segment database by language (#9)
Browse files- segment database by language (0b24e727e18a34154af419cf6c0e8fd5746db855)
Co-authored-by: Hunter S <[email protected]>
app.py
CHANGED
@@ -11,13 +11,15 @@ import json
|
|
11 |
import tempfile
|
12 |
import uuid
|
13 |
|
14 |
-
|
|
|
15 |
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
16 |
cred = credentials.Certificate("serviceAccountKey.json")
|
17 |
'''
|
18 |
# Deployed Initialization
|
19 |
firebase_config = json.loads(os.environ.get('firebase_creds'))
|
20 |
cred = credentials.Certificate(firebase_config)
|
|
|
21 |
firebase_admin.initialize_app(cred, {
|
22 |
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
|
23 |
})
|
@@ -26,6 +28,7 @@ bucket = storage.bucket()
|
|
26 |
|
27 |
# Load the ASR model and processor
|
28 |
MODEL_NAME = "eleferrand/xlsr53_Amis"
|
|
|
29 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
30 |
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
31 |
|
@@ -54,14 +57,14 @@ def store_correction(original_transcription, corrected_transcription, audio_file
|
|
54 |
|
55 |
# If an audio file is provided, upload it to Firebase Storage
|
56 |
if audio_file and os.path.exists(audio_file):
|
57 |
-
audio, sr = librosa.load(audio_file, sr=
|
58 |
duration = librosa.get_duration(y=audio, sr=sr)
|
59 |
file_size = os.path.getsize(audio_file)
|
60 |
audio_metadata = {'duration': duration, 'file_size': file_size}
|
61 |
|
62 |
# Generate a unique identifier for the audio file
|
63 |
unique_id = str(uuid.uuid4())
|
64 |
-
destination_path = f"audio/{unique_id}.
|
65 |
|
66 |
# Create a blob and upload the file
|
67 |
blob = bucket.blob(destination_path)
|
@@ -71,18 +74,24 @@ def store_correction(original_transcription, corrected_transcription, audio_file
|
|
71 |
audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
|
72 |
|
73 |
combined_data = {
|
74 |
-
'
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
'
|
|
|
|
|
|
|
80 |
'user_info': {
|
81 |
'native_amis_speaker': native_speaker,
|
82 |
'age': age
|
83 |
-
}
|
|
|
|
|
84 |
}
|
85 |
-
|
|
|
86 |
return "校正保存成功! (Correction saved successfully!)"
|
87 |
except Exception as e:
|
88 |
return f"保存失败: {e} (Error saving correction: {e})"
|
|
|
11 |
import tempfile
|
12 |
import uuid
|
13 |
|
14 |
+
# LOCAL INITIALIZATION - ONLY USE ON YOUR OWN DEVICE
|
15 |
+
'''
|
16 |
os.chdir(os.path.dirname(os.path.abspath(__file__)))
|
17 |
cred = credentials.Certificate("serviceAccountKey.json")
|
18 |
'''
|
19 |
# Deployed Initialization
|
20 |
firebase_config = json.loads(os.environ.get('firebase_creds'))
|
21 |
cred = credentials.Certificate(firebase_config)
|
22 |
+
|
23 |
firebase_admin.initialize_app(cred, {
|
24 |
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
|
25 |
})
|
|
|
28 |
|
29 |
# Load the ASR model and processor
|
30 |
MODEL_NAME = "eleferrand/xlsr53_Amis"
|
31 |
+
lang = "ami"
|
32 |
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
33 |
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
34 |
|
|
|
57 |
|
58 |
# If an audio file is provided, upload it to Firebase Storage
|
59 |
if audio_file and os.path.exists(audio_file):
|
60 |
+
audio, sr = librosa.load(audio_file, sr=44100)
|
61 |
duration = librosa.get_duration(y=audio, sr=sr)
|
62 |
file_size = os.path.getsize(audio_file)
|
63 |
audio_metadata = {'duration': duration, 'file_size': file_size}
|
64 |
|
65 |
# Generate a unique identifier for the audio file
|
66 |
unique_id = str(uuid.uuid4())
|
67 |
+
destination_path = f"audio/{lang}/{unique_id}.wav"
|
68 |
|
69 |
# Create a blob and upload the file
|
70 |
blob = bucket.blob(destination_path)
|
|
|
74 |
audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
|
75 |
|
76 |
combined_data = {
|
77 |
+
'transcription_info': {
|
78 |
+
'original_text': original_transcription,
|
79 |
+
'corrected_text': corrected_transcription,
|
80 |
+
'language': lang,
|
81 |
+
},
|
82 |
+
'audio_data': {
|
83 |
+
'audio_metadata': audio_metadata,
|
84 |
+
'audio_file_url': audio_file_url,
|
85 |
+
},
|
86 |
'user_info': {
|
87 |
'native_amis_speaker': native_speaker,
|
88 |
'age': age
|
89 |
+
},
|
90 |
+
'timestamp': datetime.now().isoformat(),
|
91 |
+
'model_name': MODEL_NAME
|
92 |
}
|
93 |
+
# Save data to a collection for that language
|
94 |
+
db.collection('amis_transcriptions').add(combined_data)
|
95 |
return "校正保存成功! (Correction saved successfully!)"
|
96 |
except Exception as e:
|
97 |
return f"保存失败: {e} (Error saving correction: {e})"
|