Spaces:
Runtime error
Runtime error
File size: 10,089 Bytes
1bb1365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Simple visloc script
# --------------------------------------------------------
import argparse
import math
import random
import numpy as np
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.utils.geometry import find_reciprocal_matches, geotrf, xy_grid
from dust3r_visloc.datasets import *
from dust3r_visloc.evaluation import aggregate_stats, export_results, get_pose_error
from dust3r_visloc.localization import run_pnp
from tqdm import tqdm
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset", type=str, required=True, help="visloc dataset to eval"
)
parser_weights = parser.add_mutually_exclusive_group(required=True)
parser_weights.add_argument(
"--weights", type=str, help="path to the model weights", default=None
)
parser_weights.add_argument(
"--model_name",
type=str,
help="name of the model weights",
choices=[
"DUSt3R_ViTLarge_BaseDecoder_512_dpt",
"DUSt3R_ViTLarge_BaseDecoder_512_linear",
"DUSt3R_ViTLarge_BaseDecoder_224_linear",
],
)
parser.add_argument(
"--confidence_threshold",
type=float,
default=3.0,
help="confidence values higher than threshold are invalid",
)
parser.add_argument("--device", type=str, default="cuda", help="pytorch device")
parser.add_argument(
"--pnp_mode",
type=str,
default="cv2",
choices=["cv2", "poselib", "pycolmap"],
help="pnp lib to use",
)
parser_reproj = parser.add_mutually_exclusive_group()
parser_reproj.add_argument(
"--reprojection_error", type=float, default=5.0, help="pnp reprojection error"
)
parser_reproj.add_argument(
"--reprojection_error_diag_ratio",
type=float,
default=None,
help="pnp reprojection error as a ratio of the diagonal of the image",
)
parser.add_argument(
"--pnp_max_points",
type=int,
default=100_000,
help="pnp maximum number of points kept",
)
parser.add_argument("--viz_matches", type=int, default=0, help="debug matches")
parser.add_argument("--output_dir", type=str, default=None, help="output path")
parser.add_argument(
"--output_label", type=str, default="", help="prefix for results files"
)
return parser
if __name__ == "__main__":
parser = get_args_parser()
args = parser.parse_args()
conf_thr = args.confidence_threshold
device = args.device
pnp_mode = args.pnp_mode
reprojection_error = args.reprojection_error
reprojection_error_diag_ratio = args.reprojection_error_diag_ratio
pnp_max_points = args.pnp_max_points
viz_matches = args.viz_matches
if args.weights is not None:
weights_path = args.weights
else:
weights_path = "naver/" + args.model_name
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device)
dataset = eval(args.dataset)
dataset.set_resolution(model)
query_names = []
poses_pred = []
pose_errors = []
angular_errors = []
for idx in tqdm(range(len(dataset))):
views = dataset[(idx)] # 0 is the query
query_view = views[0]
map_views = views[1:]
query_names.append(query_view["image_name"])
query_pts2d = []
query_pts3d = []
for map_view in map_views:
# prepare batch
imgs = []
for idx, img in enumerate(
[query_view["rgb_rescaled"], map_view["rgb_rescaled"]]
):
imgs.append(
dict(
img=img.unsqueeze(0),
true_shape=np.int32([img.shape[1:]]),
idx=idx,
instance=str(idx),
)
)
output = inference(
[tuple(imgs)], model, device, batch_size=1, verbose=False
)
pred1, pred2 = output["pred1"], output["pred2"]
confidence_masks = [
pred1["conf"].squeeze(0) >= conf_thr,
(pred2["conf"].squeeze(0) >= conf_thr) & map_view["valid_rescaled"],
]
pts3d = [pred1["pts3d"].squeeze(0), pred2["pts3d_in_other_view"].squeeze(0)]
# find 2D-2D matches between the two images
pts2d_list, pts3d_list = [], []
for i in range(2):
conf_i = confidence_masks[i].cpu().numpy()
true_shape_i = imgs[i]["true_shape"][0]
pts2d_list.append(xy_grid(true_shape_i[1], true_shape_i[0])[conf_i])
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])
PQ, PM = pts3d_list[0], pts3d_list[1]
if len(PQ) == 0 or len(PM) == 0:
continue
reciprocal_in_PM, nnM_in_PQ, num_matches = find_reciprocal_matches(PQ, PM)
if viz_matches > 0:
print(f"found {num_matches} matches")
matches_im1 = pts2d_list[1][reciprocal_in_PM]
matches_im0 = pts2d_list[0][nnM_in_PQ][reciprocal_in_PM]
valid_pts3d = map_view["pts3d_rescaled"][
matches_im1[:, 1], matches_im1[:, 0]
]
# from cv2 to colmap
matches_im0 = matches_im0.astype(np.float64)
matches_im1 = matches_im1.astype(np.float64)
matches_im0[:, 0] += 0.5
matches_im0[:, 1] += 0.5
matches_im1[:, 0] += 0.5
matches_im1[:, 1] += 0.5
# rescale coordinates
matches_im0 = geotrf(query_view["to_orig"], matches_im0, norm=True)
matches_im1 = geotrf(query_view["to_orig"], matches_im1, norm=True)
# from colmap back to cv2
matches_im0[:, 0] -= 0.5
matches_im0[:, 1] -= 0.5
matches_im1[:, 0] -= 0.5
matches_im1[:, 1] -= 0.5
# visualize a few matches
if viz_matches > 0:
viz_imgs = [np.array(query_view["rgb"]), np.array(map_view["rgb"])]
from matplotlib import pyplot as pl
n_viz = viz_matches
match_idx_to_viz = np.round(
np.linspace(0, num_matches - 1, n_viz)
).astype(int)
viz_matches_im0, viz_matches_im1 = (
matches_im0[match_idx_to_viz],
matches_im1[match_idx_to_viz],
)
H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2]
img0 = np.pad(
viz_imgs[0],
((0, max(H1 - H0, 0)), (0, 0), (0, 0)),
"constant",
constant_values=0,
)
img1 = np.pad(
viz_imgs[1],
((0, max(H0 - H1, 0)), (0, 0), (0, 0)),
"constant",
constant_values=0,
)
img = np.concatenate((img0, img1), axis=1)
pl.figure()
pl.imshow(img)
cmap = pl.get_cmap("jet")
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T
pl.plot(
[x0, x1 + W0],
[y0, y1],
"-+",
color=cmap(i / (n_viz - 1)),
scalex=False,
scaley=False,
)
pl.show(block=True)
if len(valid_pts3d) == 0:
pass
else:
query_pts3d.append(valid_pts3d.cpu().numpy())
query_pts2d.append(matches_im0)
if len(query_pts2d) == 0:
success = False
pr_querycam_to_world = None
else:
query_pts2d = np.concatenate(query_pts2d, axis=0).astype(np.float32)
query_pts3d = np.concatenate(query_pts3d, axis=0)
if len(query_pts2d) > pnp_max_points:
idxs = random.sample(range(len(query_pts2d)), pnp_max_points)
query_pts3d = query_pts3d[idxs]
query_pts2d = query_pts2d[idxs]
W, H = query_view["rgb"].size
if reprojection_error_diag_ratio is not None:
reprojection_error_img = reprojection_error_diag_ratio * math.sqrt(
W**2 + H**2
)
else:
reprojection_error_img = reprojection_error
success, pr_querycam_to_world = run_pnp(
query_pts2d,
query_pts3d,
query_view["intrinsics"],
query_view["distortion"],
pnp_mode,
reprojection_error_img,
img_size=[W, H],
)
if not success:
abs_transl_error = float("inf")
abs_angular_error = float("inf")
else:
abs_transl_error, abs_angular_error = get_pose_error(
pr_querycam_to_world, query_view["cam_to_world"]
)
pose_errors.append(abs_transl_error)
angular_errors.append(abs_angular_error)
poses_pred.append(pr_querycam_to_world)
xp_label = f"tol_conf_{conf_thr}"
if args.output_label:
xp_label = args.output_label + "_" + xp_label
if reprojection_error_diag_ratio is not None:
xp_label = xp_label + f"_reproj_diag_{reprojection_error_diag_ratio}"
else:
xp_label = xp_label + f"_reproj_err_{reprojection_error}"
export_results(args.output_dir, xp_label, query_names, poses_pred)
out_string = aggregate_stats(f"{args.dataset}", pose_errors, angular_errors)
print(out_string)
|