File size: 6,862 Bytes
1bb1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# main pnp code
# --------------------------------------------------------
import cv2
import numpy as np
import quaternion
from dust3r.utils.geometry import opencv_to_colmap_intrinsics
from packaging import version

try:
    import poselib  # noqa

    HAS_POSELIB = True
except Exception as e:
    HAS_POSELIB = False

try:
    import pycolmap  # noqa

    version_number = pycolmap.__version__
    if version.parse(version_number) < version.parse("0.5.0"):
        HAS_PYCOLMAP = False
    else:
        HAS_PYCOLMAP = True
except Exception as e:
    HAS_PYCOLMAP = False


def run_pnp(
    pts2D, pts3D, K, distortion=None, mode="cv2", reprojectionError=5, img_size=None
):
    """
    use OPENCV model for distortion (4 values)
    """
    assert mode in ["cv2", "poselib", "pycolmap"]
    try:
        if len(pts2D) > 4 and mode == "cv2":
            confidence = 0.9999
            iterationsCount = 10_000
            if distortion is not None:
                cv2_pts2ds = np.copy(pts2D)
                cv2_pts2ds = cv2.undistortPoints(
                    cv2_pts2ds, K, np.array(distortion), R=None, P=K
                )
                pts2D = cv2_pts2ds.reshape((-1, 2))

            success, r_pose, t_pose, _ = cv2.solvePnPRansac(
                pts3D,
                pts2D,
                K,
                None,
                flags=cv2.SOLVEPNP_SQPNP,
                iterationsCount=iterationsCount,
                reprojectionError=reprojectionError,
                confidence=confidence,
            )
            if not success:
                return False, None
            r_pose = cv2.Rodrigues(r_pose)[0]  # world2cam == world2cam2
            RT = np.r_[np.c_[r_pose, t_pose], [(0, 0, 0, 1)]]  # world2cam2
            return True, np.linalg.inv(RT)  # cam2toworld
        elif len(pts2D) > 4 and mode == "poselib":
            assert HAS_POSELIB
            confidence = 0.9999
            iterationsCount = 10_000
            # NOTE: `Camera` struct currently contains `width`/`height` fields,
            # however these are not used anywhere in the code-base and are provided simply to be consistent with COLMAP.
            # so we put garbage in there
            colmap_intrinsics = opencv_to_colmap_intrinsics(K)
            fx = colmap_intrinsics[0, 0]
            fy = colmap_intrinsics[1, 1]
            cx = colmap_intrinsics[0, 2]
            cy = colmap_intrinsics[1, 2]
            width = img_size[0] if img_size is not None else int(cx * 2)
            height = img_size[1] if img_size is not None else int(cy * 2)

            if distortion is None:
                camera = {
                    "model": "PINHOLE",
                    "width": width,
                    "height": height,
                    "params": [fx, fy, cx, cy],
                }
            else:
                camera = {
                    "model": "OPENCV",
                    "width": width,
                    "height": height,
                    "params": [fx, fy, cx, cy] + distortion,
                }

            pts2D = np.copy(pts2D)
            pts2D[:, 0] += 0.5
            pts2D[:, 1] += 0.5
            pose, _ = poselib.estimate_absolute_pose(
                pts2D,
                pts3D,
                camera,
                {
                    "max_reproj_error": reprojectionError,
                    "max_iterations": iterationsCount,
                    "success_prob": confidence,
                },
                {},
            )
            if pose is None:
                return False, None
            RT = pose.Rt  # (3x4)
            RT = np.r_[RT, [(0, 0, 0, 1)]]  # world2cam
            return True, np.linalg.inv(RT)  # cam2toworld
        elif len(pts2D) > 4 and mode == "pycolmap":
            assert HAS_PYCOLMAP
            assert img_size is not None

            pts2D = np.copy(pts2D)
            pts2D[:, 0] += 0.5
            pts2D[:, 1] += 0.5
            colmap_intrinsics = opencv_to_colmap_intrinsics(K)
            fx = colmap_intrinsics[0, 0]
            fy = colmap_intrinsics[1, 1]
            cx = colmap_intrinsics[0, 2]
            cy = colmap_intrinsics[1, 2]
            width = img_size[0]
            height = img_size[1]
            if distortion is None:
                camera_dict = {
                    "model": "PINHOLE",
                    "width": width,
                    "height": height,
                    "params": [fx, fy, cx, cy],
                }
            else:
                camera_dict = {
                    "model": "OPENCV",
                    "width": width,
                    "height": height,
                    "params": [fx, fy, cx, cy] + distortion,
                }

            pycolmap_camera = pycolmap.Camera(
                model=camera_dict["model"],
                width=camera_dict["width"],
                height=camera_dict["height"],
                params=camera_dict["params"],
            )

            pycolmap_estimation_options = dict(
                ransac=dict(
                    max_error=reprojectionError,
                    min_inlier_ratio=0.01,
                    min_num_trials=1000,
                    max_num_trials=100000,
                    confidence=0.9999,
                )
            )
            pycolmap_refinement_options = dict(
                refine_focal_length=False, refine_extra_params=False
            )
            ret = pycolmap.absolute_pose_estimation(
                pts2D,
                pts3D,
                pycolmap_camera,
                estimation_options=pycolmap_estimation_options,
                refinement_options=pycolmap_refinement_options,
            )
            if ret is None:
                ret = {"success": False}
            else:
                ret["success"] = True
                if callable(ret["cam_from_world"].matrix):
                    retmat = ret["cam_from_world"].matrix()
                else:
                    retmat = ret["cam_from_world"].matrix
                ret["qvec"] = quaternion.from_rotation_matrix(retmat[:3, :3])
                ret["tvec"] = retmat[:3, 3]

            if not (ret["success"] and ret["num_inliers"] > 0):
                success = False
                pose = None
            else:
                success = True
                pr_world_to_querycam = np.r_[
                    ret["cam_from_world"].matrix(), [(0, 0, 0, 1)]
                ]
                pose = np.linalg.inv(pr_world_to_querycam)
            return success, pose
        else:
            return False, None
    except Exception as e:
        print(f"error during pnp: {e}")
        return False, None