning_message += f"The lowest available id values (across all frames) are: {', '.join(map(str, lowest_available_list))}."
|
408 |
+
st.error(warning_message)
|
409 |
+
else:
|
410 |
+
update_summary = update_datalabel(sample_uuid, api_key, frames_to_update)
|
411 |
+
if update_summary.startswith("Error"):
|
412 |
+
st.error(update_summary)
|
413 |
+
else:
|
414 |
+
try:
|
415 |
+
# Retrieve the label after the update.
|
416 |
+
label = client.get_label(sample_uuid)
|
417 |
+
except Exception as e:
|
418 |
+
st.error("Error retrieving updated label: " + str(e))
|
419 |
+
label = None
|
420 |
+
if label is not None:
|
421 |
+
attributes = label.attributes.model_dump()
|
422 |
+
copy_summary = copy_annotations_to_frames(client, attributes, sample_uuid, source_index, target_indexes)
|
423 |
+
final_summary = update_summary + "\n\n" + copy_summary
|
424 |
+
st.session_state["result"] = final_summary
|
425 |
+
# Retrieve the final updated label.
|
426 |
+
try:
|
427 |
+
label_after = client.get_label(sample_uuid)
|
428 |
+
except Exception as e:
|
429 |
+
st.error("Error retrieving final updated label: " + str(e))
|
430 |
+
label_after = None
|
431 |
+
if label_after is not None:
|
432 |
+
new_label_json = json.dumps(label_after.attributes.model_dump(), indent=4)
|
433 |
+
st.session_state["original_label"] = original_label_json
|
434 |
+
st.session_state["new_label"] = new_label_json
|
435 |
+
|
436 |
+
if st.session_state["result"]:
|
437 |
+
st.text_area("Output", value=st.session_state["result"], height=150)
|
438 |
+
st.download_button("Download Original Label",
|
439 |
+
data=st.session_state["original_label"],
|
440 |
+
file_name=f"{sample_uuid}_original.json",
|
441 |
+
mime="application/json")
|
442 |
+
st.download_button("Download Updated Label",
|
443 |
+
data=st.session_state["new_label"],
|
444 |
+
file_name=f"{sample_uuid}_updated.json",
|
445 |
+
mime="application/json")
|