Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from BobVLM import BobVLMProcessor, load_model, pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and processor
|
6 |
+
model = load_model()
|
7 |
+
processor = BobVLMProcessor()
|
8 |
+
|
9 |
+
# Create pipeline
|
10 |
+
pipe = pipeline(model, processor)
|
11 |
+
|
12 |
+
def analyze_image(image):
|
13 |
+
"""Process the image and return BobVLM's analysis."""
|
14 |
+
response = pipe(
|
15 |
+
chat=[
|
16 |
+
{"role": "system", "content": "You are an image understanding assistant. You can see and interpret images in fine detail. Provide clear, engaging descriptions that highlight the key elements and atmosphere of the image."},
|
17 |
+
{"role": "user", "content": "Describe the image"},
|
18 |
+
],
|
19 |
+
images=image
|
20 |
+
)
|
21 |
+
return response[0] if response else "I couldn't analyze this image."
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
with gr.Blocks(theme=gr.themes.Soft(
|
25 |
+
primary_hue="blue",
|
26 |
+
secondary_hue="indigo",
|
27 |
+
neutral_hue="slate",
|
28 |
+
)) as demo:
|
29 |
+
gr.Markdown(
|
30 |
+
"""
|
31 |
+
# 🤖 BobVLM Image Analyzer
|
32 |
+
Upload an image and let BobVLM describe what it sees. BobVLM combines CLIP's vision capabilities
|
33 |
+
with LLaMA's language understanding to provide detailed, natural descriptions of images.
|
34 |
+
"""
|
35 |
+
)
|
36 |
+
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column(scale=1):
|
39 |
+
input_image = gr.Image(
|
40 |
+
label="Upload Image",
|
41 |
+
type="pil",
|
42 |
+
height=400,
|
43 |
+
)
|
44 |
+
analyze_btn = gr.Button(
|
45 |
+
"🔍 Analyze Image",
|
46 |
+
variant="primary",
|
47 |
+
size="lg",
|
48 |
+
)
|
49 |
+
|
50 |
+
with gr.Column(scale=1):
|
51 |
+
output_text = gr.Textbox(
|
52 |
+
label="BobVLM's Analysis",
|
53 |
+
placeholder="Analysis will appear here...",
|
54 |
+
lines=16,
|
55 |
+
show_copy_button=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
# Add examples
|
59 |
+
gr.Examples(
|
60 |
+
examples=[
|
61 |
+
["path/to/example1.jpg"],
|
62 |
+
["path/to/example2.jpg"],
|
63 |
+
],
|
64 |
+
inputs=input_image,
|
65 |
+
outputs=output_text,
|
66 |
+
fn=analyze_image,
|
67 |
+
cache_examples=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
# Set up the click event
|
71 |
+
analyze_btn.click(
|
72 |
+
fn=analyze_image,
|
73 |
+
inputs=input_image,
|
74 |
+
outputs=output_text,
|
75 |
+
)
|
76 |
+
|
77 |
+
gr.Markdown(
|
78 |
+
"""
|
79 |
+
### About BobVLM
|
80 |
+
BobVLM is a Vision Language Model that combines CLIP's visual understanding with LLaMA's language capabilities.
|
81 |
+
It uses a specialized adapter layer to bridge the gap between vision and language, enabling detailed and natural
|
82 |
+
image descriptions.
|
83 |
+
|
84 |
+
[View on GitHub](https://github.com/yourusername/BobVLM) | [Hugging Face Model](https://huggingface.co/selfDotOsman/BobVLM-1.5b)
|
85 |
+
"""
|
86 |
+
)
|
87 |
+
|
88 |
+
# Launch the app
|
89 |
+
if __name__ == "__main__":
|
90 |
+
demo.launch(
|
91 |
+
share=True,
|
92 |
+
enable_queue=True,
|
93 |
+
show_error=True,
|
94 |
+
)
|