|
import gradio as gr |
|
import torch |
|
import librosa |
|
from transformers import Wav2Vec2Processor, AutoModelForCTC |
|
import zipfile |
|
import os |
|
import firebase_admin |
|
from firebase_admin import credentials, firestore |
|
from datetime import datetime |
|
import json |
|
import tempfile |
|
|
|
|
|
firebase_config = json.loads(os.environ.get('firebase_creds')) |
|
cred = credentials.Certificate(firebase_config) |
|
firebase_admin.initialize_app(cred) |
|
db = firestore.client() |
|
|
|
|
|
MODEL_NAME = "eleferrand/xlsr53_Amis" |
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCTC.from_pretrained(MODEL_NAME) |
|
|
|
def transcribe(audio_file): |
|
try: |
|
audio, rate = librosa.load(audio_file, sr=16000) |
|
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
return transcription.replace("[UNK]", "") |
|
except Exception as e: |
|
return f"处理文件错误: {e}" |
|
|
|
def transcribe_both(audio_file): |
|
start_time = datetime.now() |
|
transcription = transcribe(audio_file) |
|
processing_time = (datetime.now() - start_time).total_seconds() |
|
return transcription, transcription, processing_time |
|
|
|
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker): |
|
try: |
|
audio_metadata = {} |
|
if audio_file and os.path.exists(audio_file): |
|
audio, sr = librosa.load(audio_file, sr=16000) |
|
duration = librosa.get_duration(y=audio, sr=sr) |
|
file_size = os.path.getsize(audio_file) |
|
audio_metadata = {'duration': duration, 'file_size': file_size} |
|
combined_data = { |
|
'original_text': original_transcription, |
|
'corrected_text': corrected_transcription, |
|
'timestamp': datetime.now().isoformat(), |
|
'processing_time': processing_time, |
|
'audio_metadata': audio_metadata, |
|
'audio_url': None, |
|
'model_name': MODEL_NAME, |
|
'user_info': { |
|
'native_amis_speaker': native_speaker, |
|
'age': age |
|
} |
|
} |
|
db.collection('transcriptions').add(combined_data) |
|
return "校正保存成功! (Correction saved successfully!)" |
|
except Exception as e: |
|
return f"保存失败: {e} (Error saving correction: {e})" |
|
|
|
def prepare_download(audio_file, original_transcription, corrected_transcription): |
|
if audio_file is None: |
|
return None |
|
|
|
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip") |
|
tmp_zip.close() |
|
with zipfile.ZipFile(tmp_zip.name, "w") as zf: |
|
if os.path.exists(audio_file): |
|
zf.write(audio_file, arcname="audio.wav") |
|
|
|
orig_txt = "original_transcription.txt" |
|
with open(orig_txt, "w", encoding="utf-8") as f: |
|
f.write(original_transcription) |
|
zf.write(orig_txt, arcname="original_transcription.txt") |
|
os.remove(orig_txt) |
|
|
|
corr_txt = "corrected_transcription.txt" |
|
with open(corr_txt, "w", encoding="utf-8") as f: |
|
f.write(corrected_transcription) |
|
zf.write(corr_txt, arcname="corrected_transcription.txt") |
|
os.remove(corr_txt) |
|
return tmp_zip.name |
|
|
|
|
|
with gr.Blocks(css=""" |
|
.container { |
|
max-width: 800px; |
|
margin: auto; |
|
padding: 20px; |
|
font-family: Arial, sans-serif; |
|
} |
|
.header { |
|
text-align: center; |
|
margin-bottom: 30px; |
|
} |
|
.section { |
|
margin-bottom: 30px; |
|
padding: 15px; |
|
border: 1px solid #ddd; |
|
border-radius: 8px; |
|
background-color: #808080; |
|
} |
|
.section h3 { |
|
margin-top: 0; |
|
margin-bottom: 15px; |
|
text-align: center; |
|
} |
|
.button-row { |
|
display: flex; |
|
justify-content: center; |
|
gap: 10px; |
|
flex-wrap: wrap; |
|
} |
|
@media (max-width: 600px) { |
|
.gradio-row { |
|
flex-direction: column; |
|
} |
|
} |
|
""") as demo: |
|
with gr.Column(elem_classes="container"): |
|
gr.Markdown("<h1 class='header'>阿美語轉錄與修正系統 (ASR Correction System)</h1>") |
|
|
|
with gr.Column(elem_classes="section"): |
|
gr.Markdown("### 步驟 1:音訊上傳與轉錄(Audio Upload & Transcription)") |
|
with gr.Row(): |
|
audio_input = gr.Audio( |
|
sources=["upload", "microphone"], |
|
type="filepath", |
|
label="音訊輸入 (Audio Input)" |
|
) |
|
transcribe_button = gr.Button("轉錄音訊 (Transcribe Audio)", variant="primary") |
|
proc_time_state = gr.State() |
|
|
|
with gr.Column(elem_classes="section"): |
|
gr.Markdown("### 步驟 2:審閱與編輯轉錄 (Review & Edit Transcription)") |
|
with gr.Row(): |
|
original_text = gr.Textbox( |
|
label="原始轉錄 (Original Transcription)", |
|
interactive=False, |
|
lines=5, |
|
placeholder="謄本將在此出現... (Transcription will appear here...)" |
|
) |
|
corrected_text = gr.Textbox( |
|
label="更正轉錄 (Corrected Transcription)", |
|
interactive=True, |
|
lines=5, |
|
placeholder="在此編輯轉錄... (Edit transcription here...)" |
|
) |
|
|
|
with gr.Column(elem_classes="section"): |
|
gr.Markdown("### 步驟 3:使用者資訊 (User Information)") |
|
with gr.Row(): |
|
age_input = gr.Slider( |
|
minimum=0, |
|
maximum=100, |
|
step=1, |
|
label="年齡 (Age)", |
|
value=25 |
|
) |
|
native_speaker_input = gr.Checkbox( |
|
label="以阿美語為母語? (Native Amis Speaker?)", |
|
value=True |
|
) |
|
|
|
with gr.Column(elem_classes="section"): |
|
gr.Markdown("### 步驟 4:儲存與下載 (Save & Download)") |
|
with gr.Row(elem_classes="button-row"): |
|
save_button = gr.Button("儲存更正 (Save Correction)", variant="primary") |
|
save_status = gr.Textbox( |
|
label="儲存狀態 (Save Status)", |
|
interactive=False, |
|
placeholder="狀態訊息會出現在這裡... (Status messages will appear here...)" |
|
) |
|
with gr.Row(elem_classes="button-row"): |
|
download_button = gr.Button("下載 ZIP 檔案 (Download ZIP)") |
|
download_output = gr.File(label="下載 ZIP 檔案 (Download ZIP)") |
|
|
|
transcribe_button.click( |
|
fn=transcribe_both, |
|
inputs=audio_input, |
|
outputs=[original_text, corrected_text, proc_time_state] |
|
) |
|
|
|
save_button.click( |
|
fn=store_correction, |
|
inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input], |
|
outputs=save_status |
|
) |
|
|
|
download_button.click( |
|
fn=prepare_download, |
|
inputs=[audio_input, original_text, corrected_text], |
|
outputs=download_output |
|
) |
|
|
|
demo.launch(share=True) |