Spaces:
Running
Running
Removed the sparrow key since it wasn't needed. Changed the model and processor to senga model and processor (#1)
Browse files- Removed the sparrow key since it wasn't needed. Changed the model and processor to senga model and processor (391b6558c7e79b684f3e21c97063e16e97b5ef18)
- config.py +4 -6
- inference.py +85 -0
- training.py +85 -0
config.py
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
from pydantic import BaseSettings
|
2 |
-
import os
|
3 |
|
4 |
|
5 |
class Settings(BaseSettings):
|
6 |
-
huggingface_key: str =
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
dataset: str = "katanaml-org/invoices-donut-data-v1"
|
11 |
base_config: str = "naver-clova-ix/donut-base"
|
12 |
base_processor: str = "naver-clova-ix/donut-base"
|
13 |
base_model: str = "naver-clova-ix/donut-base"
|
|
|
1 |
from pydantic import BaseSettings
|
|
|
2 |
|
3 |
|
4 |
class Settings(BaseSettings):
|
5 |
+
huggingface_key: str = "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"
|
6 |
+
processor: str = "senga-ml/donut-training-v4"
|
7 |
+
model: str = "senga-ml/donut-training-v4"
|
8 |
+
dataset: str = "senga-ml/dnotes-data-v1"
|
|
|
9 |
base_config: str = "naver-clova-ix/donut-base"
|
10 |
base_processor: str = "naver-clova-ix/donut-base"
|
11 |
base_model: str = "naver-clova-ix/donut-base"
|
inference.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter, File, UploadFile, Form
|
2 |
+
from typing import Optional
|
3 |
+
from PIL import Image
|
4 |
+
import urllib.request
|
5 |
+
from io import BytesIO
|
6 |
+
from config import settings
|
7 |
+
import utils
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
from routers.donut_inference import process_document_donut
|
11 |
+
|
12 |
+
|
13 |
+
router = APIRouter()
|
14 |
+
|
15 |
+
def count_values(obj):
|
16 |
+
if isinstance(obj, dict):
|
17 |
+
count = 0
|
18 |
+
for value in obj.values():
|
19 |
+
count += count_values(value)
|
20 |
+
return count
|
21 |
+
elif isinstance(obj, list):
|
22 |
+
count = 0
|
23 |
+
for item in obj:
|
24 |
+
count += count_values(item)
|
25 |
+
return count
|
26 |
+
else:
|
27 |
+
return 1
|
28 |
+
|
29 |
+
|
30 |
+
@router.post("/inference")
|
31 |
+
async def run_inference(file: Optional[UploadFile] = File(None), image_url: Optional[str] = Form(None),
|
32 |
+
model_in_use: str = Form('donut')):
|
33 |
+
|
34 |
+
# if sparrow_key != settings.sparrow_key:
|
35 |
+
# return {"error": "Invalid Sparrow key."}
|
36 |
+
|
37 |
+
result = []
|
38 |
+
if file:
|
39 |
+
# Ensure the uploaded file is a JPG image
|
40 |
+
if file.content_type not in ["image/jpeg", "image/jpg"]:
|
41 |
+
return {"error": "Invalid file type. Only JPG images are allowed."}
|
42 |
+
|
43 |
+
image = Image.open(BytesIO(await file.read()))
|
44 |
+
processing_time = 0
|
45 |
+
if model_in_use == 'donut':
|
46 |
+
result, processing_time = process_document_donut(image)
|
47 |
+
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file.filename, settings.model])
|
48 |
+
print(f"Processing time inference: {processing_time:.2f} seconds")
|
49 |
+
elif image_url:
|
50 |
+
# test image url: https://raw.githubusercontent.com/katanaml/sparrow/main/sparrow-data/docs/input/invoices/processed/images/invoice_10.jpg
|
51 |
+
with urllib.request.urlopen(image_url) as response:
|
52 |
+
content_type = response.info().get_content_type()
|
53 |
+
if content_type in ["image/jpeg", "image/jpg"]:
|
54 |
+
image = Image.open(BytesIO(response.read()))
|
55 |
+
else:
|
56 |
+
return {"error": "Invalid file type. Only JPG images are allowed."}
|
57 |
+
|
58 |
+
processing_time = 0
|
59 |
+
if model_in_use == 'donut':
|
60 |
+
result, processing_time = process_document_donut(image)
|
61 |
+
# parse file name from url
|
62 |
+
file_name = image_url.split("/")[-1]
|
63 |
+
utils.log_stats(settings.inference_stats_file, [processing_time, count_values(result), file_name, settings.model])
|
64 |
+
print(f"Processing time inference: {processing_time:.2f} seconds")
|
65 |
+
else:
|
66 |
+
result = {"info": "No input provided"}
|
67 |
+
|
68 |
+
return result
|
69 |
+
|
70 |
+
|
71 |
+
@router.get("/statistics")
|
72 |
+
async def get_statistics():
|
73 |
+
file_path = settings.inference_stats_file
|
74 |
+
|
75 |
+
# Check if the file exists, and read its content
|
76 |
+
if os.path.exists(file_path):
|
77 |
+
with open(file_path, 'r') as file:
|
78 |
+
try:
|
79 |
+
content = json.load(file)
|
80 |
+
except json.JSONDecodeError:
|
81 |
+
content = []
|
82 |
+
else:
|
83 |
+
content = []
|
84 |
+
|
85 |
+
return content
|
training.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter, Form, BackgroundTasks
|
2 |
+
from config import settings
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from routers.donut_evaluate import run_evaluate_donut
|
6 |
+
from routers.donut_training import run_training_donut
|
7 |
+
import utils
|
8 |
+
|
9 |
+
|
10 |
+
router = APIRouter()
|
11 |
+
|
12 |
+
|
13 |
+
def invoke_training(max_epochs, val_check_interval, warmup_steps, model_in_use):
|
14 |
+
# if sparrow_key != settings.sparrow_key:
|
15 |
+
# return {"error": "Invalid Sparrow key."}
|
16 |
+
|
17 |
+
if model_in_use == 'donut':
|
18 |
+
processing_time = run_training_donut(max_epochs, val_check_interval, warmup_steps)
|
19 |
+
utils.log_stats(settings.training_stats_file, [processing_time, settings.model])
|
20 |
+
print(f"Processing time training: {processing_time:.2f} seconds")
|
21 |
+
|
22 |
+
|
23 |
+
@router.post("/training")
|
24 |
+
async def run_training(background_tasks: BackgroundTasks,
|
25 |
+
max_epochs: int = Form(30),
|
26 |
+
val_check_interval: float = Form(0.4),
|
27 |
+
warmup_steps: int = Form(81),
|
28 |
+
model_in_use: str = Form('donut')):
|
29 |
+
|
30 |
+
background_tasks.add_task(invoke_training, max_epochs, val_check_interval, warmup_steps, model_in_use)
|
31 |
+
|
32 |
+
return {"message": "Dnote Donut ML training started in the background"}
|
33 |
+
|
34 |
+
|
35 |
+
def invoke_evaluate(model_in_use):
|
36 |
+
# if sparrow_key != settings.sparrow_key:
|
37 |
+
# return {"error": "Invalid Sparrow key."}
|
38 |
+
|
39 |
+
if model_in_use == 'donut':
|
40 |
+
scores, accuracy, processing_time = run_evaluate_donut()
|
41 |
+
utils.log_stats(settings.evaluate_stats_file, [processing_time, scores, accuracy, settings.model])
|
42 |
+
print(f"Processing time evaluate: {processing_time:.2f} seconds")
|
43 |
+
|
44 |
+
|
45 |
+
@router.post("/evaluate")
|
46 |
+
async def run_evaluate(background_tasks: BackgroundTasks,
|
47 |
+
model_in_use: str = Form('donut')):
|
48 |
+
|
49 |
+
background_tasks.add_task(invoke_evaluate, model_in_use)
|
50 |
+
|
51 |
+
return {"message": "Dnote Donut ML model evaluation started in the background"}
|
52 |
+
|
53 |
+
|
54 |
+
@router.get("/statistics/training")
|
55 |
+
async def get_statistics_training():
|
56 |
+
file_path = settings.training_stats_file
|
57 |
+
|
58 |
+
# Check if the file exists, and read its content
|
59 |
+
if os.path.exists(file_path):
|
60 |
+
with open(file_path, 'r') as file:
|
61 |
+
try:
|
62 |
+
content = json.load(file)
|
63 |
+
except json.JSONDecodeError:
|
64 |
+
content = []
|
65 |
+
else:
|
66 |
+
content = []
|
67 |
+
|
68 |
+
return content
|
69 |
+
|
70 |
+
|
71 |
+
@router.get("/statistics/evaluate")
|
72 |
+
async def get_statistics_evaluate():
|
73 |
+
file_path = settings.evaluate_stats_file
|
74 |
+
|
75 |
+
# Check if the file exists, and read its content
|
76 |
+
if os.path.exists(file_path):
|
77 |
+
with open(file_path, 'r') as file:
|
78 |
+
try:
|
79 |
+
content = json.load(file)
|
80 |
+
except json.JSONDecodeError:
|
81 |
+
content = []
|
82 |
+
else:
|
83 |
+
content = []
|
84 |
+
|
85 |
+
return content
|