Spaces:
Runtime error
Runtime error
import subprocess, os, sys | |
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True) | |
print(f"pip install GroundingDINO = {result}") | |
result = subprocess.run(["pip", "install", "gradio==3.27.0"], check=True) | |
print(f"pip install gradio==3.27.0 = {result}") | |
sys.path.insert(0, "./GroundingDINO") | |
if not os.path.exists("./sam_vit_h_4b8939.pth"): | |
result = subprocess.run( | |
[ | |
"wget", | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
], | |
check=True, | |
) | |
print(f"wget sam_vit_h_4b8939.pth result = {result}") | |
import argparse | |
import random | |
import warnings | |
import json | |
import gradio as gr | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from scipy import ndimage | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from segments.utils import bitmap2file | |
# Grounding DINO | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.models import build_model | |
from GroundingDINO.groundingdino.util import box_ops | |
from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
from GroundingDINO.groundingdino.util.utils import ( | |
clean_state_dict, | |
) | |
from GroundingDINO.groundingdino.util.inference import annotate, predict | |
# segment anything | |
from segment_anything import build_sam, SamPredictor | |
# CLIPSeg | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
def load_model_hf(model_config_path, repo_id, filename, device): | |
args = SLConfig.fromfile(model_config_path) | |
model = build_model(args) | |
args.device = device | |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) | |
checkpoint = torch.load(cache_file, map_location=device) | |
log = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
print("Model loaded from {} \n => {}".format(cache_file, log)) | |
_ = model.eval() | |
model = model.to(device) | |
return model | |
def load_image_for_dino(image): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
dino_image, _ = transform(image, None) | |
return dino_image | |
def dino_detection( | |
model, | |
image, | |
image_array, | |
category_names, | |
category_name_to_id, | |
box_threshold, | |
text_threshold, | |
device, | |
visualize=False, | |
): | |
detection_prompt = " . ".join(category_names) | |
dino_image = load_image_for_dino(image) | |
dino_image = dino_image.to(device) | |
with torch.no_grad(): | |
boxes, logits, phrases = predict( | |
model=model, | |
image=dino_image, | |
caption=detection_prompt, | |
box_threshold=box_threshold, | |
text_threshold=text_threshold, | |
device=device, | |
) | |
category_ids = [category_name_to_id[phrase] for phrase in phrases] | |
if visualize: | |
annotated_frame = annotate( | |
image_source=image_array, boxes=boxes, logits=logits, phrases=phrases | |
) | |
annotated_frame = annotated_frame[..., ::-1] # BGR to RGB | |
visualization = Image.fromarray(annotated_frame) | |
return boxes, category_ids, visualization | |
else: | |
return boxes, category_ids, phrases | |
def sam_masks_from_dino_boxes(predictor, image_array, boxes, device): | |
# box: normalized box xywh -> unnormalized xyxy | |
H, W, _ = image_array.shape | |
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H]) | |
transformed_boxes = predictor.transform.apply_boxes_torch( | |
boxes_xyxy, image_array.shape[:2] | |
).to(device) | |
thing_masks, _, _ = predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
) | |
return thing_masks | |
def preds_to_semantic_inds(preds, threshold): | |
flat_preds = preds.reshape((preds.shape[0], -1)) | |
# Initialize a dummy "unlabeled" mask with the threshold | |
flat_preds_with_treshold = torch.full( | |
(preds.shape[0] + 1, flat_preds.shape[-1]), threshold | |
) | |
flat_preds_with_treshold[1 : preds.shape[0] + 1, :] = flat_preds | |
# Get the top mask index for each pixel | |
semantic_inds = torch.topk(flat_preds_with_treshold, 1, dim=0).indices.reshape( | |
(preds.shape[-2], preds.shape[-1]) | |
) | |
return semantic_inds | |
def clipseg_segmentation( | |
processor, model, image, category_names, background_threshold, device | |
): | |
inputs = processor( | |
text=category_names, | |
images=[image] * len(category_names), | |
padding="max_length", | |
return_tensors="pt", | |
).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
if len(logits.shape) == 2: | |
logits = logits.unsqueeze(0) | |
# resize the outputs | |
upscaled_logits = nn.functional.interpolate( | |
logits.unsqueeze(1), | |
size=(image.size[1], image.size[0]), | |
mode="bilinear", | |
) | |
preds = torch.sigmoid(upscaled_logits.squeeze(dim=1)) | |
semantic_inds = preds_to_semantic_inds(preds, background_threshold) | |
return preds, semantic_inds | |
def semantic_inds_to_shrunken_bool_masks( | |
semantic_inds, shrink_kernel_size, num_categories | |
): | |
shrink_kernel = np.ones((shrink_kernel_size, shrink_kernel_size)) | |
bool_masks = torch.zeros((num_categories, *semantic_inds.shape), dtype=bool) | |
for category in range(num_categories): | |
binary_mask = semantic_inds == category | |
shrunken_binary_mask_array = ( | |
ndimage.binary_erosion(binary_mask.numpy(), structure=shrink_kernel) | |
if shrink_kernel_size > 0 | |
else binary_mask.numpy() | |
) | |
bool_masks[category] = torch.from_numpy(shrunken_binary_mask_array) | |
return bool_masks | |
def clip_and_shrink_preds(semantic_inds, preds, shrink_kernel_size, num_categories): | |
# convert semantic_inds to shrunken bool masks | |
bool_masks = semantic_inds_to_shrunken_bool_masks( | |
semantic_inds, shrink_kernel_size, num_categories | |
).to(preds.device) | |
sizes = [ | |
torch.sum(bool_masks[i].int()).item() for i in range(1, bool_masks.size(0)) | |
] | |
max_size = max(sizes) | |
relative_sizes = [size / max_size for size in sizes] if max_size > 0 else sizes | |
# use bool masks to clip preds | |
clipped_preds = torch.zeros_like(preds) | |
for i in range(1, bool_masks.size(0)): | |
float_mask = bool_masks[i].float() | |
clipped_preds[i - 1] = preds[i - 1] * float_mask | |
return clipped_preds, relative_sizes | |
def sample_points_based_on_preds(preds, N): | |
height, width = preds.shape | |
weights = preds.ravel() | |
indices = np.arange(height * width) | |
# Randomly sample N indices based on the weights | |
sampled_indices = random.choices(indices, weights=weights, k=N) | |
# Convert the sampled indices into (col, row) coordinates | |
sampled_points = [(index % width, index // width) for index in sampled_indices] | |
return sampled_points | |
def upsample_pred(pred, image_source): | |
pred = pred.unsqueeze(dim=0) | |
original_height = image_source.shape[0] | |
original_width = image_source.shape[1] | |
larger_dim = max(original_height, original_width) | |
aspect_ratio = original_height / original_width | |
# upsample the tensor to the larger dimension | |
upsampled_tensor = F.interpolate( | |
pred, size=(larger_dim, larger_dim), mode="bilinear", align_corners=False | |
) | |
# remove the padding (at the end) to get the original image resolution | |
if original_height > original_width: | |
target_width = int(upsampled_tensor.shape[3] * aspect_ratio) | |
upsampled_tensor = upsampled_tensor[:, :, :, :target_width] | |
else: | |
target_height = int(upsampled_tensor.shape[2] * aspect_ratio) | |
upsampled_tensor = upsampled_tensor[:, :, :target_height, :] | |
return upsampled_tensor.squeeze(dim=1) | |
def sam_mask_from_points(predictor, image_array, points): | |
points_array = np.array(points) | |
# we only sample positive points, so labels are all 1 | |
points_labels = np.ones(len(points)) | |
# we don't use predict_torch here cause it didn't seem to work... | |
_, _, logits = predictor.predict( | |
point_coords=points_array, | |
point_labels=points_labels, | |
) | |
# max over the 3 segmentation levels | |
total_pred = torch.max(torch.sigmoid(torch.tensor(logits)), dim=0)[0].unsqueeze( | |
dim=0 | |
) | |
# logits are 256x256 -> upsample back to image shape | |
upsampled_pred = upsample_pred(total_pred, image_array) | |
return upsampled_pred | |
def inds_to_segments_format( | |
panoptic_inds, thing_category_ids, stuff_category_names, category_name_to_id | |
): | |
panoptic_inds_array = panoptic_inds.numpy().astype(np.uint32) | |
bitmap_file = bitmap2file(panoptic_inds_array, is_segmentation_bitmap=True) | |
segmentation_bitmap = Image.open(bitmap_file) | |
stuff_category_ids = [ | |
category_name_to_id[stuff_category_name] | |
for stuff_category_name in stuff_category_names | |
] | |
unique_inds = np.unique(panoptic_inds_array) | |
stuff_annotations = [ | |
{"id": i, "category_id": stuff_category_ids[i - 1]} | |
for i in range(1, len(stuff_category_names) + 1) | |
if i in unique_inds | |
] | |
thing_annotations = [ | |
{"id": len(stuff_category_names) + 1 + i, "category_id": thing_category_id} | |
for i, thing_category_id in enumerate(thing_category_ids) | |
] | |
annotations = stuff_annotations + thing_annotations | |
return segmentation_bitmap, annotations | |
def generate_panoptic_mask( | |
image, | |
thing_category_names_string, | |
stuff_category_names_string, | |
dino_box_threshold=0.3, | |
dino_text_threshold=0.25, | |
segmentation_background_threshold=0.1, | |
shrink_kernel_size=20, | |
num_samples_factor=1000, | |
task_attributes_json="", | |
): | |
if task_attributes_json != "": | |
task_attributes = json.loads(task_attributes_json) | |
categories = task_attributes["categories"] | |
category_name_to_id = { | |
category["name"]: category["id"] for category in categories | |
} | |
# split the categories into "stuff" categories (regions w/o instances) | |
# and "thing" categories (objects/instances) | |
stuff_categories = [ | |
category | |
for category in categories | |
if "has_instances" not in category or not category["has_instances"] | |
] | |
thing_categories = [ | |
category | |
for category in categories | |
if "has_instances" in category and category["has_instances"] | |
] | |
stuff_category_names = [category["name"] for category in stuff_categories] | |
thing_category_names = [category["name"] for category in thing_categories] | |
category_names = thing_category_names + stuff_category_names | |
else: | |
# parse inputs | |
thing_category_names = [ | |
thing_category_name.strip() | |
for thing_category_name in thing_category_names_string.split(",") | |
] | |
stuff_category_names = [ | |
stuff_category_name.strip() | |
for stuff_category_name in stuff_category_names_string.split(",") | |
] | |
category_names = thing_category_names + stuff_category_names | |
category_name_to_id = { | |
category_name: i for i, category_name in enumerate(category_names) | |
} | |
image = image.convert("RGB") | |
image_array = np.asarray(image) | |
# compute SAM image embedding | |
sam_predictor.set_image(image_array) | |
# detect boxes for "thing" categories using Grounding DINO | |
thing_category_ids = [] | |
thing_masks = [] | |
thing_boxes = [] | |
detected_thing_category_names = [] | |
if len(thing_category_names) > 0: | |
thing_boxes, thing_category_ids, detected_thing_category_names = dino_detection( | |
dino_model, | |
image, | |
image_array, | |
thing_category_names, | |
category_name_to_id, | |
dino_box_threshold, | |
dino_text_threshold, | |
device, | |
) | |
if len(thing_boxes) > 0: | |
# get segmentation masks for the thing boxes | |
thing_masks = sam_masks_from_dino_boxes( | |
sam_predictor, image_array, thing_boxes, device | |
) | |
if len(stuff_category_names) > 0: | |
# get rough segmentation masks for "stuff" categories using CLIPSeg | |
clipseg_preds, clipseg_semantic_inds = clipseg_segmentation( | |
clipseg_processor, | |
clipseg_model, | |
image, | |
stuff_category_names, | |
segmentation_background_threshold, | |
device, | |
) | |
# remove things from stuff masks | |
clipseg_semantic_inds_without_things = clipseg_semantic_inds.clone() | |
if len(thing_boxes) > 0: | |
combined_things_mask = torch.any(thing_masks, dim=0) | |
clipseg_semantic_inds_without_things[combined_things_mask[0]] = 0 | |
# clip CLIPSeg preds based on non-overlapping semantic segmentation inds (+ optionally shrink the mask of each category) | |
# also returns the relative size of each category | |
clipsed_clipped_preds, relative_sizes = clip_and_shrink_preds( | |
clipseg_semantic_inds_without_things, | |
clipseg_preds, | |
shrink_kernel_size, | |
len(stuff_category_names) + 1, | |
) | |
# get finer segmentation masks for the "stuff" categories using SAM | |
sam_preds = torch.zeros_like(clipsed_clipped_preds) | |
for i in range(clipsed_clipped_preds.shape[0]): | |
clipseg_pred = clipsed_clipped_preds[i] | |
# for each "stuff" category, sample points in the rough segmentation mask | |
num_samples = int(relative_sizes[i] * num_samples_factor) | |
if num_samples == 0: | |
continue | |
points = sample_points_based_on_preds( | |
clipseg_pred.cpu().numpy(), num_samples | |
) | |
if len(points) == 0: | |
continue | |
# use SAM to get mask for points | |
pred = sam_mask_from_points(sam_predictor, image_array, points) | |
sam_preds[i] = pred | |
sam_semantic_inds = preds_to_semantic_inds( | |
sam_preds, segmentation_background_threshold | |
) | |
# combine the thing inds and the stuff inds into panoptic inds | |
panoptic_inds = ( | |
sam_semantic_inds.clone() | |
if len(stuff_category_names) > 0 | |
else torch.zeros(image_array.shape[0], image_array.shape[1], dtype=torch.long) | |
) | |
ind = len(stuff_category_names) + 1 | |
for thing_mask in thing_masks: | |
# overlay thing mask on panoptic inds | |
panoptic_inds[thing_mask.squeeze(dim=0)] = ind | |
ind += 1 | |
panoptic_bool_masks = ( | |
semantic_inds_to_shrunken_bool_masks(panoptic_inds, 0, ind + 1) | |
.numpy() | |
.astype(int) | |
) | |
panoptic_names = ( | |
["unlabeled"] + stuff_category_names + detected_thing_category_names | |
) | |
subsection_label_pairs = [ | |
(panoptic_bool_masks[i], panoptic_name) | |
for i, panoptic_name in enumerate(panoptic_names) | |
] | |
segmentation_bitmap, annotations = inds_to_segments_format( | |
panoptic_inds, thing_category_ids, stuff_category_names, category_name_to_id | |
) | |
annotations_json = json.dumps(annotations) | |
return (image_array, subsection_label_pairs), segmentation_bitmap, annotations_json | |
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" | |
ckpt_repo_id = "ShilongLiu/GroundingDINO" | |
ckpt_filename = "groundingdino_swint_ogc.pth" | |
sam_checkpoint = "./sam_vit_h_4b8939.pth" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Using device:", device) | |
if device != "cpu": | |
try: | |
from GroundingDINO.groundingdino import _C | |
except: | |
warnings.warn( | |
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!" | |
) | |
# initialize groundingdino model | |
dino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, device) | |
# initialize SAM | |
sam = build_sam(checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
sam_predictor = SamPredictor(sam) | |
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
clipseg_model = CLIPSegForImageSegmentation.from_pretrained( | |
"CIDAS/clipseg-rd64-refined" | |
) | |
clipseg_model.to(device) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser("Panoptic Segment Anything demo", add_help=True) | |
parser.add_argument("--debug", action="store_true", help="using debug mode") | |
parser.add_argument("--share", action="store_true", help="share the app") | |
args = parser.parse_args() | |
print(f"args = {args}") | |
block = gr.Blocks(title="Panoptic Segment Anything").queue() | |
with block: | |
with gr.Column(): | |
title = gr.Markdown( | |
"# [Panoptic Segment Anything](https://github.com/segments-ai/panoptic-segment-anything)" | |
) | |
description = gr.Markdown( | |
"Demo for zero-shot panoptic segmentation using Segment Anything, Grounding DINO, and CLIPSeg." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source="upload", type="pil") | |
thing_category_names_string = gr.Textbox( | |
label="Thing categories (i.e. categories with instances), comma-separated", | |
placeholder="E.g. car, bus, person", | |
) | |
stuff_category_names_string = gr.Textbox( | |
label="Stuff categories (i.e. categories without instances), comma-separated", | |
placeholder="E.g. sky, road, buildings", | |
) | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
box_threshold = gr.Slider( | |
label="Grounding DINO box threshold", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.3, | |
step=0.001, | |
) | |
text_threshold = gr.Slider( | |
label="Grounding DINO text threshold", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.25, | |
step=0.001, | |
) | |
segmentation_background_threshold = gr.Slider( | |
label="Segmentation background threshold (under this threshold, a pixel is considered background/unlabeled)", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.1, | |
step=0.001, | |
) | |
shrink_kernel_size = gr.Slider( | |
label="Shrink kernel size (how much to shrink the mask before sampling points)", | |
minimum=0, | |
maximum=100, | |
value=20, | |
step=1, | |
) | |
num_samples_factor = gr.Slider( | |
label="Number of samples factor (how many points to sample in the largest category)", | |
minimum=0, | |
maximum=1000, | |
value=1000, | |
step=1, | |
) | |
task_attributes_json = gr.Textbox( | |
label="Task attributes JSON", | |
) | |
with gr.Column(): | |
annotated_image = gr.AnnotatedImage() | |
with gr.Accordion("Segmentation bitmap", open=False): | |
segmentation_bitmap_text = gr.Markdown( | |
""" | |
The segmentation bitmap is a 32-bit RGBA png image which contains the segmentation masks. | |
The alpha channel is set to 255, and the remaining 24-bit values in the RGB channels correspond to the object ids in the annotations list. | |
Unlabeled regions have a value of 0. | |
Because of the large dynamic range, the segmentation bitmap appears black in the image viewer. | |
""" | |
) | |
segmentation_bitmap = gr.Image( | |
type="pil", label="Segmentation bitmap" | |
) | |
annotations_json = gr.Textbox( | |
label="Annotations JSON", | |
) | |
examples = gr.Examples( | |
examples=[ | |
[ | |
"a2d2.png", | |
"car, bus, person", | |
"road, sky, buildings, sidewalk", | |
], | |
[ | |
"bxl.png", | |
"car, tram, motorcycle, person", | |
"road, buildings, sky", | |
], | |
], | |
fn=generate_panoptic_mask, | |
inputs=[ | |
input_image, | |
thing_category_names_string, | |
stuff_category_names_string, | |
], | |
outputs=[annotated_image, segmentation_bitmap, annotations_json], | |
cache_examples=True, | |
) | |
run_button.click( | |
fn=generate_panoptic_mask, | |
inputs=[ | |
input_image, | |
thing_category_names_string, | |
stuff_category_names_string, | |
box_threshold, | |
text_threshold, | |
segmentation_background_threshold, | |
shrink_kernel_size, | |
num_samples_factor, | |
task_attributes_json, | |
], | |
outputs=[annotated_image, segmentation_bitmap, annotations_json], | |
api_name="segment", | |
) | |
block.launch(server_name="0.0.0.0", debug=args.debug, share=args.share) | |