File size: 17,799 Bytes
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a9b54
c25f2ae
 
 
 
 
 
 
 
9d95507
 
c25f2ae
 
 
 
 
 
 
 
27a9b54
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a9b54
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
27a9b54
c25f2ae
 
 
 
 
edfcc3f
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672ba8c
 
 
c25f2ae
 
 
 
 
672ba8c
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672ba8c
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d95507
c25f2ae
 
 
 
27a9b54
 
 
c25f2ae
 
 
 
 
 
 
672ba8c
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672ba8c
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528505f
 
 
 
 
c25f2ae
 
9d95507
c25f2ae
9d95507
c25f2ae
 
d334f4b
 
c25f2ae
27a9b54
 
 
 
 
 
 
 
c25f2ae
9d95507
c25f2ae
 
9d95507
 
 
c25f2ae
 
 
 
 
9d95507
c25f2ae
 
528505f
c25f2ae
 
 
 
 
 
b57f1bb
c25f2ae
7c85c0b
 
 
 
 
 
 
 
 
 
 
 
 
c25f2ae
7c85c0b
 
 
c25f2ae
7c85c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c25f2ae
b57f1bb
 
 
 
 
05b6776
b57f1bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c25f2ae
 
 
 
 
 
 
 
 
 
 
 
d42d2a5
c25f2ae
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import subprocess, os, sys

result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
print(f"pip install GroundingDINO = {result}")

sys.path.insert(0, "./GroundingDINO")

if not os.path.exists("./sam_vit_h_4b8939.pth"):
    result = subprocess.run(
        [
            "wget",
            "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
        ],
        check=True,
    )
    print(f"wget sam_vit_h_4b8939.pth result = {result}")

import gradio as gr

import argparse
import random
import warnings

import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from scipy import ndimage
from PIL import Image
from huggingface_hub import hf_hub_download
from segments.export import colorize
from segments.utils import bitmap2file

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import (
    clean_state_dict,
)
from GroundingDINO.groundingdino.util.inference import annotate, predict

# segment anything
from segment_anything import build_sam, SamPredictor

# CLIPSeg
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation


def load_model_hf(model_config_path, repo_id, filename, device):
    args = SLConfig.fromfile(model_config_path)
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location=device)
    log = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    model = model.to(device)
    return model


def load_image_for_dino(image):
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    dino_image, _ = transform(image, None)
    return dino_image


def dino_detection(
    model,
    image,
    image_array,
    category_names,
    category_name_to_id,
    box_threshold,
    text_threshold,
    device,
    visualize=False,
):
    detection_prompt = " . ".join(category_names)
    dino_image = load_image_for_dino(image)
    dino_image = dino_image.to(device)
    with torch.no_grad():
        boxes, logits, phrases = predict(
            model=model,
            image=dino_image,
            caption=detection_prompt,
            box_threshold=box_threshold,
            text_threshold=text_threshold,
            device=device,
        )
    category_ids = [category_name_to_id[phrase] for phrase in phrases]

    if visualize:
        annotated_frame = annotate(
            image_source=image_array, boxes=boxes, logits=logits, phrases=phrases
        )
        annotated_frame = annotated_frame[..., ::-1]  # BGR to RGB
        visualization = Image.fromarray(annotated_frame)
        return boxes, category_ids, visualization
    else:
        return boxes, category_ids


def sam_masks_from_dino_boxes(predictor, image_array, boxes, device):
    # box: normalized box xywh -> unnormalized xyxy
    H, W, _ = image_array.shape
    boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
    transformed_boxes = predictor.transform.apply_boxes_torch(
        boxes_xyxy, image_array.shape[:2]
    ).to(device)
    thing_masks, _, _ = predictor.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes,
        multimask_output=False,
    )
    return thing_masks


def preds_to_semantic_inds(preds, threshold):
    flat_preds = preds.reshape((preds.shape[0], -1))
    # Initialize a dummy "unlabeled" mask with the threshold
    flat_preds_with_treshold = torch.full(
        (preds.shape[0] + 1, flat_preds.shape[-1]), threshold
    )
    flat_preds_with_treshold[1 : preds.shape[0] + 1, :] = flat_preds

    # Get the top mask index for each pixel
    semantic_inds = torch.topk(flat_preds_with_treshold, 1, dim=0).indices.reshape(
        (preds.shape[-2], preds.shape[-1])
    )

    return semantic_inds


def clipseg_segmentation(
    processor, model, image, category_names, background_threshold, device
):
    inputs = processor(
        text=category_names,
        images=[image] * len(category_names),
        padding="max_length",
        return_tensors="pt",
    ).to(device)
    with torch.no_grad():
        outputs = model(**inputs)
    # resize the outputs
    logits = nn.functional.interpolate(
        outputs.logits.unsqueeze(1),
        size=(image.size[1], image.size[0]),
        mode="bilinear",
    )
    preds = torch.sigmoid(logits.squeeze())
    semantic_inds = preds_to_semantic_inds(preds, background_threshold)
    return preds, semantic_inds


def semantic_inds_to_shrunken_bool_masks(
    semantic_inds, shrink_kernel_size, num_categories
):
    shrink_kernel = np.ones((shrink_kernel_size, shrink_kernel_size))

    bool_masks = torch.zeros((num_categories, *semantic_inds.shape), dtype=bool)
    for category in range(num_categories):
        binary_mask = semantic_inds == category
        shrunken_binary_mask_array = ndimage.binary_erosion(
            binary_mask.numpy(), structure=shrink_kernel
        )
        bool_masks[category] = torch.from_numpy(shrunken_binary_mask_array)

    return bool_masks


def clip_and_shrink_preds(semantic_inds, preds, shrink_kernel_size, num_categories):
    # convert semantic_inds to shrunken bool masks
    bool_masks = semantic_inds_to_shrunken_bool_masks(
        semantic_inds, shrink_kernel_size, num_categories
    ).to(preds.device)

    sizes = [
        torch.sum(bool_masks[i].int()).item() for i in range(1, bool_masks.size(0))
    ]
    max_size = max(sizes)
    relative_sizes = [size / max_size for size in sizes]

    # use bool masks to clip preds
    clipped_preds = torch.zeros_like(preds)
    for i in range(1, bool_masks.size(0)):
        float_mask = bool_masks[i].float()
        clipped_preds[i - 1] = preds[i - 1] * float_mask

    return clipped_preds, relative_sizes


def sample_points_based_on_preds(preds, N):
    height, width = preds.shape
    weights = preds.ravel()
    indices = np.arange(height * width)

    # Randomly sample N indices based on the weights
    sampled_indices = random.choices(indices, weights=weights, k=N)

    # Convert the sampled indices into (col, row) coordinates
    sampled_points = [(index % width, index // width) for index in sampled_indices]

    return sampled_points


def upsample_pred(pred, image_source):
    pred = pred.unsqueeze(dim=0)
    original_height = image_source.shape[0]
    original_width = image_source.shape[1]

    larger_dim = max(original_height, original_width)
    aspect_ratio = original_height / original_width

    # upsample the tensor to the larger dimension
    upsampled_tensor = F.interpolate(
        pred, size=(larger_dim, larger_dim), mode="bilinear", align_corners=False
    )

    # remove the padding (at the end) to get the original image resolution
    if original_height > original_width:
        target_width = int(upsampled_tensor.shape[3] * aspect_ratio)
        upsampled_tensor = upsampled_tensor[:, :, :, :target_width]
    else:
        target_height = int(upsampled_tensor.shape[2] * aspect_ratio)
        upsampled_tensor = upsampled_tensor[:, :, :target_height, :]
    return upsampled_tensor.squeeze()


def sam_mask_from_points(predictor, image_array, points):
    points_array = np.array(points)
    # we only sample positive points, so labels are all 1
    points_labels = np.ones(len(points))
    # we don't use predict_torch here cause it didn't seem to work...
    _, _, logits = predictor.predict(
        point_coords=points_array,
        point_labels=points_labels,
    )
    # max over the 3 segmentation levels
    total_pred = torch.max(torch.sigmoid(torch.tensor(logits)), dim=0)[0].unsqueeze(
        dim=0
    )
    # logits are 256x256 -> upsample back to image shape
    upsampled_pred = upsample_pred(total_pred, image_array)
    return upsampled_pred


def generate_panoptic_mask(
    image,
    thing_category_names_string,
    stuff_category_names_string,
    dino_box_threshold=0.3,
    dino_text_threshold=0.25,
    segmentation_background_threshold=0.1,
    shrink_kernel_size=20,
    num_samples_factor=1000,
):
    # parse inputs
    thing_category_names = [
        thing_category_name.strip()
        for thing_category_name in thing_category_names_string.split(",")
    ]
    stuff_category_names = [
        stuff_category_name.strip()
        for stuff_category_name in stuff_category_names_string.split(",")
    ]
    category_names = thing_category_names + stuff_category_names
    category_name_to_id = {
        category_name: i for i, category_name in enumerate(category_names)
    }

    image = image.convert("RGB")
    image_array = np.asarray(image)

    # detect boxes for "thing" categories using Grounding DINO
    thing_boxes, _ = dino_detection(
        dino_model,
        image,
        image_array,
        thing_category_names,
        category_name_to_id,
        dino_box_threshold,
        dino_text_threshold,
        device,
    )
    # compute SAM image embedding
    sam_predictor.set_image(image_array)
    # get segmentation masks for the thing boxes
    thing_masks = sam_masks_from_dino_boxes(
        sam_predictor, image_array, thing_boxes, device
    )
    # get rough segmentation masks for "stuff" categories using CLIPSeg
    clipseg_preds, clipseg_semantic_inds = clipseg_segmentation(
        clipseg_processor,
        clipseg_model,
        image,
        stuff_category_names,
        segmentation_background_threshold,
        device,
    )
    # remove things from stuff masks
    combined_things_mask = torch.any(thing_masks, dim=0)
    clipseg_semantic_inds_without_things = clipseg_semantic_inds.clone()
    clipseg_semantic_inds_without_things[combined_things_mask[0]] = 0
    # clip CLIPSeg preds based on non-overlapping semantic segmentation inds (+ optionally shrink the mask of each category)
    # also returns the relative size of each category
    clipsed_clipped_preds, relative_sizes = clip_and_shrink_preds(
        clipseg_semantic_inds_without_things,
        clipseg_preds,
        shrink_kernel_size,
        len(stuff_category_names) + 1,
    )
    # get finer segmentation masks for the "stuff" categories using SAM
    sam_preds = torch.zeros_like(clipsed_clipped_preds)
    for i in range(clipsed_clipped_preds.shape[0]):
        clipseg_pred = clipsed_clipped_preds[i]
        # for each "stuff" category, sample points in the rough segmentation mask
        num_samples = int(relative_sizes[i] * num_samples_factor)
        if num_samples == 0:
            continue
        points = sample_points_based_on_preds(clipseg_pred.cpu().numpy(), num_samples)
        if len(points) == 0:
            continue
        # use SAM to get mask for points
        pred = sam_mask_from_points(sam_predictor, image_array, points)
        sam_preds[i] = pred
    sam_semantic_inds = preds_to_semantic_inds(
        sam_preds, segmentation_background_threshold
    )
    # combine the thing inds and the stuff inds into panoptic inds
    panoptic_inds = sam_semantic_inds.clone()
    ind = len(stuff_category_names) + 1
    for thing_mask in thing_masks:
        # overlay thing mask on panoptic inds
        panoptic_inds[thing_mask.squeeze()] = ind
        ind += 1

    fig = plt.figure()
    plt.imshow(image)
    plt.imshow(colorize(panoptic_inds), alpha=0.5)
    return fig


config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swint_ogc.pth"
sam_checkpoint = "./sam_vit_h_4b8939.pth"

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using device:", device)

if device != "cpu":
    try:
        from GroundingDINO.groundingdino import _C
    except:
        warnings.warn(
            "Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
        )

# initialize groundingdino model
dino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, device)

# initialize SAM
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)

clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
    "CIDAS/clipseg-rd64-refined"
)
clipseg_model.to(device)

if __name__ == "__main__":
    parser = argparse.ArgumentParser("Panoptic Segment Anything demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    args = parser.parse_args()

    print(f"args = {args}")

    block = gr.Blocks(title="Panoptic Segment Anything").queue()
    with block:
        with gr.Column():
            title = gr.Markdown(
                "# [Panoptic Segment Anything](https://github.com/segments-ai/panoptic-segment-anything)"
            )
            description = gr.Markdown(
                "Demo for zero-shot panoptic segmentation using Segment Anything, Grounding DINO, and CLIPSeg."
            )
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(source="upload", type="pil")
                    thing_category_names_string = gr.Textbox(
                        label="Thing categories (i.e. categories with instances), comma-separated",
                        placeholder="E.g. car, bus, person",
                    )
                    stuff_category_names_string = gr.Textbox(
                        label="Stuff categories (i.e. categories without instances), comma-separated",
                        placeholder="E.g. sky, road, buildings",
                    )
                    run_button = gr.Button(label="Run")
                    with gr.Accordion("Advanced options", open=False):
                        box_threshold = gr.Slider(
                            label="Grounding DINO box threshold",
                            minimum=0.0,
                            maximum=1.0,
                            value=0.3,
                            step=0.001,
                        )
                        text_threshold = gr.Slider(
                            label="Grounding DINO text threshold",
                            minimum=0.0,
                            maximum=1.0,
                            value=0.25,
                            step=0.001,
                        )
                        segmentation_background_threshold = gr.Slider(
                            label="Segmentation background threshold (under this threshold, a pixel is considered background)",
                            minimum=0.0,
                            maximum=1.0,
                            value=0.1,
                            step=0.001,
                        )
                        shrink_kernel_size = gr.Slider(
                            label="Shrink kernel size (how much to shrink the mask before sampling points)",
                            minimum=0,
                            maximum=100,
                            value=20,
                            step=1,
                        )
                        num_samples_factor = gr.Slider(
                            label="Number of samples factor (how many points to sample in the largest category)",
                            minimum=0,
                            maximum=1000,
                            value=1000,
                            step=1,
                        )

                with gr.Column():
                    plot = gr.Plot()

            examples = gr.Examples(
                examples=[
                    [
                        "a2d2.png",
                        "car, bus, person",
                        "road, sky, buildings, sidewalk",
                        0.3,
                        0.25,
                        0.1,
                        20,
                        1000,
                    ],
                    [
                        "bxl.png",
                        "car, tram, motorcycle, person",
                        "road, buildings, sky",
                        0.3,
                        0.25,
                        0.1,
                        20,
                        1000,
                    ],
                ],
                fn=generate_panoptic_mask,
                inputs=[
                    input_image,
                    thing_category_names_string,
                    stuff_category_names_string,
                    box_threshold,
                    text_threshold,
                    segmentation_background_threshold,
                    shrink_kernel_size,
                    num_samples_factor,
                ],
                outputs=[plot],
                cache_examples=True,
            )

        run_button.click(
            fn=generate_panoptic_mask,
            inputs=[
                input_image,
                thing_category_names_string,
                stuff_category_names_string,
                box_threshold,
                text_threshold,
                segmentation_background_threshold,
                shrink_kernel_size,
                num_samples_factor,
            ],
            outputs=[plot],
        )

    block.launch(server_name="0.0.0.0", debug=args.debug, share=args.share)