File size: 6,109 Bytes
1bb1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# 7 Scenes dataloader
# --------------------------------------------------------
import os

import kapture
import numpy as np
import PIL.Image
import torch
from dust3r.datasets.utils.transforms import ImgNorm
from dust3r.utils.geometry import (
    depthmap_to_absolute_camera_coordinates,
    geotrf,
    xy_grid,
)
from dust3r_visloc.datasets.base_dataset import BaseVislocDataset
from dust3r_visloc.datasets.utils import (
    cam_to_world_from_kapture,
    get_resize_function,
    rescale_points3d,
)
from kapture.io.csv import kapture_from_dir
from kapture.io.records import depth_map_from_file
from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file


class VislocSevenScenes(BaseVislocDataset):
    def __init__(self, root, subscene, pairsfile, topk=1):
        super().__init__()
        self.root = root
        self.subscene = subscene
        self.topk = topk
        self.num_views = self.topk + 1
        self.maxdim = None
        self.patch_size = None

        query_path = os.path.join(self.root, subscene, "query")
        kdata_query = kapture_from_dir(query_path)
        assert (
            kdata_query.records_camera is not None
            and kdata_query.trajectories is not None
            and kdata_query.rigs is not None
        )
        kapture.rigs_remove_inplace(kdata_query.trajectories, kdata_query.rigs)
        kdata_query_searchindex = {
            kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id)
            for timestamp, sensor_id in kdata_query.records_camera.key_pairs()
        }
        self.query_data = {
            "path": query_path,
            "kdata": kdata_query,
            "searchindex": kdata_query_searchindex,
        }

        map_path = os.path.join(self.root, subscene, "mapping")
        kdata_map = kapture_from_dir(map_path)
        assert (
            kdata_map.records_camera is not None
            and kdata_map.trajectories is not None
            and kdata_map.rigs is not None
        )
        kapture.rigs_remove_inplace(kdata_map.trajectories, kdata_map.rigs)
        kdata_map_searchindex = {
            kdata_map.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id)
            for timestamp, sensor_id in kdata_map.records_camera.key_pairs()
        }
        self.map_data = {
            "path": map_path,
            "kdata": kdata_map,
            "searchindex": kdata_map_searchindex,
        }

        self.pairs = get_ordered_pairs_from_file(
            os.path.join(self.root, subscene, "pairfiles/query", pairsfile + ".txt")
        )
        self.scenes = kdata_query.records_camera.data_list()

    def __len__(self):
        return len(self.scenes)

    def __getitem__(self, idx):
        assert self.maxdim is not None and self.patch_size is not None
        query_image = self.scenes[idx]
        map_images = [p[0] for p in self.pairs[query_image][: self.topk]]
        views = []
        dataarray = [(query_image, self.query_data, False)] + [
            (map_image, self.map_data, True) for map_image in map_images
        ]
        for idx, (imgname, data, should_load_depth) in enumerate(dataarray):
            imgpath, kdata, searchindex = map(
                data.get, ["path", "kdata", "searchindex"]
            )

            timestamp, camera_id = searchindex[imgname]

            # for 7scenes, SIMPLE_PINHOLE
            camera_params = kdata.sensors[camera_id].camera_params
            W, H, f, cx, cy = camera_params
            distortion = [0, 0, 0, 0]
            intrinsics = np.float32([(f, 0, cx), (0, f, cy), (0, 0, 1)])

            cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id)

            # Load RGB image
            rgb_image = PIL.Image.open(
                os.path.join(imgpath, "sensors/records_data", imgname)
            ).convert("RGB")
            rgb_image.load()

            W, H = rgb_image.size
            resize_func, to_resize, to_orig = get_resize_function(
                self.maxdim, self.patch_size, H, W
            )

            rgb_tensor = resize_func(ImgNorm(rgb_image))

            view = {
                "intrinsics": intrinsics,
                "distortion": distortion,
                "cam_to_world": cam_to_world,
                "rgb": rgb_image,
                "rgb_rescaled": rgb_tensor,
                "to_orig": to_orig,
                "idx": idx,
                "image_name": imgname,
            }

            # Load depthmap
            if should_load_depth:
                depthmap_filename = os.path.join(
                    imgpath,
                    "sensors/records_data",
                    imgname.replace("color.png", "depth.reg"),
                )
                depthmap = depth_map_from_file(
                    depthmap_filename, (int(W), int(H))
                ).astype(np.float32)
                pts3d_full, pts3d_valid = depthmap_to_absolute_camera_coordinates(
                    depthmap, intrinsics, cam_to_world
                )

                pts3d = pts3d_full[pts3d_valid]
                pts2d_int = xy_grid(W, H)[pts3d_valid]
                pts2d = pts2d_int.astype(np.float64)

                # nan => invalid
                pts3d_full[~pts3d_valid] = np.nan
                pts3d_full = torch.from_numpy(pts3d_full)
                view["pts3d"] = pts3d_full
                view["valid"] = pts3d_full.sum(dim=-1).isfinite()

                HR, WR = rgb_tensor.shape[1:]
                _, _, pts3d_rescaled, valid_rescaled = rescale_points3d(
                    pts2d, pts3d, to_resize, HR, WR
                )
                pts3d_rescaled = torch.from_numpy(pts3d_rescaled)
                valid_rescaled = torch.from_numpy(valid_rescaled)
                view["pts3d_rescaled"] = pts3d_rescaled
                view["valid_rescaled"] = valid_rescaled
            views.append(view)
        return views