semakoc's picture
Update app.py (#2)
2a0048a verified
raw
history blame
6.47 kB
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config) # Your Firebase JSON key file
firebase_admin.initialize_app(cred)
db = firestore.client()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
"""
Transcribes the audio file using the loaded ASR model.
Returns the transcription string.
"""
try:
# Load and resample the audio to 16kHz
audio, rate = librosa.load(audio_file, sr=16000)
# Prepare the input tensor for the model
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
# Get model predictions (logits) and decode to text
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"Error processing file: {e}"
def transcribe_both(audio_file):
"""
Transcribes the audio and returns:
- the original transcription (for the non-editable textbox),
- the transcription (pre-filled for the editable textbox), and
- the processing time (in seconds).
"""
start_time = datetime.now()
transcription = transcribe(audio_file)
processing_time = (datetime.now() - start_time).total_seconds()
return transcription, transcription, processing_time
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time):
"""
Stores the transcriptions and additional metadata in Firestore.
Saves:
- original & corrected text,
- timestamp,
- processing time,
- audio metadata (duration & file size, if available),
- a placeholder for the audio URL, and
- the model name.
"""
try:
audio_metadata = {}
if audio_file and os.path.exists(audio_file):
# Load audio for metadata calculations
audio, sr = librosa.load(audio_file, sr=16000)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {
'duration': duration,
'file_size': file_size
}
correction_data = {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'timestamp': datetime.now().isoformat(),
'processing_time': processing_time,
'audio_metadata': audio_metadata,
'audio_url': None,
'model_name': MODEL_NAME
}
db.collection('transcription_corrections').add(correction_data)
return "Correction saved successfully!"
except Exception as e:
return f"Error saving correction: {e}"
def prepare_download(audio_file, original_transcription, corrected_transcription):
"""
Prepares a ZIP file containing:
- The uploaded audio file (as audio.wav),
- a text file with the original transcription, and
- a text file with the corrected transcription.
Returns the ZIP file's path.
"""
if audio_file is None:
return None
zip_filename = "results.zip"
with zipfile.ZipFile(zip_filename, "w") as zf:
# Add the audio file (renamed inside the zip)
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
else:
print("Audio file not found:", audio_file)
# Add the original transcription as a text file
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
# Add the corrected transcription as a text file
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return zip_filename
# Build the Gradio Blocks interface with improved styling
with gr.Blocks(css="""
.container { max-width: 800px; margin: auto; }
.title { text-align: center; }
""") as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("<h1 class='title'>ASR Demo with Editable Transcription</h1>")
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Upload or Record Audio")
transcribe_button = gr.Button("Transcribe Audio", variant="primary")
with gr.Row():
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5)
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5)
# Hidden state to hold processing time
proc_time_state = gr.State()
with gr.Row():
save_button = gr.Button("Save Correction to Database", variant="primary")
save_status = gr.Textbox(label="Save Status", interactive=False)
with gr.Accordion("Download Options", open=False):
with gr.Row():
download_button = gr.Button("Download Results (ZIP)")
download_output = gr.File(label="Download ZIP")
# Set up actions
transcribe_button.click(
fn=transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text, proc_time_state]
)
save_button.click(
fn=store_correction,
inputs=[original_text, corrected_text, audio_input, proc_time_state],
outputs=save_status
)
download_button.click(
fn=prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
# Launch the demo
demo.launch(share=True)