diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..b2f7ceeb6f65d7b3211b82c5645c22e3204f6f5c 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,20 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +assets/advance/blue-car.jpg filter=lfs diff=lfs merge=lfs -text +assets/advance/garden-4_0.jpg filter=lfs diff=lfs merge=lfs -text +assets/advance/garden-4_1.jpg filter=lfs diff=lfs merge=lfs -text +assets/advance/garden-4_2.jpg filter=lfs diff=lfs merge=lfs -text +assets/advance/garden-4_3.jpg filter=lfs diff=lfs merge=lfs -text +assets/advance/vgg-lab-4_0.png filter=lfs diff=lfs merge=lfs -text +assets/advance/vgg-lab-4_1.png filter=lfs diff=lfs merge=lfs -text +assets/advance/vgg-lab-4_2.png filter=lfs diff=lfs merge=lfs -text +assets/advance/vgg-lab-4_3.png filter=lfs diff=lfs merge=lfs -text +assets/basic/blue-car.jpg filter=lfs diff=lfs merge=lfs -text +assets/basic/hilly-countryside.jpg filter=lfs diff=lfs merge=lfs -text +assets/basic/lily-dragon.png filter=lfs diff=lfs merge=lfs -text +assets/basic/vgg-lab-4_0.png filter=lfs diff=lfs merge=lfs -text +third_party/dust3r/assets/demo.jpg filter=lfs diff=lfs merge=lfs -text +third_party/dust3r/assets/matching.jpg filter=lfs diff=lfs merge=lfs -text +third_party/dust3r/croco/assets/Chateau1.png filter=lfs diff=lfs merge=lfs -text +third_party/dust3r/croco/assets/Chateau2.png filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..e5fb662210c5ac69964095be1bd3c1fe54947aac --- /dev/null +++ b/.gitignore @@ -0,0 +1,48 @@ +.envrc +.venv/ +.gradio/ +work_dirs* + +# Byte-compiled files +__pycache__/ +*.py[cod] + +# Virtual environments +env/ +venv/ +ENV/ +.VENV/ + +# Distribution files +build/ +dist/ +*.egg-info/ + +# Logs and temporary files +*.log +*.tmp +*.bak +*.swp + +# IDE files +.idea/ +.vscode/ +*.sublime-workspace +*.sublime-project + +# OS files +.DS_Store +Thumbs.db + +# Testing and coverage +htmlcov/ +.coverage +*.cover +*.py,cover +.cache/ + +# Jupyter Notebook checkpoints +.ipynb_checkpoints/ + +# Pre-commit hooks +.pre-commit-config.yaml~ diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 0000000000000000000000000000000000000000..c4ea96e28b1dc4b3ef35e5af1e57a57822257e29 --- /dev/null +++ b/.gitmodules @@ -0,0 +1,3 @@ +[submodule "third_party/dust3r"] + path = third_party/dust3r + url = https://github.com/jensenstability/dust3r diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..612ba722da85a27879fd3c379ab6d0d50a4d263a --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,22 @@ +default_language_version: + python: python3 +default_stages: [pre-commit] +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v5.0.0 + hooks: + - id: trailing-whitespace + - id: end-of-file-fixer + - repo: https://github.com/charliermarsh/ruff-pre-commit + rev: v0.8.3 + hooks: + - id: ruff + types_or: [python, pyi, jupyter] + args: [--fix, --extend-ignore=E402] + - id: ruff-format + types_or: [python, pyi, jupyter] + - repo: https://github.com/pre-commit/mirrors-prettier + rev: v3.1.0 + hooks: + - id: prettier + types_or: [markdown] diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..5ec240c9459c95784e8283d7467beeb6aabaecc2 --- /dev/null +++ b/LICENSE @@ -0,0 +1,124 @@ +Stability AI Non-Commercial License Agreement +Last Updated: February 20, 2025 + +I. INTRODUCTION + +This Stability AI Non-Commercial License Agreement (the “Agreement”) applies to any individual person or entity +(“You”, “Your” or “Licensee”) that uses or distributes any portion or element of the Stability AI Materials or +Derivative Works thereof for any Research & Non-Commercial use. Capitalized terms not otherwise defined herein +are defined in Section IV below. + +This Agreement is intended to allow research and non-commercial uses of the Model free of charge. + +By clicking “I Accept” or by using or distributing or using any portion or element of the Stability Materials +or Derivative Works, You agree that You have read, understood and are bound by the terms of this Agreement. + +If You are acting on behalf of a company, organization, or other entity, then “You” includes you and that entity, +and You agree that You: +(i) are an authorized representative of such entity with the authority to bind such entity to this Agreement, and +(ii) You agree to the terms of this Agreement on that entity’s behalf. + +--- + +II. RESEARCH & NON-COMMERCIAL USE LICENSE + +Subject to the terms of this Agreement, Stability AI grants You a non-exclusive, worldwide, non-transferable, +non-sublicensable, revocable, and royalty-free limited license under Stability AI’s intellectual property or other +rights owned by Stability AI embodied in the Stability AI Materials to use, reproduce, distribute, and create +Derivative Works of, and make modifications to, the Stability AI Materials for any Research or Non-Commercial Purpose. + +- **“Research Purpose”** means academic or scientific advancement, and in each case, is not primarily intended + for commercial advantage or monetary compensation to You or others. +- **“Non-Commercial Purpose”** means any purpose other than a Research Purpose that is not primarily intended + for commercial advantage or monetary compensation to You or others, such as personal use (i.e., hobbyist) + or evaluation and testing. + +--- + +III. GENERAL TERMS + +Your Research or Non-Commercial license under this Agreement is subject to the following terms. + +### a. Distribution & Attribution +If You distribute or make available the Stability AI Materials or a Derivative Work to a third party, or a product +or service that uses any portion of them, You shall: +1. Provide a copy of this Agreement to that third party. +2. Retain the following attribution notice within a **"Notice"** text file distributed as a part of such copies: + + **"This Stability AI Model is licensed under the Stability AI Non-Commercial License, + Copyright © Stability AI Ltd. All Rights Reserved."** + +3. Prominently display **“Powered by Stability AI”** on a related website, user interface, blog post, + about page, or product documentation. +4. If You create a Derivative Work, You may add your own attribution notice(s) to the **"Notice"** text file + included with that Derivative Work, provided that You clearly indicate which attributions apply to the + Stability AI Materials and state in the **"Notice"** text file that You changed the Stability AI Materials + and how it was modified. + +### b. Use Restrictions +Your use of the Stability AI Materials and Derivative Works, including any output or results of the Stability +AI Materials or Derivative Works, must comply with applicable laws and regulations (including Trade Control +Laws and equivalent regulations) and adhere to the Documentation and Stability AI’s AUP, which is hereby +incorporated by reference. + +Furthermore, You will not use the Stability AI Materials or Derivative Works, or any output or results of the +Stability AI Materials or Derivative Works, to create or improve any foundational generative AI model +(excluding the Model or Derivative Works). + +### c. Intellectual Property + +#### (i) Trademark License +No trademark licenses are granted under this Agreement, and in connection with the Stability AI Materials +or Derivative Works, You may not use any name or mark owned by or associated with Stability AI or any of +its Affiliates, except as required under Section IV(a) herein. + +#### (ii) Ownership of Derivative Works +As between You and Stability AI, You are the owner of Derivative Works You create, subject to Stability AI’s +ownership of the Stability AI Materials and any Derivative Works made by or for Stability AI. + +#### (iii) Ownership of Outputs +As between You and Stability AI, You own any outputs generated from the Model or Derivative Works to the extent +permitted by applicable law. + +#### (iv) Disputes +If You or Your Affiliate(s) institute litigation or other proceedings against Stability AI (including a +cross-claim or counterclaim in a lawsuit) alleging that the Stability AI Materials, Derivative Works, or +associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual +property or other rights owned or licensable by You, then any licenses granted to You under this Agreement +shall terminate as of the date such litigation or claim is filed or instituted. + +You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out +of or related to Your use or distribution of the Stability AI Materials or Derivative Works in violation of +this Agreement. + +#### (v) Feedback +From time to time, You may provide Stability AI with verbal and/or written suggestions, comments, or other +feedback related to Stability AI’s existing or prospective technology, products, or services (collectively, +“Feedback”). + +You are not obligated to provide Stability AI with Feedback, but to the extent that You do, You hereby grant +Stability AI a **perpetual, irrevocable, royalty-free, fully-paid, sub-licensable, transferable, non-exclusive, +worldwide right and license** to exploit the Feedback in any manner without restriction. + +Your Feedback is provided **“AS IS”** and You make no warranties whatsoever about any Feedback. + +--- + +IV. DEFINITIONS + +- **“Affiliate(s)”** means any entity that directly or indirectly controls, is controlled by, or is under common + control with the subject entity. For purposes of this definition, “control” means direct or indirect ownership + or control of more than 50% of the voting interests of the subject entity. +- **“AUP”** means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may + be updated from time to time. +- **"Derivative Work(s)"** means: + (a) Any derivative work of the Stability AI Materials as recognized by U.S. copyright laws. + (b) Any modifications to a Model, and any other model created which is based on or derived from the Model or + the Model’s output, including **fine-tune** and **low-rank adaptation** models derived from a Model or + a Model’s output, but does not include the output of any Model. +- **“Model”** means Stability AI’s Stable Virtual Camera model. +- **"Stability AI" or "we"** means Stability AI Ltd. and its Affiliates. +- **"Software"** means Stability AI’s proprietary software made available under this Agreement now or in the future. +- **“Stability AI Materials”** means, collectively, Stability’s proprietary Model, Software, and Documentation + (and any portion or combination thereof) made available under this Agreement. +- **“Trade Control Laws”** means any applicable U.S. and non-U.S. export control and trade sanctions laws and regulations. diff --git a/README.md b/README.md index c3f5fbd2458eb8e699719e6e2bb71ba6a3267bbc..e2e1ac8f5638293b0416228ba81e0c176af0bbfb 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,83 @@ --- -title: Stable Virtual Camera -emoji: 💻 -colorFrom: green -colorTo: indigo +title: stable-virtual-camera +app_file: demo_gr.py sdk: gradio -sdk_version: 5.22.0 -app_file: app.py -pinned: false +sdk_version: 5.20.1 --- +# Stable Virtual Camera -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference + + + + + + + +`Stable Virtual Camera (Seva)` is a 1.3B generalist diffusion model for Novel View Synthesis (NVS), generating 3D consistent novel views of a scene, given any number of input views and target cameras. + +# :tada: News + +- March 2025 - `Stable Virtual Camera` is out everywhere. + +# :wrench: Installation + +```bash +git clone --recursive https://github.com/Stability-AI/stable-virtual-camera +cd stable-virtual-camera +pip install -e . +``` + +Please note that you will need `python>=3.10` and `torch>=2.6.0`. + +Check [INSTALL.md](docs/INSTALL.md) for other dependencies if you want to use our demos or develop from this repo. +For windows users, please use WSL as flash attention isn't supported on native Windows [yet](https://github.com/pytorch/pytorch/issues/108175). + +# :open_book: Usage + +You need to properly authenticate with Hugging Face to download our model weights. Once set up, our code will handle it automatically at your first run. You can authenticate by running + +```bash +# This will prompt you to enter your Hugging Face credentials. +huggingface-cli login +``` + +Once authenticated, go to our model card [here](https://huggingface.co/stabilityai/stable-virtual-camera) and enter your information for access. + +We provide two demos for you to interative with `Stable Virtual Camera`. + +### :rocket: Gradio demo + +This gradio demo is a GUI interface that requires no expertised knowledge, suitable for general users. Simply run + +```bash +python demo_gr.py +``` + +For a more detailed guide, follow [GR_USAGE.md](docs/GR_USAGE.md). + +### :computer: CLI demo + +This cli demo allows you to pass in more options and control the model in a fine-grained way, suitable for power users and academic researchers. An examplar command line looks as simple as + +```bash +python demo.py --data_path [additional arguments] +``` + +For a more detailed guide, follow [CLI_USAGE.md](docs/CLI_USAGE.md). + +For users interested in benchmarking NVS models using command lines, check [`benchmark`](benchmark/) containing the details about scenes, splits, and input/target views we reported in the paper. + +# :books: Citing + +If you find this repository useful, please consider giving a star :star: and citation. + +``` +@article{zhou2025stable, + title={Stable Virtual Camera: Generative View Synthesis with Diffusion Models}, + author={Jensen (Jinghao) Zhou and Hang Gao and Vikram Voleti and Aaryaman Vasishta and Chun-Han Yao and Mark Boss and + Philip Torr and Christian Rupprecht and Varun Jampani + }, + journal={arXiv preprint}, + year={2025} +} +``` diff --git a/assets/advance/backyard-7_0.jpg b/assets/advance/backyard-7_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9dc1b8cc44db8182d18c4c1f38dd34815254b6e6 Binary files /dev/null and b/assets/advance/backyard-7_0.jpg differ diff --git a/assets/advance/backyard-7_1.jpg b/assets/advance/backyard-7_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..97c60085aaf644e96caabf64b50262e2eaf29874 Binary files /dev/null and b/assets/advance/backyard-7_1.jpg differ diff --git a/assets/advance/backyard-7_2.jpg b/assets/advance/backyard-7_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..35c803feb2c064a2c13ba034e762c54d1b1b5b36 Binary files /dev/null and b/assets/advance/backyard-7_2.jpg differ diff --git a/assets/advance/backyard-7_3.jpg b/assets/advance/backyard-7_3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..923377f5460591dd04fb7f5536a6d42c57ca2035 Binary files /dev/null and b/assets/advance/backyard-7_3.jpg differ diff --git a/assets/advance/backyard-7_4.jpg b/assets/advance/backyard-7_4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7f437706cdc2e55a8883f930f66e0317fca6e624 Binary files /dev/null and b/assets/advance/backyard-7_4.jpg differ diff --git a/assets/advance/backyard-7_5.jpg b/assets/advance/backyard-7_5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fea2f488381b093217fd4eb08d9d0f6943ea6a33 Binary files /dev/null and b/assets/advance/backyard-7_5.jpg differ diff --git a/assets/advance/backyard-7_6.jpg b/assets/advance/backyard-7_6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3ee51dade8651e001d07f23c951e1a6b89533375 Binary files /dev/null and b/assets/advance/backyard-7_6.jpg differ diff --git a/assets/advance/blue-car.jpg b/assets/advance/blue-car.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4de8755d62300dfb244545167875f458acf02ff5 --- /dev/null +++ b/assets/advance/blue-car.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0cf493d0f738830223949fd24bb3ab0a1c078804fdb744efa95a1fdcfcfb5332 +size 105930 diff --git a/assets/advance/garden-4_0.jpg b/assets/advance/garden-4_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fac491d409b6c2e8ffafdd8026c970a61d7f7961 --- /dev/null +++ b/assets/advance/garden-4_0.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:38fbe78f699fc84a1f4268ef8bacef9ddacfd32e9eb8fbcb605e46cfd52b988e +size 1046361 diff --git a/assets/advance/garden-4_1.jpg b/assets/advance/garden-4_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..43097a0489dbf03adffb58ccf620774bf511fa7a --- /dev/null +++ b/assets/advance/garden-4_1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1975effeffc9b2011a28f6eb04d1b0bd2f37f765c194249c95e6b3783d698a42 +size 1048557 diff --git a/assets/advance/garden-4_2.jpg b/assets/advance/garden-4_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..25c1328a4abcb10ba7d3859d708d170bc0e2384b --- /dev/null +++ b/assets/advance/garden-4_2.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4112ff5f2ceaa3b469bb402853e7cde10396f858e5a2ceba93b095e1e3d8d335 +size 1041921 diff --git a/assets/advance/garden-4_3.jpg b/assets/advance/garden-4_3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9f4438a4f12a304ac9ba8227d6a99743e332b35e --- /dev/null +++ b/assets/advance/garden-4_3.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a750b648c389f78f2f6b26d78f753eace13a41d355f725850c2667f864f709cd +size 1059618 diff --git a/assets/advance/telebooth-2_0.jpg b/assets/advance/telebooth-2_0.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77946240ed566636711ebab9a5fab180eba0f648 Binary files /dev/null and b/assets/advance/telebooth-2_0.jpg differ diff --git a/assets/advance/telebooth-2_1.jpg b/assets/advance/telebooth-2_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a0742e77c5e4eddcb4b7b66449bda84c81baebb0 Binary files /dev/null and b/assets/advance/telebooth-2_1.jpg differ diff --git a/assets/advance/vgg-lab-4_0.png b/assets/advance/vgg-lab-4_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e3508e5718b0cd107f995bc5a16ef75fa7474644 --- /dev/null +++ b/assets/advance/vgg-lab-4_0.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d1442eb509af02273cf7168f5212b3221142df4db99991b38395f42f8b239960 +size 412375 diff --git a/assets/advance/vgg-lab-4_1.png b/assets/advance/vgg-lab-4_1.png new file mode 100644 index 0000000000000000000000000000000000000000..3539d3e0ee5c9c7a9ed42e196aa98239789e09ef --- /dev/null +++ b/assets/advance/vgg-lab-4_1.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c2bb10b9574247ceb0948aa00afea588f001f0271f51908b8132d63587fc43d0 +size 443169 diff --git a/assets/advance/vgg-lab-4_2.png b/assets/advance/vgg-lab-4_2.png new file mode 100644 index 0000000000000000000000000000000000000000..db0346cc3634720e4d6928331925bf7f5bc5f78e --- /dev/null +++ b/assets/advance/vgg-lab-4_2.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7fa884bb6d783fd9385bd38042f3461f430bec8311e7b2171474b6a906538030 +size 410330 diff --git a/assets/advance/vgg-lab-4_3.png b/assets/advance/vgg-lab-4_3.png new file mode 100644 index 0000000000000000000000000000000000000000..b71bb699564cfdd01ce0c4a3d4e3f93ba028d910 --- /dev/null +++ b/assets/advance/vgg-lab-4_3.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:99469f816604c92c9c27a7cff119cb3649d3dfa4c41dcef89525b7b3cbd885a4 +size 474811 diff --git a/assets/basic/blue-car.jpg b/assets/basic/blue-car.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4de8755d62300dfb244545167875f458acf02ff5 --- /dev/null +++ b/assets/basic/blue-car.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0cf493d0f738830223949fd24bb3ab0a1c078804fdb744efa95a1fdcfcfb5332 +size 105930 diff --git a/assets/basic/hilly-countryside.jpg b/assets/basic/hilly-countryside.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4926ad99713ba0ef603d53a34aed255a5097dea --- /dev/null +++ b/assets/basic/hilly-countryside.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4ae3b8cb5d989b62ceaf4930afea55790048657fa459f383f8bd809b3bdcfca0 +size 107250 diff --git a/assets/basic/lily-dragon.png b/assets/basic/lily-dragon.png new file mode 100644 index 0000000000000000000000000000000000000000..7d75286b04ec33e88ec95dd4b774bef499900f8d --- /dev/null +++ b/assets/basic/lily-dragon.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c545057ee2feeced73566f708311bf758350ef0ded844d7bd438e48fca7f5bd2 +size 1573245 diff --git a/assets/basic/llff-room.jpg b/assets/basic/llff-room.jpg new file mode 100644 index 0000000000000000000000000000000000000000..abcdea70d0dd3ccc55a9e0c1eca9da6276f71871 Binary files /dev/null and b/assets/basic/llff-room.jpg differ diff --git a/assets/basic/mountain-lake.jpg b/assets/basic/mountain-lake.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7e09e3f5d4e8639b1c6681233171df3a9e789cd6 Binary files /dev/null and b/assets/basic/mountain-lake.jpg differ diff --git a/assets/basic/vasedeck.jpg b/assets/basic/vasedeck.jpg new file mode 100644 index 0000000000000000000000000000000000000000..170584d6fb32c3dffe70af13d519ef2b2d158c39 Binary files /dev/null and b/assets/basic/vasedeck.jpg differ diff --git a/assets/basic/vgg-lab-4_0.png b/assets/basic/vgg-lab-4_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e3508e5718b0cd107f995bc5a16ef75fa7474644 --- /dev/null +++ b/assets/basic/vgg-lab-4_0.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d1442eb509af02273cf7168f5212b3221142df4db99991b38395f42f8b239960 +size 412375 diff --git a/benchmark/README.md b/benchmark/README.md new file mode 100644 index 0000000000000000000000000000000000000000..98302f2c09ccf460f824e9a19fd8bd898cfd6ac5 --- /dev/null +++ b/benchmark/README.md @@ -0,0 +1,156 @@ +# :bar_chart: Benchmark + +We provide in this release (`benchmark.zip`) with the following 17 entries as a benchmark to evaluate NVS models. +We hope this will help standardize the evaluation of NVS models and facilitate fair comparison between different methods. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
DatasetSplitPathContentImage PreprocessingImage Postprocessing
OmniObject3DS (SV3D), O (Ours) omniobject3dtrain_test_split_*.jsoncenter crop to 576\
GSOS (SV3D), O (Ours) gsotrain_test_split_*.jsoncenter crop to 576\
RealEstate10KD (4DiM) re10k-4dimtrain_test_split_*.jsoncenter crop to 576resize to 256
R (ReconFusion) re10ktrain_test_split_*.jsoncenter crop to 576\
P (pixelSplat) re10k-pixelsplattrain_test_split_*.jsoncenter crop to 576resize to 256
V (ViewCrafter) re10k-viewcrafterimages/*.png,transforms.json,train_test_split_*.jsonresize the shortest side to 576 (--L_short 576)center crop
LLFFR (ReconFusion) llfftrain_test_split_*.jsoncenter crop to 576\
DTUR (ReconFusion) dtutrain_test_split_*.jsoncenter crop to 576\
CO3DR (ReconFusion) co3dtrain_test_split_*.jsoncenter crop to 576\
V (ViewCrafter) co3d-viewcrafterimages/*.png,transforms.json,train_test_split_*.jsonresize the shortest side to 576 (--L_short 576)center crop
WildRGB-DOₑ (Ours, easy) wildgbd/easytrain_test_split_*.jsoncenter crop to 576\
Oₕ (Ours, hard) wildgbd/hardtrain_test_split_*.jsoncenter crop to 576\
Mip-NeRF360R (ReconFusion) mipnerf360train_test_split_*.jsoncenter crop to 576\
DL3DV-140O (Ours) dl3dv10train_test_split_*.jsoncenter crop to 576\
L (Long-LRM) dl3dv140train_test_split_*.jsoncenter crop to 576\
Tanks and TemplesV (ViewCrafter) tnt-viewcrafterimages/*.png,transforms.json,train_test_split_*.jsonresize the shortest side to 576 (--L_short 576)center crop
L (Long-LRM) tnt-longlrmtrain_test_split_*.jsoncenter crop to 576\
+ +- For entries without `images/*.png` and `transforms.json`, we use the images from the original dataset after converting them into the `reconfusion` format, which is then parsable by `ReconfusionParser` (`seva/data_io.py`). + Please note that during this conversion, you should sort the images by `sorted(image_paths)`, which is then directly indexable by our train/test ids. We provide in `benchmark/export_reconfusion_example.py` an example script converting an existing academic dataset into the the scene folders. +- For evaluation and benchmarking, we first conduct operations in the `Image Preprocessing` column to the model input and then operations in the `Image Postprocessing` column to the model output. The final processed samples are used for metric computation. + +## Acknowledgment + +We would like to thank Wangbo Yu, Aleksander Hołyński, Saurabh Saxena, and Ziwen Chen for their kind clarification on experiment settings. diff --git a/benchmark/export_reconfusion_example.py b/benchmark/export_reconfusion_example.py new file mode 100644 index 0000000000000000000000000000000000000000..cb7c9791378efee5c4555ccc899be97270109522 --- /dev/null +++ b/benchmark/export_reconfusion_example.py @@ -0,0 +1,137 @@ +import argparse +import json +import os + +import numpy as np +from PIL import Image + +try: + from sklearn.cluster import KMeans # type: ignore[import] +except ImportError: + print("Please install sklearn to use this script.") + exit(1) + +# Define the folder containing the image and JSON files +subfolder = "/path/to/your/dataset" +output_file = os.path.join(subfolder, "transforms.json") + +# List to hold the frames +frames = [] + +# Iterate over the files in the folder +for file in sorted(os.listdir(subfolder)): + if file.endswith(".json"): + # Read the JSON file containing camera extrinsics and intrinsics + json_path = os.path.join(subfolder, file) + with open(json_path, "r") as f: + data = json.load(f) + + # Read the corresponding image file + image_file = file.replace(".json", ".png") + image_path = os.path.join(subfolder, image_file) + if not os.path.exists(image_path): + print(f"Image file not found for {file}, skipping...") + continue + with Image.open(image_path) as img: + w, h = img.size + + # Extract and normalize intrinsic matrix K + K = data["K"] + fx = K[0][0] * w + fy = K[1][1] * h + cx = K[0][2] * w + cy = K[1][2] * h + + # Extract the transformation matrix + transform_matrix = np.array(data["c2w"]) + # Adjust for OpenGL convention + transform_matrix[..., [1, 2]] *= -1 + + # Add the frame data + frames.append( + { + "fl_x": fx, + "fl_y": fy, + "cx": cx, + "cy": cy, + "w": w, + "h": h, + "file_path": f"./{os.path.relpath(image_path, subfolder)}", + "transform_matrix": transform_matrix.tolist(), + } + ) + +# Create the output dictionary +transforms_data = {"orientation_override": "none", "frames": frames} + +# Write to the transforms.json file +with open(output_file, "w") as f: + json.dump(transforms_data, f, indent=4) + +print(f"transforms.json generated at {output_file}") + + +# Train-test split function using K-means clustering with stride +def create_train_test_split(frames, n, output_path, stride): + # Prepare the data for K-means + positions = [] + for frame in frames: + transform_matrix = np.array(frame["transform_matrix"]) + position = transform_matrix[:3, 3] # 3D camera position + direction = transform_matrix[:3, 2] / np.linalg.norm( + transform_matrix[:3, 2] + ) # Normalized 3D direction + positions.append(np.concatenate([position, direction])) + + positions = np.array(positions) + + # Apply K-means clustering + kmeans = KMeans(n_clusters=n, random_state=42) + kmeans.fit(positions) + centers = kmeans.cluster_centers_ + + # Find the index closest to each cluster center + train_ids = [] + for center in centers: + distances = np.linalg.norm(positions - center, axis=1) + train_ids.append(int(np.argmin(distances))) # Convert to Python int + + # Remaining indices as test_ids, applying stride + all_indices = set(range(len(frames))) + remaining_indices = sorted(all_indices - set(train_ids)) + test_ids = [ + int(idx) for idx in remaining_indices[::stride] + ] # Convert to Python int + + # Create the split data + split_data = {"train_ids": sorted(train_ids), "test_ids": test_ids} + + with open(output_path, "w") as f: + json.dump(split_data, f, indent=4) + + print(f"Train-test split file generated at {output_path}") + + +# Parse arguments +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="Generate train-test split JSON file using K-means clustering." + ) + parser.add_argument( + "--n", + type=int, + required=True, + help="Number of frames to include in the training set.", + ) + parser.add_argument( + "--stride", + type=int, + default=1, + help="Stride for selecting test frames (not used with K-means).", + ) + + args = parser.parse_args() + + # Create train-test split + train_test_split_path = os.path.join(subfolder, f"train_test_split_{args.n}.json") + create_train_test_split(frames, args.n, train_test_split_path, args.stride) diff --git a/demo.py b/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..1f99a1ddbda4c900620bb01419b06867e4d63886 --- /dev/null +++ b/demo.py @@ -0,0 +1,407 @@ +import glob +import os +import os.path as osp + +import fire +import numpy as np +import torch +import torch.nn.functional as F +from PIL import Image +from tqdm import tqdm + +from seva.data_io import get_parser +from seva.eval import ( + IS_TORCH_NIGHTLY, + compute_relative_inds, + create_transforms_simple, + infer_prior_inds, + infer_prior_stats, + run_one_scene, +) +from seva.geometry import ( + generate_interpolated_path, + generate_spiral_path, + get_arc_horizontal_w2cs, + get_default_intrinsics, + get_lookat, + get_preset_pose_fov, +) +from seva.model import SGMWrapper +from seva.modules.autoencoder import AutoEncoder +from seva.modules.conditioner import CLIPConditioner +from seva.sampling import DDPMDiscretization, DiscreteDenoiser +from seva.utils import load_model + +device = "cuda:0" + + +# Constants. +WORK_DIR = "work_dirs/demo" + +if IS_TORCH_NIGHTLY: + COMPILE = True + os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1" + os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1" +else: + COMPILE = False + +MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device) +AE = AutoEncoder(chunk_size=1).to(device) +CONDITIONER = CLIPConditioner().to(device) +DISCRETIZATION = DDPMDiscretization() +DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device) +VERSION_DICT = { + "H": 576, + "W": 576, + "T": 21, + "C": 4, + "f": 8, + "options": {}, +} + +if COMPILE: + MODEL = torch.compile(MODEL, dynamic=False) + CONDITIONER = torch.compile(CONDITIONER, dynamic=False) + AE = torch.compile(AE, dynamic=False) + + +def parse_task( + task, + scene, + num_inputs, + T, + version_dict, +): + options = version_dict["options"] + + anchor_indices = None + anchor_c2ws = None + anchor_Ks = None + + if task == "img2trajvid_s-prob": + if num_inputs is not None: + assert ( + num_inputs == 1 + ), "Task `img2trajvid_s-prob` only support 1-view conditioning..." + else: + num_inputs = 1 + num_targets = options.get("num_targets", T - 1) + num_anchors = infer_prior_stats( + T, + num_inputs, + num_total_frames=num_targets, + version_dict=version_dict, + ) + + input_indices = [0] + anchor_indices = np.linspace(1, num_targets, num_anchors).tolist() + + all_imgs_path = [scene] + [None] * num_targets + + c2ws, fovs = get_preset_pose_fov( + option=options.get("traj_prior", "orbit"), + num_frames=num_targets + 1, + start_w2c=torch.eye(4), + look_at=torch.Tensor([0, 0, 10]), + ) + + with Image.open(scene) as img: + W, H = img.size + aspect_ratio = W / H + Ks = get_default_intrinsics(fovs, aspect_ratio=aspect_ratio) # unormalized + Ks[:, :2] *= ( + torch.tensor([W, H]).reshape(1, -1, 1).repeat(Ks.shape[0], 1, 1) + ) # normalized + Ks = Ks.numpy() + + anchor_c2ws = c2ws[[round(ind) for ind in anchor_indices]] + anchor_Ks = Ks[[round(ind) for ind in anchor_indices]] + + else: + parser = get_parser( + parser_type="reconfusion", + data_dir=scene, + normalize=False, + ) + all_imgs_path = parser.image_paths + c2ws = parser.camtoworlds + camera_ids = parser.camera_ids + Ks = np.concatenate([parser.Ks_dict[cam_id][None] for cam_id in camera_ids], 0) + + if num_inputs is None: + assert len(parser.splits_per_num_input_frames.keys()) == 1 + num_inputs = list(parser.splits_per_num_input_frames.keys())[0] + split_dict = parser.splits_per_num_input_frames[num_inputs] # type: ignore + elif isinstance(num_inputs, str): + split_dict = parser.splits_per_num_input_frames[num_inputs] # type: ignore + num_inputs = int(num_inputs.split("-")[0]) # for example 1_from32 + else: + split_dict = parser.splits_per_num_input_frames[num_inputs] # type: ignore + + num_targets = len(split_dict["test_ids"]) + + if task == "img2img": + # Note in this setting, we should refrain from using all the other camera + # info except ones from sampled_indices, and most importantly, the order. + num_anchors = infer_prior_stats( + T, + num_inputs, + num_total_frames=num_targets, + version_dict=version_dict, + ) + + sampled_indices = np.sort( + np.array(split_dict["train_ids"] + split_dict["test_ids"]) + ) # we always sort all indices first + + traj_prior = options.get("traj_prior", None) + if traj_prior == "spiral": + assert parser.bounds is not None + anchor_c2ws = generate_spiral_path( + c2ws[sampled_indices] @ np.diagflat([1, -1, -1, 1]), + parser.bounds[sampled_indices], + n_frames=num_anchors + 1, + n_rots=2, + zrate=0.5, + endpoint=False, + )[1:] @ np.diagflat([1, -1, -1, 1]) + elif traj_prior == "interpolated": + assert num_inputs > 1 + anchor_c2ws = generate_interpolated_path( + c2ws[split_dict["train_ids"], :3], + round((num_anchors + 1) / (num_inputs - 1)), + endpoint=False, + )[1 : num_anchors + 1] + elif traj_prior == "orbit": + c2ws_th = torch.as_tensor(c2ws) + lookat = get_lookat( + c2ws_th[sampled_indices, :3, 3], + c2ws_th[sampled_indices, :3, 2], + ) + anchor_c2ws = torch.linalg.inv( + get_arc_horizontal_w2cs( + torch.linalg.inv(c2ws_th[split_dict["train_ids"][0]]), + lookat, + -F.normalize( + c2ws_th[split_dict["train_ids"]][:, :3, 1].mean(0), + dim=-1, + ), + num_frames=num_anchors + 1, + endpoint=False, + ) + ).numpy()[1:, :3] + else: + anchor_c2ws = None + # anchor_Ks is default to be the first from target_Ks + + all_imgs_path = [all_imgs_path[i] for i in sampled_indices] + c2ws = c2ws[sampled_indices] + Ks = Ks[sampled_indices] + + # absolute to relative indices + input_indices = compute_relative_inds( + sampled_indices, + np.array(split_dict["train_ids"]), + ) + anchor_indices = np.arange( + sampled_indices.shape[0], + sampled_indices.shape[0] + num_anchors, + ).tolist() # the order has no meaning here + + elif task == "img2vid": + num_targets = len(all_imgs_path) - num_inputs + num_anchors = infer_prior_stats( + T, + num_inputs, + num_total_frames=num_targets, + version_dict=version_dict, + ) + + input_indices = split_dict["train_ids"] + anchor_indices = infer_prior_inds( + c2ws, + num_prior_frames=num_anchors, + input_frame_indices=input_indices, + options=options, + ).tolist() + num_anchors = len(anchor_indices) + anchor_c2ws = c2ws[anchor_indices, :3] + anchor_Ks = Ks[anchor_indices] + + elif task == "img2trajvid": + num_anchors = infer_prior_stats( + T, + num_inputs, + num_total_frames=num_targets, + version_dict=version_dict, + ) + + target_c2ws = c2ws[split_dict["test_ids"], :3] + target_Ks = Ks[split_dict["test_ids"]] + anchor_c2ws = target_c2ws[ + np.linspace(0, num_targets - 1, num_anchors).round().astype(np.int64) + ] + anchor_Ks = target_Ks[ + np.linspace(0, num_targets - 1, num_anchors).round().astype(np.int64) + ] + + sampled_indices = split_dict["train_ids"] + split_dict["test_ids"] + all_imgs_path = [all_imgs_path[i] for i in sampled_indices] + c2ws = c2ws[sampled_indices] + Ks = Ks[sampled_indices] + + input_indices = np.arange(num_inputs).tolist() + anchor_indices = np.linspace( + num_inputs, num_inputs + num_targets - 1, num_anchors + ).tolist() + + else: + raise ValueError(f"Unknown task: {task}") + + return ( + all_imgs_path, + num_inputs, + num_targets, + input_indices, + anchor_indices, + torch.tensor(c2ws[:, :3]).float(), + torch.tensor(Ks).float(), + (torch.tensor(anchor_c2ws[:, :3]).float() if anchor_c2ws is not None else None), + (torch.tensor(anchor_Ks).float() if anchor_Ks is not None else None), + ) + + +def main( + data_path, + data_items=None, + task="img2img", + save_subdir="", + H=None, + W=None, + T=None, + use_traj_prior=False, + **overwrite_options, +): + if H is not None: + VERSION_DICT["H"] = H + if W is not None: + VERSION_DICT["W"] = W + if T is not None: + VERSION_DICT["T"] = [int(t) for t in T.split(",")] if isinstance(T, str) else T + + options = VERSION_DICT["options"] + options["chunk_strategy"] = "nearest-gt" + options["video_save_fps"] = 30.0 + options["beta_linear_start"] = 5e-6 + options["log_snr_shift"] = 2.4 + options["guider_types"] = 1 + options["cfg"] = 2.0 + options["camera_scale"] = 2.0 + options["num_steps"] = 50 + options["cfg_min"] = 1.2 + options["encoding_t"] = 1 + options["decoding_t"] = 1 + options["num_inputs"] = None + options["seed"] = 23 + options.update(overwrite_options) + + num_inputs = options["num_inputs"] + seed = options["seed"] + + if data_items is not None: + if not isinstance(data_items, (list, tuple)): + data_items = data_items.split(",") + scenes = [os.path.join(data_path, item) for item in data_items] + else: + scenes = glob.glob(osp.join(data_path, "*")) + + for scene in tqdm(scenes): + save_path_scene = os.path.join( + WORK_DIR, task, save_subdir, os.path.splitext(os.path.basename(scene))[0] + ) + if options.get("skip_saved", False) and os.path.exists( + os.path.join(save_path_scene, "transforms.json") + ): + print(f"Skipping {scene} as it is already sampled.") + continue + + # parse_task -> infer_prior_stats modifies VERSION_DICT["T"] in-place. + ( + all_imgs_path, + num_inputs, + num_targets, + input_indices, + anchor_indices, + c2ws, + Ks, + anchor_c2ws, + anchor_Ks, + ) = parse_task( + task, + scene, + num_inputs, + VERSION_DICT["T"], + VERSION_DICT, + ) + assert num_inputs is not None + # Create image conditioning. + image_cond = { + "img": all_imgs_path, + "input_indices": input_indices, + "prior_indices": anchor_indices, + } + # Create camera conditioning. + camera_cond = { + "c2w": c2ws.clone(), + "K": Ks.clone(), + "input_indices": list(range(num_inputs + num_targets)), + } + # run_one_scene -> transform_img_and_K modifies VERSION_DICT["H"] and VERSION_DICT["W"] in-place. + video_path_generator = run_one_scene( + task, + VERSION_DICT, # H, W maybe updated in run_one_scene + model=MODEL, + ae=AE, + conditioner=CONDITIONER, + denoiser=DENOISER, + image_cond=image_cond, + camera_cond=camera_cond, + save_path=save_path_scene, + use_traj_prior=use_traj_prior, + traj_prior_Ks=anchor_Ks, + traj_prior_c2ws=anchor_c2ws, + seed=seed, # to ensure sampled video can be reproduced in regardless of start and i + ) + for _ in video_path_generator: + pass + + # Convert from OpenCV to OpenGL camera format. + c2ws = c2ws @ torch.tensor(np.diag([1, -1, -1, 1])).float() + img_paths = sorted(glob.glob(osp.join(save_path_scene, "samples-rgb", "*.png"))) + if len(img_paths) != len(c2ws): + input_img_paths = sorted( + glob.glob(osp.join(save_path_scene, "input", "*.png")) + ) + assert len(img_paths) == num_targets + assert len(input_img_paths) == num_inputs + assert c2ws.shape[0] == num_inputs + num_targets + target_indices = [i for i in range(c2ws.shape[0]) if i not in input_indices] + img_paths = [ + input_img_paths[input_indices.index(i)] + if i in input_indices + else img_paths[target_indices.index(i)] + for i in range(c2ws.shape[0]) + ] + create_transforms_simple( + save_path=save_path_scene, + img_paths=img_paths, + img_whs=np.array([VERSION_DICT["W"], VERSION_DICT["H"]])[None].repeat( + num_inputs + num_targets, 0 + ), + c2ws=c2ws, + Ks=Ks, + ) + + +if __name__ == "__main__": + fire.Fire(main) diff --git a/demo_gr.py b/demo_gr.py new file mode 100644 index 0000000000000000000000000000000000000000..463ba4eb4165455a5d87e8d6daf90c0410dcab9d --- /dev/null +++ b/demo_gr.py @@ -0,0 +1,1248 @@ +import copy +import json +import os +import os.path as osp +import queue +import secrets +import threading +import time +from datetime import datetime +from glob import glob +from pathlib import Path +from typing import Literal + +import gradio as gr +import httpx +import imageio.v3 as iio +import numpy as np +import torch +import torch.nn.functional as F +import tyro +import viser +import viser.transforms as vt +from einops import rearrange +from gradio import networking +from gradio.context import LocalContext +from gradio.tunneling import CERTIFICATE_PATH, Tunnel + +from seva.eval import ( + IS_TORCH_NIGHTLY, + chunk_input_and_test, + create_transforms_simple, + infer_prior_stats, + run_one_scene, + transform_img_and_K, +) +from seva.geometry import ( + DEFAULT_FOV_RAD, + get_default_intrinsics, + get_preset_pose_fov, + normalize_scene, +) +from seva.gui import define_gui +from seva.model import SGMWrapper +from seva.modules.autoencoder import AutoEncoder +from seva.modules.conditioner import CLIPConditioner +from seva.modules.preprocessor import Dust3rPipeline +from seva.sampling import DDPMDiscretization, DiscreteDenoiser +from seva.utils import load_model + +device = "cpu" + + +# Constants. +WORK_DIR = "work_dirs/demo_gr" +MAX_SESSIONS = 1 +ADVANCE_EXAMPLE_MAP = [ + ( + "assets/advance/blue-car.jpg", + ["assets/advance/blue-car.jpg"], + ), + ( + "assets/advance/garden-4_0.jpg", + [ + "assets/advance/garden-4_0.jpg", + "assets/advance/garden-4_1.jpg", + "assets/advance/garden-4_2.jpg", + "assets/advance/garden-4_3.jpg", + ], + ), + ( + "assets/advance/vgg-lab-4_0.png", + [ + "assets/advance/vgg-lab-4_0.png", + "assets/advance/vgg-lab-4_1.png", + "assets/advance/vgg-lab-4_2.png", + "assets/advance/vgg-lab-4_3.png", + ], + ), + ( + "assets/advance/telebooth-2_0.jpg", + [ + "assets/advance/telebooth-2_0.jpg", + "assets/advance/telebooth-2_1.jpg", + ], + ), + ( + "assets/advance/backyard-7_0.jpg", + [ + "assets/advance/backyard-7_0.jpg", + "assets/advance/backyard-7_1.jpg", + "assets/advance/backyard-7_2.jpg", + "assets/advance/backyard-7_3.jpg", + "assets/advance/backyard-7_4.jpg", + "assets/advance/backyard-7_5.jpg", + "assets/advance/backyard-7_6.jpg", + ], + ), +] + +if IS_TORCH_NIGHTLY: + COMPILE = True + os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1" + os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1" +else: + COMPILE = False + +# Shared global variables across sessions. +DUST3R = Dust3rPipeline(device=device) # type: ignore +MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device) +AE = AutoEncoder(chunk_size=1).to(device) +CONDITIONER = CLIPConditioner().to(device) +DISCRETIZATION = DDPMDiscretization() +DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device) +VERSION_DICT = { + "H": 576, + "W": 576, + "T": 21, + "C": 4, + "f": 8, + "options": {}, +} +SERVERS = {} +ABORT_EVENTS = {} + +if COMPILE: + MODEL = torch.compile(MODEL) + CONDITIONER = torch.compile(CONDITIONER) + AE = torch.compile(AE) + + +class SevaRenderer(object): + def __init__(self, server: viser.ViserServer): + self.server = server + self.gui_state = None + + def preprocess( + self, input_img_path_or_tuples: list[tuple[str, None]] | str + ) -> tuple[dict, dict, dict]: + # Simply hardcode these such that aspect ratio is always kept and + # shorter side is resized to 576. This is only to make GUI option fewer + # though, changing it still works. + shorter: int = 576 + # Has to be 64 multiple for the network. + shorter = round(shorter / 64) * 64 + + if isinstance(input_img_path_or_tuples, str): + # Assume `Basic` demo mode: just hardcode the camera parameters and ignore points. + input_imgs = torch.as_tensor( + iio.imread(input_img_path_or_tuples) / 255.0, dtype=torch.float32 + )[None, ..., :3] + input_imgs = transform_img_and_K( + input_imgs.permute(0, 3, 1, 2), + shorter, + K=None, + size_stride=64, + )[0].permute(0, 2, 3, 1) + input_Ks = get_default_intrinsics( + aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1] + ) + input_c2ws = torch.eye(4)[None] + # Simulate a small time interval such that gradio can update + # propgress properly. + time.sleep(0.1) + return ( + { + "input_imgs": input_imgs, + "input_Ks": input_Ks, + "input_c2ws": input_c2ws, + "input_wh": (input_imgs.shape[2], input_imgs.shape[1]), + "points": [np.zeros((0, 3))], + "point_colors": [np.zeros((0, 3))], + "scene_scale": 1.0, + }, + gr.update(visible=False), + gr.update(), + ) + else: + # Assume `Advance` demo mode: use dust3r to extract camera parameters and points. + img_paths = [p for (p, _) in input_img_path_or_tuples] + ( + input_imgs, + input_Ks, + input_c2ws, + points, + point_colors, + ) = DUST3R.infer_cameras_and_points(img_paths) + num_inputs = len(img_paths) + if num_inputs == 1: + input_imgs, input_Ks, input_c2ws, points, point_colors = ( + input_imgs[:1], + input_Ks[:1], + input_c2ws[:1], + points[:1], + point_colors[:1], + ) + input_imgs = [img[..., :3] for img in input_imgs] + # Normalize the scene. + point_chunks = [p.shape[0] for p in points] + point_indices = np.cumsum(point_chunks)[:-1] + input_c2ws, points, _ = normalize_scene( # type: ignore + input_c2ws, + np.concatenate(points, 0), + camera_center_method="poses", + ) + points = np.split(points, point_indices, 0) + # Scale camera and points for viewport visualization. + scene_scale = np.median( + np.ptp(np.concatenate([input_c2ws[:, :3, 3], *points], 0), -1) + ) + input_c2ws[:, :3, 3] /= scene_scale + points = [point / scene_scale for point in points] + input_imgs = [ + torch.as_tensor(img / 255.0, dtype=torch.float32) for img in input_imgs + ] + input_Ks = torch.as_tensor(input_Ks) + input_c2ws = torch.as_tensor(input_c2ws) + new_input_imgs, new_input_Ks = [], [] + for img, K in zip(input_imgs, input_Ks): + img = rearrange(img, "h w c -> 1 c h w") + # If you don't want to keep aspect ratio and want to always center crop, use this: + # img, K = transform_img_and_K(img, (shorter, shorter), K=K[None]) + img, K = transform_img_and_K(img, shorter, K=K[None], size_stride=64) + assert isinstance(K, torch.Tensor) + K = K / K.new_tensor([img.shape[-1], img.shape[-2], 1])[:, None] + new_input_imgs.append(img) + new_input_Ks.append(K) + input_imgs = torch.cat(new_input_imgs, 0) + input_imgs = rearrange(input_imgs, "b c h w -> b h w c")[..., :3] + input_Ks = torch.cat(new_input_Ks, 0) + return ( + { + "input_imgs": input_imgs, + "input_Ks": input_Ks, + "input_c2ws": input_c2ws, + "input_wh": (input_imgs.shape[2], input_imgs.shape[1]), + "points": points, + "point_colors": point_colors, + "scene_scale": scene_scale, + }, + gr.update(visible=False), + gr.update() + if num_inputs <= 10 + else gr.update(choices=["interp"], value="interp"), + ) + + def visualize_scene(self, preprocessed: dict): + server = self.server + server.scene.reset() + server.gui.reset() + set_bkgd_color(server) + + ( + input_imgs, + input_Ks, + input_c2ws, + input_wh, + points, + point_colors, + scene_scale, + ) = ( + preprocessed["input_imgs"], + preprocessed["input_Ks"], + preprocessed["input_c2ws"], + preprocessed["input_wh"], + preprocessed["points"], + preprocessed["point_colors"], + preprocessed["scene_scale"], + ) + W, H = input_wh + + server.scene.set_up_direction(-input_c2ws[..., :3, 1].mean(0).numpy()) + + # Use first image as default fov. + assert input_imgs[0].shape[:2] == (H, W) + if H > W: + init_fov = 2 * np.arctan(1 / (2 * input_Ks[0, 0, 0].item())) + else: + init_fov = 2 * np.arctan(1 / (2 * input_Ks[0, 1, 1].item())) + init_fov_deg = float(init_fov / np.pi * 180.0) + + frustum_nodes, pcd_nodes = [], [] + for i in range(len(input_imgs)): + K = input_Ks[i] + frustum = server.scene.add_camera_frustum( + f"/scene_assets/cameras/{i}", + fov=2 * np.arctan(1 / (2 * K[1, 1].item())), + aspect=W / H, + scale=0.1 * scene_scale, + image=(input_imgs[i].numpy() * 255.0).astype(np.uint8), + wxyz=vt.SO3.from_matrix(input_c2ws[i, :3, :3].numpy()).wxyz, + position=input_c2ws[i, :3, 3].numpy(), + ) + + def get_handler(frustum): + def handler(event: viser.GuiEvent) -> None: + assert event.client_id is not None + client = server.get_clients()[event.client_id] + with client.atomic(): + client.camera.position = frustum.position + client.camera.wxyz = frustum.wxyz + # Set look_at as the projected origin onto the + # frustum's forward direction. + look_direction = vt.SO3(frustum.wxyz).as_matrix()[:, 2] + position_origin = -frustum.position + client.camera.look_at = ( + frustum.position + + np.dot(look_direction, position_origin) + / np.linalg.norm(position_origin) + * look_direction + ) + + return handler + + frustum.on_click(get_handler(frustum)) # type: ignore + frustum_nodes.append(frustum) + + pcd = server.scene.add_point_cloud( + f"/scene_assets/points/{i}", + points[i], + point_colors[i], + point_size=0.01 * scene_scale, + point_shape="circle", + ) + pcd_nodes.append(pcd) + + with server.gui.add_folder("Scene scale", expand_by_default=False, order=200): + camera_scale_slider = server.gui.add_slider( + "Log camera scale", initial_value=0.0, min=-2.0, max=2.0, step=0.1 + ) + + @camera_scale_slider.on_update + def _(_) -> None: + for i in range(len(frustum_nodes)): + frustum_nodes[i].scale = ( + 0.1 * scene_scale * 10**camera_scale_slider.value + ) + + point_scale_slider = server.gui.add_slider( + "Log point scale", initial_value=0.0, min=-2.0, max=2.0, step=0.1 + ) + + @point_scale_slider.on_update + def _(_) -> None: + for i in range(len(pcd_nodes)): + pcd_nodes[i].point_size = ( + 0.01 * scene_scale * 10**point_scale_slider.value + ) + + self.gui_state = define_gui( + server, + init_fov=init_fov_deg, + img_wh=input_wh, + scene_scale=scene_scale, + ) + + def get_target_c2ws_and_Ks_from_gui(self, preprocessed: dict): + input_wh = preprocessed["input_wh"] + W, H = input_wh + gui_state = self.gui_state + assert gui_state is not None and gui_state.camera_traj_list is not None + target_c2ws, target_Ks = [], [] + for item in gui_state.camera_traj_list: + target_c2ws.append(item["w2c"]) + assert item["img_wh"] == input_wh + K = np.array(item["K"]).reshape(3, 3) / np.array([W, H, 1])[:, None] + target_Ks.append(K) + target_c2ws = torch.as_tensor( + np.linalg.inv(np.array(target_c2ws).reshape(-1, 4, 4)) + ) + target_Ks = torch.as_tensor(np.array(target_Ks).reshape(-1, 3, 3)) + return target_c2ws, target_Ks + + def get_target_c2ws_and_Ks_from_preset( + self, + preprocessed: dict, + preset_traj: Literal[ + "orbit", + "spiral", + "lemniscate", + "zoom-in", + "zoom-out", + "dolly zoom-in", + "dolly zoom-out", + "move-forward", + "move-backward", + "move-up", + "move-down", + "move-left", + "move-right", + ], + num_frames: int, + zoom_factor: float | None, + ): + img_wh = preprocessed["input_wh"] + start_c2w = preprocessed["input_c2ws"][0] + start_w2c = torch.linalg.inv(start_c2w) + look_at = torch.tensor([0, 0, 10]) + start_fov = DEFAULT_FOV_RAD + target_c2ws, target_fovs = get_preset_pose_fov( + preset_traj, + num_frames, + start_w2c, + look_at, + -start_c2w[:3, 1], + start_fov, + spiral_radii=[1.0, 1.0, 0.5], + zoom_factor=zoom_factor, + ) + target_c2ws = torch.as_tensor(target_c2ws) + target_fovs = torch.as_tensor(target_fovs) + target_Ks = get_default_intrinsics( + target_fovs, # type: ignore + aspect_ratio=img_wh[0] / img_wh[1], + ) + return target_c2ws, target_Ks + + def export_output_data(self, preprocessed: dict, output_dir: str): + input_imgs, input_Ks, input_c2ws, input_wh = ( + preprocessed["input_imgs"], + preprocessed["input_Ks"], + preprocessed["input_c2ws"], + preprocessed["input_wh"], + ) + target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_gui(preprocessed) + + num_inputs = len(input_imgs) + num_targets = len(target_c2ws) + + input_imgs = (input_imgs.cpu().numpy() * 255.0).astype(np.uint8) + input_c2ws = input_c2ws.cpu().numpy() + input_Ks = input_Ks.cpu().numpy() + target_c2ws = target_c2ws.cpu().numpy() + target_Ks = target_Ks.cpu().numpy() + img_whs = np.array(input_wh)[None].repeat(len(input_imgs) + len(target_Ks), 0) + + os.makedirs(output_dir, exist_ok=True) + img_paths = [] + for i, img in enumerate(input_imgs): + iio.imwrite(img_path := osp.join(output_dir, f"{i:03d}.png"), img) + img_paths.append(img_path) + for i in range(num_targets): + iio.imwrite( + img_path := osp.join(output_dir, f"{i + num_inputs:03d}.png"), + np.zeros((input_wh[1], input_wh[0], 3), dtype=np.uint8), + ) + img_paths.append(img_path) + + # Convert from OpenCV to OpenGL camera format. + all_c2ws = np.concatenate([input_c2ws, target_c2ws]) + all_Ks = np.concatenate([input_Ks, target_Ks]) + all_c2ws = all_c2ws @ np.diag([1, -1, -1, 1]) + create_transforms_simple(output_dir, img_paths, img_whs, all_c2ws, all_Ks) + split_dict = { + "train_ids": list(range(num_inputs)), + "test_ids": list(range(num_inputs, num_inputs + num_targets)), + } + with open( + osp.join(output_dir, f"train_test_split_{num_inputs}.json"), "w" + ) as f: + json.dump(split_dict, f, indent=4) + gr.Info(f"Output data saved to {output_dir}", duration=1) + + def render( + self, + preprocessed: dict, + session_hash: str, + seed: int, + chunk_strategy: str, + cfg: float, + preset_traj: Literal[ + "orbit", + "spiral", + "lemniscate", + "zoom-in", + "zoom-out", + "dolly zoom-in", + "dolly zoom-out", + "move-forward", + "move-backward", + "move-up", + "move-down", + "move-left", + "move-right", + ] + | None, + num_frames: int | None, + zoom_factor: float | None, + camera_scale: float, + ): + render_name = datetime.now().strftime("%Y%m%d_%H%M%S") + render_dir = osp.join(WORK_DIR, render_name) + + input_imgs, input_Ks, input_c2ws, (W, H) = ( + preprocessed["input_imgs"], + preprocessed["input_Ks"], + preprocessed["input_c2ws"], + preprocessed["input_wh"], + ) + num_inputs = len(input_imgs) + if preset_traj is None: + target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_gui(preprocessed) + else: + assert num_frames is not None + assert num_inputs == 1 + input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype) + target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset( + preprocessed, preset_traj, num_frames, zoom_factor + ) + all_c2ws = torch.cat([input_c2ws, target_c2ws], 0) + all_Ks = ( + torch.cat([input_Ks, target_Ks], 0) + * input_Ks.new_tensor([W, H, 1])[:, None] + ) + num_targets = len(target_c2ws) + input_indices = list(range(num_inputs)) + target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist() + # Get anchor cameras. + T = VERSION_DICT["T"] + version_dict = copy.deepcopy(VERSION_DICT) + num_anchors = infer_prior_stats( + T, + num_inputs, + num_total_frames=num_targets, + version_dict=version_dict, + ) + # infer_prior_stats modifies T in-place. + T = version_dict["T"] + assert isinstance(num_anchors, int) + anchor_indices = np.linspace( + num_inputs, + num_inputs + num_targets - 1, + num_anchors, + ).tolist() + anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]] + anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]] + # Create image conditioning. + all_imgs_np = ( + F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy() + * 255.0 + ).astype(np.uint8) + image_cond = { + "img": all_imgs_np, + "input_indices": input_indices, + "prior_indices": anchor_indices, + } + # Create camera conditioning (K is unnormalized). + camera_cond = { + "c2w": all_c2ws, + "K": all_Ks, + "input_indices": list(range(num_inputs + num_targets)), + } + # Run rendering. + num_steps = 50 + options_ori = VERSION_DICT["options"] + options = copy.deepcopy(options_ori) + options["chunk_strategy"] = chunk_strategy + options["video_save_fps"] = 30.0 + options["beta_linear_start"] = 5e-6 + options["log_snr_shift"] = 2.4 + options["guider_types"] = [1, 2] + options["cfg"] = [ + float(cfg), + 3.0 if num_inputs >= 9 else 2.0, + ] # We define semi-dense-view regime to have 9 input views. + options["camera_scale"] = camera_scale + options["num_steps"] = num_steps + options["cfg_min"] = 1.2 + options["encoding_t"] = 1 + options["decoding_t"] = 1 + assert session_hash in ABORT_EVENTS + abort_event = ABORT_EVENTS[session_hash] + abort_event.clear() + options["abort_event"] = abort_event + task = "img2trajvid" + # Get number of first pass chunks. + T_first_pass = T[0] if isinstance(T, (list, tuple)) else T + chunk_strategy_first_pass = options.get( + "chunk_strategy_first_pass", "gt-nearest" + ) + num_chunks_0 = len( + chunk_input_and_test( + T_first_pass, + input_c2ws, + anchor_c2ws, + input_indices, + image_cond["prior_indices"], + options={**options, "sampler_verbose": False}, + task=task, + chunk_strategy=chunk_strategy_first_pass, + gt_input_inds=list(range(input_c2ws.shape[0])), + )[1] + ) + # Get number of second pass chunks. + anchor_argsort = np.argsort(input_indices + anchor_indices).tolist() + anchor_indices = np.array(input_indices + anchor_indices)[ + anchor_argsort + ].tolist() + gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])] + anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[ + anchor_argsort + ] + T_second_pass = T[1] if isinstance(T, (list, tuple)) else T + chunk_strategy = options.get("chunk_strategy", "nearest") + num_chunks_1 = len( + chunk_input_and_test( + T_second_pass, + anchor_c2ws_second_pass, + target_c2ws, + anchor_indices, + target_indices, + options={**options, "sampler_verbose": False}, + task=task, + chunk_strategy=chunk_strategy, + gt_input_inds=gt_input_inds, + )[1] + ) + second_pass_pbar = gr.Progress().tqdm( + iterable=None, + desc="Second pass sampling", + total=num_chunks_1 * num_steps, + ) + first_pass_pbar = gr.Progress().tqdm( + iterable=None, + desc="First pass sampling", + total=num_chunks_0 * num_steps, + ) + video_path_generator = run_one_scene( + task=task, + version_dict={ + "H": H, + "W": W, + "T": T, + "C": VERSION_DICT["C"], + "f": VERSION_DICT["f"], + "options": options, + }, + model=MODEL, + ae=AE, + conditioner=CONDITIONER, + denoiser=DENOISER, + image_cond=image_cond, + camera_cond=camera_cond, + save_path=render_dir, + use_traj_prior=True, + traj_prior_c2ws=anchor_c2ws, + traj_prior_Ks=anchor_Ks, + seed=seed, + gradio=True, + first_pass_pbar=first_pass_pbar, + second_pass_pbar=second_pass_pbar, + abort_event=abort_event, + ) + output_queue = queue.Queue() + + blocks = LocalContext.blocks.get() + event_id = LocalContext.event_id.get() + + def worker(): + # gradio doesn't support threading with progress intentionally, so + # we need to hack this. + LocalContext.blocks.set(blocks) + LocalContext.event_id.set(event_id) + for i, video_path in enumerate(video_path_generator): + if i == 0: + output_queue.put( + ( + video_path, + gr.update(), + gr.update(), + gr.update(), + ) + ) + elif i == 1: + output_queue.put( + ( + video_path, + gr.update(visible=True), + gr.update(visible=False), + gr.update(visible=False), + ) + ) + else: + gr.Error("More than two passes during rendering.") + + thread = threading.Thread(target=worker, daemon=True) + thread.start() + + while thread.is_alive() or not output_queue.empty(): + if abort_event.is_set(): + thread.join() + abort_event.clear() + yield ( + gr.update(), + gr.update(visible=True), + gr.update(visible=False), + gr.update(visible=False), + ) + time.sleep(0.1) + while not output_queue.empty(): + yield output_queue.get() + + +# This is basically a copy of the original `networking.setup_tunnel` function, +# but it also returns the tunnel object for proper cleanup. +def setup_tunnel( + local_host: str, local_port: int, share_token: str, share_server_address: str | None +) -> tuple[str, Tunnel]: + share_server_address = ( + networking.GRADIO_SHARE_SERVER_ADDRESS + if share_server_address is None + else share_server_address + ) + if share_server_address is None: + try: + response = httpx.get(networking.GRADIO_API_SERVER, timeout=30) + payload = response.json()[0] + remote_host, remote_port = payload["host"], int(payload["port"]) + certificate = payload["root_ca"] + Path(CERTIFICATE_PATH).parent.mkdir(parents=True, exist_ok=True) + with open(CERTIFICATE_PATH, "w") as f: + f.write(certificate) + except Exception as e: + raise RuntimeError( + "Could not get share link from Gradio API Server." + ) from e + else: + remote_host, remote_port = share_server_address.split(":") + remote_port = int(remote_port) + tunnel = Tunnel(remote_host, remote_port, local_host, local_port, share_token) + address = tunnel.start_tunnel() + return address, tunnel + + +def set_bkgd_color(server: viser.ViserServer | viser.ClientHandle): + server.scene.set_background_image(np.array([[[39, 39, 42]]], dtype=np.uint8)) + + +def start_server_and_abort_event(request: gr.Request): + server = viser.ViserServer() + + @server.on_client_connect + def _(client: viser.ClientHandle): + # Force dark mode that blends well with gradio's dark theme. + client.gui.configure_theme( + dark_mode=True, + show_share_button=False, + control_layout="collapsible", + ) + set_bkgd_color(client) + + print(f"Starting server {server.get_port()}") + server_url, tunnel = setup_tunnel( + local_host=server.get_host(), + local_port=server.get_port(), + share_token=secrets.token_urlsafe(32), + share_server_address=None, + ) + SERVERS[request.session_hash] = (server, tunnel) + if server_url is None: + raise gr.Error( + "Failed to get a viewport URL. Please check your network connection." + ) + # Give it enough time to start. + time.sleep(1) + + ABORT_EVENTS[request.session_hash] = threading.Event() + + return ( + SevaRenderer(server), + gr.HTML( + f'', + container=True, + ), + request.session_hash, + ) + + +def stop_server_and_abort_event(request: gr.Request): + if request.session_hash in SERVERS: + print(f"Stopping server {request.session_hash}") + server, tunnel = SERVERS.pop(request.session_hash) + server.stop() + tunnel.kill() + + if request.session_hash in ABORT_EVENTS: + print(f"Setting abort event {request.session_hash}") + ABORT_EVENTS[request.session_hash].set() + # Give it enough time to abort jobs. + time.sleep(5) + ABORT_EVENTS.pop(request.session_hash) + + +def set_abort_event(request: gr.Request): + if request.session_hash in ABORT_EVENTS: + print(f"Setting abort event {request.session_hash}") + ABORT_EVENTS[request.session_hash].set() + + +def get_advance_examples(selection: gr.SelectData): + index = selection.index + return ( + gr.Gallery(ADVANCE_EXAMPLE_MAP[index][1], visible=True), + gr.update(visible=True), + gr.update(visible=True), + gr.Gallery(visible=False), + ) + + +def get_preamble(): + gr.Markdown(""" +# Stable Virtual Camera + + + + + + + + + +Welcome to the demo of Stable Virtual Camera (Seva)! Given any number of input views and their cameras, this demo will allow you to generate novel views of a scene at any target camera of interest. + +We provide two ways to use our demo (selected by the tab below, documented [here](https://github.com/Stability-AI/stable-virtual-camera/blob/main/docs/GR_USAGE.md)): +1. **[Basic](https://github.com/user-attachments/assets/4d965fa6-d8eb-452c-b773-6e09c88ca705)**: Given a single image, you can generate a video following one of our preset camera trajectories. +2. **[Advanced](https://github.com/user-attachments/assets/dcec1be0-bd10-441e-879c-d1c2b63091ba)**: Given any number of input images, you can generate a video following any camera trajectory of your choice by our key-frame-based interface. + +> This is a research preview and comes with a few [limitations](https://stable-virtual-camera.github.io/#limitations): +> - Limited quality in certain subjects due to training data, including humans, animals, and dynamic textures. +> - Limited quality in some highly ambiguous scenes and camera trajectories, including extreme views and collision into objects. + """) + + +# Make sure that gradio uses dark theme. +_APP_JS = """ +function refresh() { + const url = new URL(window.location); + if (url.searchParams.get('__theme') !== 'dark') { + url.searchParams.set('__theme', 'dark'); + } +} +""" + + +def main(server_port: int | None = None, share: bool = True): + with gr.Blocks(js=_APP_JS) as app: + renderer = gr.State() + session_hash = gr.State() + _ = get_preamble() + with gr.Tabs(): + with gr.Tab("Basic"): + render_btn = gr.Button("Render video", interactive=False, render=False) + with gr.Row(): + with gr.Column(): + with gr.Group(): + # Initially disable the Preprocess Images button until an image is selected. + preprocess_btn = gr.Button("Preprocess images", interactive=False) + preprocess_progress = gr.Textbox( + label="", + visible=False, + interactive=False, + ) + with gr.Group(): + input_imgs = gr.Image( + type="filepath", + label="Input", + height=200, + ) + _ = gr.Examples( + examples=sorted(glob("assets/basic/*")), + inputs=[input_imgs], + label="Example", + ) + chunk_strategy = gr.Dropdown( + ["interp", "interp-gt"], + label="Chunk strategy", + render=False, + ) + preprocessed = gr.State() + # Enable the Preprocess Images button only if an image is selected. + input_imgs.change( + lambda img: gr.update(interactive=bool(img)), + inputs=input_imgs, + outputs=preprocess_btn, + ) + preprocess_btn.click( + lambda r, *args: [ + *r.preprocess(*args), + gr.update(interactive=True), + ], + inputs=[renderer, input_imgs], + outputs=[ + preprocessed, + preprocess_progress, + chunk_strategy, + render_btn, + ], + show_progress_on=[preprocess_progress], + concurrency_limit=1, + concurrency_id="gpu_queue", + ) + preprocess_btn.click( + lambda: gr.update(visible=True), + outputs=[preprocess_progress], + ) + with gr.Row(): + preset_traj = gr.Dropdown( + choices=[ + "orbit", + "spiral", + "lemniscate", + "zoom-in", + "zoom-out", + "dolly zoom-in", + "dolly zoom-out", + "move-forward", + "move-backward", + "move-up", + "move-down", + "move-left", + "move-right", + ], + label="Preset trajectory", + value="orbit", + ) + num_frames = gr.Slider(30, 150, 80, label="#Frames") + zoom_factor = gr.Slider( + step=0.01, label="Zoom factor", visible=False + ) + with gr.Row(): + seed = gr.Number(value=23, label="Random seed") + chunk_strategy.render() + cfg = gr.Slider(1.0, 7.0, value=4.0, label="CFG value") + with gr.Row(): + camera_scale = gr.Slider( + 0.1, + 15.0, + value=2.0, + label="Camera scale", + ) + + def default_cfg_preset_traj(traj): + # These are just some hand-tuned values that we + # found work the best. + if traj in ["zoom-out", "move-down"]: + value = 5.0 + elif traj in [ + "orbit", + "dolly zoom-out", + "move-backward", + "move-up", + "move-left", + "move-right", + ]: + value = 4.0 + else: + value = 3.0 + return value + + preset_traj.change( + default_cfg_preset_traj, + inputs=[preset_traj], + outputs=[cfg], + ) + preset_traj.change( + lambda traj: gr.update( + value=( + 10.0 if "dolly" in traj or "pan" in traj else 2.0 + ) + ), + inputs=[preset_traj], + outputs=[camera_scale], + ) + + def zoom_factor_preset_traj(traj): + visible = traj in [ + "zoom-in", + "zoom-out", + "dolly zoom-in", + "dolly zoom-out", + ] + is_zoomin = traj.endswith("zoom-in") + if is_zoomin: + minimum = 0.1 + maximum = 0.5 + value = 0.28 + else: + minimum = 1.2 + maximum = 3 + value = 1.5 + return gr.update( + visible=visible, + minimum=minimum, + maximum=maximum, + value=value, + ) + + preset_traj.change( + zoom_factor_preset_traj, + inputs=[preset_traj], + outputs=[zoom_factor], + ) + with gr.Column(): + with gr.Group(): + abort_btn = gr.Button("Abort rendering", visible=False) + render_btn.render() + render_progress = gr.Textbox( + label="", visible=False, interactive=False + ) + output_video = gr.Video( + label="Output", interactive=False, autoplay=True, loop=True + ) + render_btn.click( + lambda r, *args: (yield from r.render(*args)), + inputs=[ + renderer, + preprocessed, + session_hash, + seed, + chunk_strategy, + cfg, + preset_traj, + num_frames, + zoom_factor, + camera_scale, + ], + outputs=[ + output_video, + render_btn, + abort_btn, + render_progress, + ], + show_progress_on=[render_progress], + concurrency_id="gpu_queue", + ) + render_btn.click( + lambda: [ + gr.update(visible=False), + gr.update(visible=True), + gr.update(visible=True), + ], + outputs=[render_btn, abort_btn, render_progress], + ) + abort_btn.click(set_abort_event) + with gr.Tab("Advanced"): + render_btn = gr.Button("Render video", interactive=False, render=False) + viewport = gr.HTML(container=True, render=False) + gr.Timer(0.1).tick( + lambda renderer: gr.update( + interactive=renderer is not None + and renderer.gui_state is not None + and renderer.gui_state.camera_traj_list is not None + ), + inputs=[renderer], + outputs=[render_btn], + ) + with gr.Row(): + viewport.render() + with gr.Row(): + with gr.Column(): + with gr.Group(): + # Initially disable the Preprocess Images button until images are selected. + preprocess_btn = gr.Button("Preprocess images", interactive=False) + preprocess_progress = gr.Textbox( + label="", + visible=False, + interactive=False, + ) + with gr.Group(): + input_imgs = gr.Gallery( + interactive=True, + label="Input", + columns=4, + height=200, + ) + # Define example images (gradio doesn't support variable length + # examples so we need to hack it). + example_imgs = gr.Gallery( + [e[0] for e in ADVANCE_EXAMPLE_MAP], + allow_preview=False, + preview=False, + label="Example", + columns=20, + rows=1, + height=115, + ) + example_imgs_expander = gr.Gallery( + visible=False, + interactive=False, + label="Example", + preview=True, + columns=20, + rows=1, + ) + chunk_strategy = gr.Dropdown( + ["interp-gt", "interp"], + label="Chunk strategy", + value="interp-gt", + render=False, + ) + with gr.Row(): + example_imgs_backer = gr.Button( + "Go back", visible=False + ) + example_imgs_confirmer = gr.Button( + "Confirm", visible=False + ) + example_imgs.select( + get_advance_examples, + outputs=[ + example_imgs_expander, + example_imgs_confirmer, + example_imgs_backer, + example_imgs, + ], + ) + example_imgs_confirmer.click( + lambda x: ( + x, + gr.update(visible=False), + gr.update(visible=False), + gr.update(visible=False), + gr.update(visible=True), + gr.update(interactive=bool(x)) + ), + inputs=[example_imgs_expander], + outputs=[ + input_imgs, + example_imgs_expander, + example_imgs_confirmer, + example_imgs_backer, + example_imgs, + preprocess_btn + ], + ) + example_imgs_backer.click( + lambda: ( + gr.update(visible=False), + gr.update(visible=False), + gr.update(visible=False), + gr.update(visible=True), + ), + outputs=[ + example_imgs_expander, + example_imgs_confirmer, + example_imgs_backer, + example_imgs, + ], + ) + preprocessed = gr.State() + preprocess_btn.click( + lambda r, *args: r.preprocess(*args), + inputs=[renderer, input_imgs], + outputs=[ + preprocessed, + preprocess_progress, + chunk_strategy, + ], + show_progress_on=[preprocess_progress], + concurrency_id="gpu_queue", + ) + preprocess_btn.click( + lambda: gr.update(visible=True), + outputs=[preprocess_progress], + ) + preprocessed.change( + lambda r, *args: r.visualize_scene(*args), + inputs=[renderer, preprocessed], + ) + with gr.Row(): + seed = gr.Number(value=23, label="Random seed") + chunk_strategy.render() + cfg = gr.Slider(1.0, 7.0, value=3.0, label="CFG value") + with gr.Row(): + camera_scale = gr.Slider( + 0.1, + 15.0, + value=2.0, + label="Camera scale (useful for single-view input)", + ) + with gr.Group(): + output_data_dir = gr.Textbox(label="Output data directory") + output_data_btn = gr.Button("Export output data") + output_data_btn.click( + lambda r, *args: r.export_output_data(*args), + inputs=[renderer, preprocessed, output_data_dir], + ) + with gr.Column(): + with gr.Group(): + abort_btn = gr.Button("Abort rendering", visible=False) + render_btn.render() + render_progress = gr.Textbox( + label="", visible=False, interactive=False + ) + output_video = gr.Video( + label="Output", interactive=False, autoplay=True, loop=True + ) + render_btn.click( + lambda r, *args: (yield from r.render(*args)), + inputs=[ + renderer, + preprocessed, + session_hash, + seed, + chunk_strategy, + cfg, + gr.State(), + gr.State(), + gr.State(), + camera_scale, + ], + outputs=[ + output_video, + render_btn, + abort_btn, + render_progress, + ], + show_progress_on=[render_progress], + concurrency_id="gpu_queue", + ) + render_btn.click( + lambda: [ + gr.update(visible=False), + gr.update(visible=True), + gr.update(visible=True), + ], + outputs=[render_btn, abort_btn, render_progress], + ) + abort_btn.click(set_abort_event) + + # Register the session initialization and cleanup functions. + app.load( + start_server_and_abort_event, + outputs=[renderer, viewport, session_hash], + ) + app.unload(stop_server_and_abort_event) + + app.queue(max_size=5).launch( + share=share, + server_port=server_port, + show_error=True, + allowed_paths=[WORK_DIR], + # Badget rendering will be broken otherwise. + ssr_mode=False, + ) + + +if __name__ == "__main__": + tyro.cli(main) diff --git a/docs/CLI_USAGE.md b/docs/CLI_USAGE.md new file mode 100644 index 0000000000000000000000000000000000000000..ecb9d3beeec9764965d070b4823725771e69ab48 --- /dev/null +++ b/docs/CLI_USAGE.md @@ -0,0 +1,169 @@ +# :computer: CLI Demo + +This cli demo allows you to pass in more options and control the model in a fine-grained way, suitable for power users and academic researchers. An examplar command line looks as simple as + +```bash +python demo.py --data_path [additional arguments] +``` + +We discuss here first some key attributes: + +- `Procedural Two-Pass Sampling`: We recommend enabling procedural sampling by setting `--use_traj_prior True --chunk_strategy ` with `` set according to the type of the task. +- `Resolution and Aspect-Ratio`: Default image preprocessing include center cropping. All input and output are square images of size $576\times 576$. To overwrite, the code support to pass in `--W --H ` directly. We recommend passing in `--L_short 576` such that the aspect-ratio of original image is kept while the shortest side will be resized to $576$. + +## Task + +Before diving into the command lines, we introduce `Task` (specified by `--task `) to bucket different usage cases depending on the data constraints in input and output domains (e.g., if the ordering is available). + +| Task | Type of NVS | Format of `` | Target Views Sorted? | Input and Target Views Sorted? | Recommended Usage | +| :------------------: | :------------: | :--------------------------------------: | :------------------: | :----------------------------: | :----------------------: | +| `img2img` | set NVS | folder (parsable by `ReconfusionParser`) | :x: | :x: | evaluation, benchmarking | +| `img2vid` | trajectory NVS | folder (parsable by `ReconfusionParser`) | :white_check_mark: | :white_check_mark: | evaluation, benchmarking | +| `img2trajvid_s-prob` | trajectory NVS | single image | :white_check_mark: | :white_check_mark: | general | +| `img2trajvid` | trajectory NVS | folder (parsable by `ReconfusionParser`) | :white_check_mark: | :x: | general | + +### Format of `` + +For `img2trajvid_s-prob` task, we are generating a trajectory video following preset camera motions or effects given only one input image, the data format as simple as + +```bash +/ + ├── scene_1.png + ├── scene_2.png + └── scene_3.png +``` + +For all the other tasks, we use a folder for each scene that is parsable by `ReconfusionParser` (see `seva/data_io.py`). It contains (1) a subdirectory containing all views; (2) `transforms.json` defining the intrinsics and extrinsics (OpenGL convention) for each image; and (3) `train_test_split_*.json` file splitting the input and target views, with `*` indicating the number of the input views. + +We provide in this release (`assets_demo_cli.zip`) several examplar scenes for you to take reference from. Target views is available if you the data are from academic sources, but in the case where target views is unavailble, we will create dummy black images as placeholders (e.g., the `garden_flythrough` scene). The general data structure follows + +```bash +/ +├── scene_1/ + ├── train_test_split_1.json # for single-view regime + ├── train_test_split_6.json # for sparse-veiw regime + ├── train_test_split_32.json # for semi-dense-view regime + ├── transforms.json + └── images/ + ├── image_0.png + ├── image_1.png + ├── ... + └── image_1000.png +├── scene_2 +└── scene_3 +``` + +You can specify which scene to run by passing in `--data_items scene_1,scene_2` to run, for example, `scene_1` and `scene_2`. + +### Recommended Usage + +- `img2img` and `img2vid` are recommended to be used for evaluation and benchmarking. These two tasks are used for the quantitative evalution in our paper. The data is converted from academic datasets so the groundtruth target views are available for metric computation. Check the [`benchmark`](../benchmark/) folder for detailed splits we organize to benchmark different NVS models. +- `img2vid` requries both the input and target views to be sorted, which is usually not guaranteed in general usage. +- `img2trajvid_s-prob` is for general usage but only for single-view regime and fixed preset camera control. +- `img2trajvid` is the task designed for general usage since it does not need the ordering of the input views. This is the task used in the gradio demo. + +Next we go over all tasks and provide for each task an examplar command line. + +## `img2img` + +```bash +python demo.py \ + --data_path \ + --num_inputs

\ + --video_save_fps 10 +``` + +- `--num_inputs

` is only necessary if there are multiple `train_test_split_*.json` files in the scene folder. +- The above command works for the dataset without trajectory prior (e.g., DL3DV-140). When the trajectory prior is available given a benchmarking dataset, for example, `orbit` trajectory prior for the CO3D dataset, we use the `nearest-gt` chunking strategy by setting `--use_traj_prior True --traj_prior orbit --chunking_strategy nearest-gt`. We find this leads to more 3D consistent results. +- For all the single-view conditioning test scenarios: we set `--camera_scale ` with `` sweeping 20 different camera scales `0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0`. +- In single-view regime for the RealEstate10K dataset, we find increasing `cfg` is helpful: we additionally set `--cfg 6.0` (`cfg` is `2.0` by default). +- For the evaluation in semi-dense-view regime (i.e., DL3DV-140 and Tanks and Temples dataset) with `32` input views, we zero-shot extend `T` to fit all input and target views in one forward. Specifically, we set `--T 90` for the DL3DV-140 dataset and `--T 80` for the Tanks and Temples dataset. +- For the evaluation on ViewCrafter split (including the RealEastate10K, CO3D, and Tanks and Temples dataset), we find zero-shot extending `T` to `25` to fit all input and target views in one forward is better. Also, the V split uses the original image resolutions: we therefore set `--T 25 --L_short 576`. + +For example, you can run the following command on the example `dl3d140-165f5af8bfe32f70595a1c9393a6e442acf7af019998275144f605b89a306557` with 3 input views: + +```bash +python demo.py \ + --data_path /path/to/assets_demo_cli/ \ + --data_items dl3d140-165f5af8bfe32f70595a1c9393a6e442acf7af019998275144f605b89a306557 \ + --num_inputs 3 \ + --video_save_fps 10 +``` + +## `img2vid` + +```bash +python demo.py \ + --data_path \ + --task img2vid \ + --replace_or_include_input True \ + --num_inputs

\ + --use_traj_prior True \ + --chunk_strategy interp \ +``` + +- `--replace_or_include_input True` is necessary here since input views and target views are mutually exclusive, forming a trajectory together in this task, so we need to append back the input views to the generated target views. +- `--num_inputs

` is only necessary if there are multiple `train_test_split_*.json` files in the scene folder. +- We use `interp` chunking strategy by default. +- For the evaluation on ViewCrafter split (including the RealEastate10K, CO3D, and Tanks and Temples dataset), we find zero-shot extending `T` to `25` to fit all input and target views in one forward is better. Also, the V split uses the original image resolutions: we therefore set `--T 25 --L_short 576`. + +## `img2trajvid_s-prob` + +```bash +python demo.py \ + --data_path \ + --task img2trajvid_s-prob \ + --replace_or_include_input True \ + --traj_prior orbit \ + --cfg 4.0,2.0 \ + --guider 1,2 \ + --num_targets 111 \ + --L_short 576 \ + --use_traj_prior True \ + --chunk_strategy interp +``` + +- `--replace_or_include_input True` is necessary here since input views and target views are mutually exclusive, forming a trajectory together in this task, so we need to append back the input views to the generated target views. +- Default `cfg` should be adusted according to `traj_prior`. +- Default chunking strategy is `interp`. +- Default guider is `--guider 1,2` (instead of `1`, `1` still works but `1,2` is slightly better). +- `camera_scale` (default is `2.0`) can be adjusted according to `traj_prior`. The model has scale ambiguity with single-view input, especially for panning motions. We encourage to tune up `camera_scale` to `10.0` for all panning motions (`--traj_prior pan-*/dolly*`) if you expect a larger camera motion. + +## `img2trajvid` + +### Sparse-view regime ($P\leq 8$) + +```bash +python demo.py \ + --data_path \ + --task img2trajvid \ + --num_inputs

\ + --cfg 3.0,2.0 \ + --use_traj_prior True \ + --chunk_strategy interp-gt +``` + +- `--num_inputs

` is only necessary if there are multiple `train_test_split_*.json` files in the scene folder. +- Default `cfg` should be set to `3,2` (`3` being `cfg` for the first pass, and `2` being the `cfg` for the second pass). Try to increase the `cfg` for the first pass from `3` to higher values if you observe blurry areas (usually happens for harder scenes with a fair amount of unseen regions). +- Default chunking strategy should be set to `interp+gt` (instead of `interp`, `interp` can work but usually a bit worse). +- The `--chunk_strategy_first_pass` is set as `gt-nearest` by default. So it can automatically adapt when $P$ is large (up to a thousand frames). + +### Semi-dense-view regime ($P>9$) + +```bash +python demo.py \ + --data_path \ + --task img2trajvid \ + --num_inputs

\ + --cfg 3.0 \ + --L_short 576 \ + --use_traj_prior True \ + --chunk_strategy interp +``` + +- `--num_inputs

` is only necessary if there are multiple `train_test_split_*.json` files in the scene folder. +- Default `cfg` should be set to `3`. +- Default chunking strategy should be set to `interp` (instead of `interp-gt`, `interp-gt` is also supported but the results do not look good). +- `T` can be overwritten by `--T ,21` (X being extended `T` for the first pass, and `21` being the default `T` for the second pass). `` is dynamically decided now in the code but can also be manually updated. This is useful when you observe that there exist two very dissimilar adjacent anchors which make the interpolation in the second pass impossible. There exist two ways: + - `--T 96,21`: this overwrites the `T` in the first pass to be exactly `96`. + - `--num_prior_frames_ratio 1.2`: this enlarges T in the first pass dynamically to be `1.2`$\times$ larger. diff --git a/docs/GR_USAGE.md b/docs/GR_USAGE.md new file mode 100644 index 0000000000000000000000000000000000000000..9341d552da4ce79fb565fb5a425c7243924bf9d9 --- /dev/null +++ b/docs/GR_USAGE.md @@ -0,0 +1,76 @@ +# :rocket: Gradio Demo + +This gradio demo is the simplest starting point for you play with our project. + +You can either visit it at our huggingface space [here](https://huggingface.co/spaces/stabilityai/stable-virtual-camera) or run it locally yourself by + +```bash +python demo_gr.py +``` + +We provide two ways to use our demo: + +1. `Basic` mode, where user can upload a single image, and set a target camera trajectory from our preset options. This is the most straightforward way to use our model, and is suitable for most users. +2. `Advanced` mode, where user can upload one or multiple images, and set a target camera trajectory by interacting with a 3D viewport (powered by [viser](https://viser.studio/latest)). This is suitable for power users and academic researchers. + +### `Basic` + +This is the default mode when entering our demo (given its simplicity). + +User can upload a single image, and set a target camera trajectory from our preset options. This is the most straightforward way to use our model, and is suitable for most users. + +Here is a video walkthrough: + +https://github.com/user-attachments/assets/4d965fa6-d8eb-452c-b773-6e09c88ca705 + +You can choose from 13 preset trajectories that are common for NVS (`move-forward/backward` are omitted for visualization purpose): + +https://github.com/user-attachments/assets/b2cf8700-3d85-44b9-8d52-248e82f1fb55 + +More formally: + +- `orbit/spiral/lemniscate` are good for showing the "3D-ness" of the scene. +- `zoom-in/out` keep the camera position the same while increasing/decreasing the focal length. +- `dolly zoom-in/out` move camera position backward/forward while increasing/decreasing the focal length. +- `move-forward/backward/up/down/left/right` move camera position in different directions. + +Notes: + +- For a 80 frame video at `786x576` resolution, it takes around 20 seconds for the first pass generation, and around 2 minutes for the second pass generation, tested with a single H100 GPU. +- Please expect around ~2-3x more times on HF space. + +### `Advanced` + +This is the power mode where you can have very fine-grained control over camera trajectories. + +User can upload one or multiple images, and set a target camera trajectory by interacting with a 3D viewport. This is suitable for power users and academic researchers. + +Here is a video walkthrough + +https://github.com/user-attachments/assets/dcec1be0-bd10-441e-879c-d1c2b63091ba + +Notes: + +- For a 134 frame video at `576x576` resolution, it takes around 16 seconds for the first pass generation, and around 4 minutes for the second pass generation, tested with a single H100 GPU. +- Please expect around ~2-3x more times on HF space. + +### Pro tips + +- If the first pass sampling result is bad, click "Abort rendering" button in GUI to avoid stucking at second pass sampling such that you can try something else. + +### Performance benchmark + +We have tested our gradio demo in both a local environment and the HF space environment, across different modes and compilation settings. Here are our results: +| Total time (s) | `Basic` first pass | `Basic` second pass | `Advanced` first pass | `Advanced` second pass | +|:------------------------:|:-----------------:|:------------------:|:--------------------:|:---------------------:| +| HF (L40S, w/o comp.) | 68 | 484 | 48 | 780 | +| HF (L40S, w/ comp.) | 51 | 362 | 36 | 587 | +| Local (H100, w/o comp.) | 35 | 204 | 20 | 313 | +| Local (H100, w/ comp.) | 21 | 144 | 16 | 234 | + +Notes: + +- HF space uses L40S GPU, and our local environment uses H100 GPU. +- We opt-in compilation by `torch.compile`. +- `Basic` mode is tested by generating 80 frames at `768x576` resolution. +- `Advanced` mode is tested by generating 134 frames at `576x576` resolution. diff --git a/docs/INSTALL.md b/docs/INSTALL.md new file mode 100644 index 0000000000000000000000000000000000000000..47f971fe9242232b2e614f7a0dd3cc69eacf07fe --- /dev/null +++ b/docs/INSTALL.md @@ -0,0 +1,39 @@ +# :wrench: Installation + +### Model Dependencies + +```bash +# Install seva model dependencies. +pip install -e . +``` + +### Demo Dependencies + +To use the cli demo (`demo.py`) or the gradio demo (`demo_gr.py`), do the following: + +```bash +# Initialize and update submodules for demo. +git submodule update --init --recursive + +# Install pycolmap dependencies for cli and gradio demo (our model is not dependent on it). +echo "Installing pycolmap (for both cli and gradio demo)..." +pip install git+https://github.com/jensenz-sai/pycolmap@543266bc316df2fe407b3a33d454b310b1641042 + +# Install dust3r dependencies for gradio demo (our model is not dependent on it). +echo "Installing dust3r dependencies (only for gradio demo)..." +pushd third_party/dust3r +pip install -r requirements.txt +popd +``` + +### Dev and Speeding Up (Optional) + +```bash +# [OPTIONAL] Install seva dependencies for development. +pip install -e ".[dev]" +pre-commit install + +# [OPTIONAL] Install the torch nightly version for faster JIT via. torch.compile (speed up sampling by 2x in our testing). +# Please adjust to your own cuda version. For example, if you have cuda 11.8, use the following command. +pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu118 +``` diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..cfe20303e39d27dd926d0fc2494aa06622bf3d8c --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,39 @@ +[build-system] +requires = ["setuptools>=65.5.3"] +build-backend = "setuptools.build_meta" + +[project] +name = "seva" +version = "0.0.0" +requires-python = ">=3.10" +dependencies = [ + "torch>=2.6.0", + "roma", + "viser", + "tyro", + "fire", + "ninja", + "gradio==5.17.0", + "einops", + "colorama", + "splines", + "kornia", + "open-clip-torch", + "diffusers", + "numpy==1.24.4", + "imageio[ffmpeg]", + "huggingface-hub", + "opencv-python", +] + +[project.optional-dependencies] +dev = ["ruff", "ipdb", "pytest", "line_profiler", "pre-commit"] + +[tool.setuptools.packages.find] +include = ["seva"] + +[tool.pyright] +extraPaths = ["third_party/dust3r"] + +[tool.ruff] +lint.ignore = ["E741"] diff --git a/seva/__init__.py b/seva/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/seva/data_io.py b/seva/data_io.py new file mode 100644 index 0000000000000000000000000000000000000000..51035663516d6c7aa2521ed9085d7e39fbade3a2 --- /dev/null +++ b/seva/data_io.py @@ -0,0 +1,553 @@ +import json +import os +import os.path as osp +from glob import glob +from typing import Any, Dict, List, Optional, Tuple + +import cv2 +import imageio.v3 as iio +import numpy as np +import torch + +from seva.geometry import ( + align_principle_axes, + similarity_from_cameras, + transform_cameras, + transform_points, +) + + +def _get_rel_paths(path_dir: str) -> List[str]: + """Recursively get relative paths of files in a directory.""" + paths = [] + for dp, _, fn in os.walk(path_dir): + for f in fn: + paths.append(os.path.relpath(os.path.join(dp, f), path_dir)) + return paths + + +class BaseParser(object): + def __init__( + self, + data_dir: str, + factor: int = 1, + normalize: bool = False, + test_every: Optional[int] = 8, + ): + self.data_dir = data_dir + self.factor = factor + self.normalize = normalize + self.test_every = test_every + + self.image_names: List[str] = [] # (num_images,) + self.image_paths: List[str] = [] # (num_images,) + self.camtoworlds: np.ndarray = np.zeros((0, 4, 4)) # (num_images, 4, 4) + self.camera_ids: List[int] = [] # (num_images,) + self.Ks_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> K + self.params_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> params + self.imsize_dict: Dict[ + int, Tuple[int, int] + ] = {} # Dict of camera_id -> (width, height) + self.points: np.ndarray = np.zeros((0, 3)) # (num_points, 3) + self.points_err: np.ndarray = np.zeros((0,)) # (num_points,) + self.points_rgb: np.ndarray = np.zeros((0, 3)) # (num_points, 3) + self.point_indices: Dict[str, np.ndarray] = {} # Dict of image_name -> (M,) + self.transform: np.ndarray = np.zeros((4, 4)) # (4, 4) + + self.mapx_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W) + self.mapy_dict: Dict[int, np.ndarray] = {} # Dict of camera_id -> (H, W) + self.roi_undist_dict: Dict[int, Tuple[int, int, int, int]] = ( + dict() + ) # Dict of camera_id -> (x, y, w, h) + self.scene_scale: float = 1.0 + + +class DirectParser(BaseParser): + def __init__( + self, + imgs: List[np.ndarray], + c2ws: np.ndarray, + Ks: np.ndarray, + points: Optional[np.ndarray] = None, + points_rgb: Optional[np.ndarray] = None, # uint8 + mono_disps: Optional[List[np.ndarray]] = None, + normalize: bool = False, + test_every: Optional[int] = None, + ): + super().__init__("", 1, normalize, test_every) + + self.image_names = [f"{i:06d}" for i in range(len(imgs))] + self.image_paths = ["null" for _ in range(len(imgs))] + self.camtoworlds = c2ws + self.camera_ids = [i for i in range(len(imgs))] + self.Ks_dict = {i: K for i, K in enumerate(Ks)} + self.imsize_dict = { + i: (img.shape[1], img.shape[0]) for i, img in enumerate(imgs) + } + if points is not None: + self.points = points + assert points_rgb is not None + self.points_rgb = points_rgb + self.points_err = np.zeros((len(points),)) + + self.imgs = imgs + self.mono_disps = mono_disps + + # Normalize the world space. + if normalize: + T1 = similarity_from_cameras(self.camtoworlds) + self.camtoworlds = transform_cameras(T1, self.camtoworlds) + + if points is not None: + self.points = transform_points(T1, self.points) + T2 = align_principle_axes(self.points) + self.camtoworlds = transform_cameras(T2, self.camtoworlds) + self.points = transform_points(T2, self.points) + else: + T2 = np.eye(4) + + self.transform = T2 @ T1 + else: + self.transform = np.eye(4) + + # size of the scene measured by cameras + camera_locations = self.camtoworlds[:, :3, 3] + scene_center = np.mean(camera_locations, axis=0) + dists = np.linalg.norm(camera_locations - scene_center, axis=1) + self.scene_scale = np.max(dists) + + +class COLMAPParser(BaseParser): + """COLMAP parser.""" + + def __init__( + self, + data_dir: str, + factor: int = 1, + normalize: bool = False, + test_every: Optional[int] = 8, + image_folder: str = "images", + colmap_folder: str = "sparse/0", + ): + super().__init__(data_dir, factor, normalize, test_every) + + colmap_dir = os.path.join(data_dir, colmap_folder) + assert os.path.exists( + colmap_dir + ), f"COLMAP directory {colmap_dir} does not exist." + + try: + from pycolmap import SceneManager + except ImportError: + raise ImportError( + "Please install pycolmap to use the data parsers: " + " `pip install git+https://github.com/jensenz-sai/pycolmap.git@543266bc316df2fe407b3a33d454b310b1641042`" + ) + + manager = SceneManager(colmap_dir) + manager.load_cameras() + manager.load_images() + manager.load_points3D() + + # Extract extrinsic matrices in world-to-camera format. + imdata = manager.images + w2c_mats = [] + camera_ids = [] + Ks_dict = dict() + params_dict = dict() + imsize_dict = dict() # width, height + bottom = np.array([0, 0, 0, 1]).reshape(1, 4) + for k in imdata: + im = imdata[k] + rot = im.R() + trans = im.tvec.reshape(3, 1) + w2c = np.concatenate([np.concatenate([rot, trans], 1), bottom], axis=0) + w2c_mats.append(w2c) + + # support different camera intrinsics + camera_id = im.camera_id + camera_ids.append(camera_id) + + # camera intrinsics + cam = manager.cameras[camera_id] + fx, fy, cx, cy = cam.fx, cam.fy, cam.cx, cam.cy + K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) + K[:2, :] /= factor + Ks_dict[camera_id] = K + + # Get distortion parameters. + type_ = cam.camera_type + if type_ == 0 or type_ == "SIMPLE_PINHOLE": + params = np.empty(0, dtype=np.float32) + camtype = "perspective" + elif type_ == 1 or type_ == "PINHOLE": + params = np.empty(0, dtype=np.float32) + camtype = "perspective" + if type_ == 2 or type_ == "SIMPLE_RADIAL": + params = np.array([cam.k1, 0.0, 0.0, 0.0], dtype=np.float32) + camtype = "perspective" + elif type_ == 3 or type_ == "RADIAL": + params = np.array([cam.k1, cam.k2, 0.0, 0.0], dtype=np.float32) + camtype = "perspective" + elif type_ == 4 or type_ == "OPENCV": + params = np.array([cam.k1, cam.k2, cam.p1, cam.p2], dtype=np.float32) + camtype = "perspective" + elif type_ == 5 or type_ == "OPENCV_FISHEYE": + params = np.array([cam.k1, cam.k2, cam.k3, cam.k4], dtype=np.float32) + camtype = "fisheye" + assert ( + camtype == "perspective" # type: ignore + ), f"Only support perspective camera model, got {type_}" + + params_dict[camera_id] = params # type: ignore + + # image size + imsize_dict[camera_id] = (cam.width // factor, cam.height // factor) + + print( + f"[Parser] {len(imdata)} images, taken by {len(set(camera_ids))} cameras." + ) + + if len(imdata) == 0: + raise ValueError("No images found in COLMAP.") + if not (type_ == 0 or type_ == 1): # type: ignore + print("Warning: COLMAP Camera is not PINHOLE. Images have distortion.") + + w2c_mats = np.stack(w2c_mats, axis=0) + + # Convert extrinsics to camera-to-world. + camtoworlds = np.linalg.inv(w2c_mats) + + # Image names from COLMAP. No need for permuting the poses according to + # image names anymore. + image_names = [imdata[k].name for k in imdata] + + # Previous Nerf results were generated with images sorted by filename, + # ensure metrics are reported on the same test set. + inds = np.argsort(image_names) + image_names = [image_names[i] for i in inds] + camtoworlds = camtoworlds[inds] + camera_ids = [camera_ids[i] for i in inds] + + # Load images. + if factor > 1: + image_dir_suffix = f"_{factor}" + else: + image_dir_suffix = "" + colmap_image_dir = os.path.join(data_dir, image_folder) + image_dir = os.path.join(data_dir, image_folder + image_dir_suffix) + for d in [image_dir, colmap_image_dir]: + if not os.path.exists(d): + raise ValueError(f"Image folder {d} does not exist.") + + # Downsampled images may have different names vs images used for COLMAP, + # so we need to map between the two sorted lists of files. + colmap_files = sorted(_get_rel_paths(colmap_image_dir)) + image_files = sorted(_get_rel_paths(image_dir)) + colmap_to_image = dict(zip(colmap_files, image_files)) + image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names] + + # 3D points and {image_name -> [point_idx]} + points = manager.points3D.astype(np.float32) # type: ignore + points_err = manager.point3D_errors.astype(np.float32) # type: ignore + points_rgb = manager.point3D_colors.astype(np.uint8) # type: ignore + point_indices = dict() + + image_id_to_name = {v: k for k, v in manager.name_to_image_id.items()} + for point_id, data in manager.point3D_id_to_images.items(): + for image_id, _ in data: + image_name = image_id_to_name[image_id] + point_idx = manager.point3D_id_to_point3D_idx[point_id] + point_indices.setdefault(image_name, []).append(point_idx) + point_indices = { + k: np.array(v).astype(np.int32) for k, v in point_indices.items() + } + + # Normalize the world space. + if normalize: + T1 = similarity_from_cameras(camtoworlds) + camtoworlds = transform_cameras(T1, camtoworlds) + points = transform_points(T1, points) + + T2 = align_principle_axes(points) + camtoworlds = transform_cameras(T2, camtoworlds) + points = transform_points(T2, points) + + transform = T2 @ T1 + else: + transform = np.eye(4) + + self.image_names = image_names # List[str], (num_images,) + self.image_paths = image_paths # List[str], (num_images,) + self.camtoworlds = camtoworlds # np.ndarray, (num_images, 4, 4) + self.camera_ids = camera_ids # List[int], (num_images,) + self.Ks_dict = Ks_dict # Dict of camera_id -> K + self.params_dict = params_dict # Dict of camera_id -> params + self.imsize_dict = imsize_dict # Dict of camera_id -> (width, height) + self.points = points # np.ndarray, (num_points, 3) + self.points_err = points_err # np.ndarray, (num_points,) + self.points_rgb = points_rgb # np.ndarray, (num_points, 3) + self.point_indices = point_indices # Dict[str, np.ndarray], image_name -> [M,] + self.transform = transform # np.ndarray, (4, 4) + + # undistortion + self.mapx_dict = dict() + self.mapy_dict = dict() + self.roi_undist_dict = dict() + for camera_id in self.params_dict.keys(): + params = self.params_dict[camera_id] + if len(params) == 0: + continue # no distortion + assert camera_id in self.Ks_dict, f"Missing K for camera {camera_id}" + assert ( + camera_id in self.params_dict + ), f"Missing params for camera {camera_id}" + K = self.Ks_dict[camera_id] + width, height = self.imsize_dict[camera_id] + K_undist, roi_undist = cv2.getOptimalNewCameraMatrix( + K, params, (width, height), 0 + ) + mapx, mapy = cv2.initUndistortRectifyMap( + K, + params, + None, + K_undist, + (width, height), + cv2.CV_32FC1, # type: ignore + ) + self.Ks_dict[camera_id] = K_undist + self.mapx_dict[camera_id] = mapx + self.mapy_dict[camera_id] = mapy + self.roi_undist_dict[camera_id] = roi_undist # type: ignore + + # size of the scene measured by cameras + camera_locations = camtoworlds[:, :3, 3] + scene_center = np.mean(camera_locations, axis=0) + dists = np.linalg.norm(camera_locations - scene_center, axis=1) + self.scene_scale = np.max(dists) + + +class ReconfusionParser(BaseParser): + def __init__(self, data_dir: str, normalize: bool = False): + super().__init__(data_dir, 1, normalize, test_every=None) + + def get_num(p): + return p.split("_")[-1].removesuffix(".json") + + splits_per_num_input_frames = {} + num_input_frames = [ + int(get_num(p)) if get_num(p).isdigit() else get_num(p) + for p in sorted(glob(osp.join(data_dir, "train_test_split_*.json"))) + ] + for num_input_frames in num_input_frames: + with open( + osp.join( + data_dir, + f"train_test_split_{num_input_frames}.json", + ) + ) as f: + splits_per_num_input_frames[num_input_frames] = json.load(f) + self.splits_per_num_input_frames = splits_per_num_input_frames + + with open(osp.join(data_dir, "transforms.json")) as f: + metadata = json.load(f) + + image_names, image_paths, camtoworlds = [], [], [] + for frame in metadata["frames"]: + if frame["file_path"] is None: + image_path = image_name = None + else: + image_path = osp.join(data_dir, frame["file_path"]) + image_name = osp.basename(image_path) + image_paths.append(image_path) + image_names.append(image_name) + camtoworld = np.array(frame["transform_matrix"]) + if "applied_transform" in metadata: + applied_transform = np.concatenate( + [metadata["applied_transform"], [[0, 0, 0, 1]]], axis=0 + ) + camtoworld = applied_transform @ camtoworld + camtoworlds.append(camtoworld) + camtoworlds = np.array(camtoworlds) + camtoworlds[:, :, [1, 2]] *= -1 + + # Normalize the world space. + if normalize: + T1 = similarity_from_cameras(camtoworlds) + camtoworlds = transform_cameras(T1, camtoworlds) + self.transform = T1 + else: + self.transform = np.eye(4) + + self.image_names = image_names + self.image_paths = image_paths + self.camtoworlds = camtoworlds + self.camera_ids = list(range(len(image_paths))) + self.Ks_dict = { + i: np.array( + [ + [ + metadata.get("fl_x", frame.get("fl_x", None)), + 0.0, + metadata.get("cx", frame.get("cx", None)), + ], + [ + 0.0, + metadata.get("fl_y", frame.get("fl_y", None)), + metadata.get("cy", frame.get("cy", None)), + ], + [0.0, 0.0, 1.0], + ] + ) + for i, frame in enumerate(metadata["frames"]) + } + self.imsize_dict = { + i: ( + metadata.get("w", frame.get("w", None)), + metadata.get("h", frame.get("h", None)), + ) + for i, frame in enumerate(metadata["frames"]) + } + # When num_input_frames is None, use all frames for both training and + # testing. + # self.splits_per_num_input_frames[None] = { + # "train_ids": list(range(len(image_paths))), + # "test_ids": list(range(len(image_paths))), + # } + + # size of the scene measured by cameras + camera_locations = camtoworlds[:, :3, 3] + scene_center = np.mean(camera_locations, axis=0) + dists = np.linalg.norm(camera_locations - scene_center, axis=1) + self.scene_scale = np.max(dists) + + self.bounds = None + if osp.exists(osp.join(data_dir, "bounds.npy")): + self.bounds = np.load(osp.join(data_dir, "bounds.npy")) + scaling = np.linalg.norm(self.transform[0, :3]) + self.bounds = self.bounds / scaling + + +class Dataset(torch.utils.data.Dataset): + """A simple dataset class.""" + + def __init__( + self, + parser: BaseParser, + split: str = "train", + num_input_frames: Optional[int] = None, + patch_size: Optional[int] = None, + load_depths: bool = False, + load_mono_disps: bool = False, + ): + self.parser = parser + self.split = split + self.num_input_frames = num_input_frames + self.patch_size = patch_size + self.load_depths = load_depths + self.load_mono_disps = load_mono_disps + if load_mono_disps: + assert isinstance(parser, DirectParser) + assert parser.mono_disps is not None + if isinstance(parser, ReconfusionParser): + ids_per_split = parser.splits_per_num_input_frames[num_input_frames] + self.indices = ids_per_split[ + "train_ids" if split == "train" else "test_ids" + ] + else: + indices = np.arange(len(self.parser.image_names)) + if split == "train": + self.indices = ( + indices[indices % self.parser.test_every != 0] + if self.parser.test_every is not None + else indices + ) + else: + self.indices = ( + indices[indices % self.parser.test_every == 0] + if self.parser.test_every is not None + else indices + ) + + def __len__(self): + return len(self.indices) + + def __getitem__(self, item: int) -> Dict[str, Any]: + index = self.indices[item] + if isinstance(self.parser, DirectParser): + image = self.parser.imgs[index] + else: + image = iio.imread(self.parser.image_paths[index])[..., :3] + camera_id = self.parser.camera_ids[index] + K = self.parser.Ks_dict[camera_id].copy() # undistorted K + params = self.parser.params_dict.get(camera_id, None) + camtoworlds = self.parser.camtoworlds[index] + + x, y, w, h = 0, 0, image.shape[1], image.shape[0] + if params is not None and len(params) > 0: + # Images are distorted. Undistort them. + mapx, mapy = ( + self.parser.mapx_dict[camera_id], + self.parser.mapy_dict[camera_id], + ) + image = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR) + x, y, w, h = self.parser.roi_undist_dict[camera_id] + image = image[y : y + h, x : x + w] + + if self.patch_size is not None: + # Random crop. + h, w = image.shape[:2] + x = np.random.randint(0, max(w - self.patch_size, 1)) + y = np.random.randint(0, max(h - self.patch_size, 1)) + image = image[y : y + self.patch_size, x : x + self.patch_size] + K[0, 2] -= x + K[1, 2] -= y + + data = { + "K": torch.from_numpy(K).float(), + "camtoworld": torch.from_numpy(camtoworlds).float(), + "image": torch.from_numpy(image).float(), + "image_id": item, # the index of the image in the dataset + } + + if self.load_depths: + # projected points to image plane to get depths + worldtocams = np.linalg.inv(camtoworlds) + image_name = self.parser.image_names[index] + point_indices = self.parser.point_indices[image_name] + points_world = self.parser.points[point_indices] + points_cam = (worldtocams[:3, :3] @ points_world.T + worldtocams[:3, 3:4]).T + points_proj = (K @ points_cam.T).T + points = points_proj[:, :2] / points_proj[:, 2:3] # (M, 2) + depths = points_cam[:, 2] # (M,) + if self.patch_size is not None: + points[:, 0] -= x + points[:, 1] -= y + # filter out points outside the image + selector = ( + (points[:, 0] >= 0) + & (points[:, 0] < image.shape[1]) + & (points[:, 1] >= 0) + & (points[:, 1] < image.shape[0]) + & (depths > 0) + ) + points = points[selector] + depths = depths[selector] + data["points"] = torch.from_numpy(points).float() + data["depths"] = torch.from_numpy(depths).float() + if self.load_mono_disps: + data["mono_disps"] = torch.from_numpy(self.parser.mono_disps[index]).float() # type: ignore + + return data + + +def get_parser(parser_type: str, **kwargs) -> BaseParser: + if parser_type == "colmap": + parser = COLMAPParser(**kwargs) + elif parser_type == "direct": + parser = DirectParser(**kwargs) + elif parser_type == "reconfusion": + parser = ReconfusionParser(**kwargs) + else: + raise ValueError(f"Unknown parser type: {parser_type}") + return parser diff --git a/seva/eval.py b/seva/eval.py new file mode 100644 index 0000000000000000000000000000000000000000..48257f953c1465850dd76ff2c5bbb2a5b47e9d67 --- /dev/null +++ b/seva/eval.py @@ -0,0 +1,1990 @@ +import collections +import json +import math +import os +import re +import threading +from typing import List, Literal, Optional, Tuple, Union + +import gradio as gr +from colorama import Fore, Style, init + +init(autoreset=True) + +import imageio.v3 as iio +import numpy as np +import torch +import torch.nn.functional as F +import torchvision.transforms.functional as TF +from einops import repeat +from PIL import Image +from tqdm.auto import tqdm + +from seva.geometry import get_camera_dist, get_plucker_coordinates, to_hom_pose +from seva.sampling import ( + EulerEDMSampler, + MultiviewCFG, + MultiviewTemporalCFG, + VanillaCFG, +) +from seva.utils import seed_everything + +try: + # Check if version string contains 'dev' or 'nightly' + version = torch.__version__ + IS_TORCH_NIGHTLY = "dev" in version + if IS_TORCH_NIGHTLY: + torch._dynamo.config.cache_size_limit = 128 # type: ignore[assignment] + torch._dynamo.config.accumulated_cache_size_limit = 1024 # type: ignore[assignment] + torch._dynamo.config.force_parameter_static_shapes = False # type: ignore[assignment] +except Exception: + IS_TORCH_NIGHTLY = False + + +def pad_indices( + input_indices: List[int], + test_indices: List[int], + T: int, + padding_mode: Literal["first", "last", "none"] = "last", +): + assert padding_mode in ["last", "none"], "`first` padding is not supported yet." + if padding_mode == "last": + padded_indices = [ + i for i in range(T) if i not in (input_indices + test_indices) + ] + else: + padded_indices = [] + input_selects = list(range(len(input_indices))) + test_selects = list(range(len(test_indices))) + if max(input_indices) > max(test_indices): + # last elem from input + input_selects += [input_selects[-1]] * len(padded_indices) + input_indices = input_indices + padded_indices + sorted_inds = np.argsort(input_indices) + input_indices = [input_indices[ind] for ind in sorted_inds] + input_selects = [input_selects[ind] for ind in sorted_inds] + else: + # last elem from test + test_selects += [test_selects[-1]] * len(padded_indices) + test_indices = test_indices + padded_indices + sorted_inds = np.argsort(test_indices) + test_indices = [test_indices[ind] for ind in sorted_inds] + test_selects = [test_selects[ind] for ind in sorted_inds] + + if padding_mode == "last": + input_maps = np.array([-1] * T) + test_maps = np.array([-1] * T) + else: + input_maps = np.array([-1] * (len(input_indices) + len(test_indices))) + test_maps = np.array([-1] * (len(input_indices) + len(test_indices))) + input_maps[input_indices] = input_selects + test_maps[test_indices] = test_selects + return input_indices, test_indices, input_maps, test_maps + + +def assemble( + input, + test, + input_maps, + test_maps, +): + T = len(input_maps) + assembled = torch.zeros_like(test[-1:]).repeat_interleave(T, dim=0) + assembled[input_maps != -1] = input[input_maps[input_maps != -1]] + assembled[test_maps != -1] = test[test_maps[test_maps != -1]] + assert np.logical_xor(input_maps != -1, test_maps != -1).all() + return assembled + + +def get_resizing_factor( + target_shape: Tuple[int, int], # H, W + current_shape: Tuple[int, int], # H, W + cover_target: bool = True, + # If True, the output shape will fully cover the target shape. + # If No, the target shape will fully cover the output shape. +) -> float: + r_bound = target_shape[1] / target_shape[0] + aspect_r = current_shape[1] / current_shape[0] + if r_bound >= 1.0: + if cover_target: + if aspect_r >= r_bound: + factor = min(target_shape) / min(current_shape) + elif aspect_r < 1.0: + factor = max(target_shape) / min(current_shape) + else: + factor = max(target_shape) / max(current_shape) + else: + if aspect_r >= r_bound: + factor = max(target_shape) / max(current_shape) + elif aspect_r < 1.0: + factor = min(target_shape) / max(current_shape) + else: + factor = min(target_shape) / min(current_shape) + else: + if cover_target: + if aspect_r <= r_bound: + factor = min(target_shape) / min(current_shape) + elif aspect_r > 1.0: + factor = max(target_shape) / min(current_shape) + else: + factor = max(target_shape) / max(current_shape) + else: + if aspect_r <= r_bound: + factor = max(target_shape) / max(current_shape) + elif aspect_r > 1.0: + factor = min(target_shape) / max(current_shape) + else: + factor = min(target_shape) / min(current_shape) + return factor + + +def get_unique_embedder_keys_from_conditioner(conditioner): + keys = [x.input_key for x in conditioner.embedders if x.input_key is not None] + keys = [item for sublist in keys for item in sublist] # Flatten list + return set(keys) + + +def get_wh_with_fixed_shortest_side(w, h, size): + # size is smaller or equal to zero, we return original w h + if size is None or size <= 0: + return w, h + if w < h: + new_w = size + new_h = int(size * h / w) + else: + new_h = size + new_w = int(size * w / h) + return new_w, new_h + + +def load_img_and_K( + image_path_or_size: Union[str, torch.Size], + size: Optional[Union[int, Tuple[int, int]]], + scale: float = 1.0, + center: Tuple[float, float] = (0.5, 0.5), + K: torch.Tensor | None = None, + size_stride: int = 1, + center_crop: bool = False, + image_as_tensor: bool = True, + context_rgb: np.ndarray | None = None, + device: str = "cuda", +): + if isinstance(image_path_or_size, torch.Size): + image = Image.new("RGBA", image_path_or_size[::-1]) + else: + image = Image.open(image_path_or_size).convert("RGBA") + + w, h = image.size + if size is None: + size = (w, h) + + image = np.array(image).astype(np.float32) / 255 + if image.shape[-1] == 4: + rgb, alpha = image[:, :, :3], image[:, :, 3:] + if context_rgb is not None: + image = rgb * alpha + context_rgb * (1 - alpha) + else: + image = rgb * alpha + (1 - alpha) + image = image.transpose(2, 0, 1) + image = torch.from_numpy(image).to(dtype=torch.float32) + image = image.unsqueeze(0) + + if isinstance(size, (tuple, list)): + # => if size is a tuple or list, we first rescale to fully cover the `size` + # area and then crop the `size` area from the rescale image + W, H = size + else: + # => if size is int, we rescale the image to fit the shortest side to size + # => if size is None, no rescaling is applied + W, H = get_wh_with_fixed_shortest_side(w, h, size) + W, H = ( + math.floor(W / size_stride + 0.5) * size_stride, + math.floor(H / size_stride + 0.5) * size_stride, + ) + + rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w)) + resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)] + image = torch.nn.functional.interpolate( + image, resize_size, mode="area", antialias=False + ) + if scale < 1.0: + pw = math.ceil((W - resize_size[1]) * 0.5) + ph = math.ceil((H - resize_size[0]) * 0.5) + image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0) + + cy_center = int(center[1] * image.shape[-2]) + cx_center = int(center[0] * image.shape[-1]) + if center_crop: + side = min(H, W) + ct = max(0, cy_center - side // 2) + cl = max(0, cx_center - side // 2) + ct = min(ct, image.shape[-2] - side) + cl = min(cl, image.shape[-1] - side) + image = TF.crop(image, top=ct, left=cl, height=side, width=side) + else: + ct = max(0, cy_center - H // 2) + cl = max(0, cx_center - W // 2) + ct = min(ct, image.shape[-2] - H) + cl = min(cl, image.shape[-1] - W) + image = TF.crop(image, top=ct, left=cl, height=H, width=W) + + if K is not None: + K = K.clone() + if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1): + K[:2] *= K.new_tensor([rw, rh])[:, None] # normalized K + else: + K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] # unnormalized K + K[:2, 2] -= K.new_tensor([cl, ct]) + + if image_as_tensor: + # tensor of shape (1, 3, H, W) with values ranging from (-1, 1) + image = image.to(device) * 2.0 - 1.0 + else: + # PIL Image with values ranging from (0, 255) + image = image.permute(0, 2, 3, 1).numpy()[0] + image = Image.fromarray((image * 255).astype(np.uint8)) + return image, K + + +def transform_img_and_K( + image: torch.Tensor, + size: Union[int, Tuple[int, int]], + scale: float = 1.0, + center: Tuple[float, float] = (0.5, 0.5), + K: torch.Tensor | None = None, + size_stride: int = 1, + mode: str = "crop", +): + assert mode in [ + "crop", + "pad", + "stretch", + ], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}" + + h, w = image.shape[-2:] + if isinstance(size, (tuple, list)): + # => if size is a tuple or list, we first rescale to fully cover the `size` + # area and then crop the `size` area from the rescale image + W, H = size + else: + # => if size is int, we rescale the image to fit the shortest side to size + # => if size is None, no rescaling is applied + W, H = get_wh_with_fixed_shortest_side(w, h, size) + W, H = ( + math.floor(W / size_stride + 0.5) * size_stride, + math.floor(H / size_stride + 0.5) * size_stride, + ) + + if mode == "stretch": + rh, rw = H, W + else: + rfs = get_resizing_factor( + (H, W), + (h, w), + cover_target=mode != "pad", + ) + (rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)] + + rh, rw = int(rh / scale), int(rw / scale) + image = torch.nn.functional.interpolate( + image, (rh, rw), mode="area", antialias=False + ) + + cy_center = int(center[1] * image.shape[-2]) + cx_center = int(center[0] * image.shape[-1]) + if mode != "pad": + ct = max(0, cy_center - H // 2) + cl = max(0, cx_center - W // 2) + ct = min(ct, image.shape[-2] - H) + cl = min(cl, image.shape[-1] - W) + image = TF.crop(image, top=ct, left=cl, height=H, width=W) + pl, pt = 0, 0 + else: + pt = max(0, H // 2 - cy_center) + pl = max(0, W // 2 - cx_center) + pb = max(0, H - pt - image.shape[-2]) + pr = max(0, W - pl - image.shape[-1]) + image = TF.pad( + image, + [pl, pt, pr, pb], + ) + cl, ct = 0, 0 + + if K is not None: + K = K.clone() + # K[:, :2, 2] += K.new_tensor([pl, pt]) + if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1): + K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] # normalized K + else: + K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] # unnormalized K + K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct]) + + return image, K + + +lowvram_mode = False + + +def set_lowvram_mode(mode): + global lowvram_mode + lowvram_mode = mode + + +def load_model(model, device: str = "cuda"): + model.to(device) + + +def unload_model(model): + global lowvram_mode + if lowvram_mode: + model.cpu() + torch.cuda.empty_cache() + + +def infer_prior_stats( + T, + num_input_frames, + num_total_frames, + version_dict, +): + options = version_dict["options"] + chunk_strategy = options.get("chunk_strategy", "nearest") + T_first_pass = T[0] if isinstance(T, (list, tuple)) else T + T_second_pass = T[1] if isinstance(T, (list, tuple)) else T + # get traj_prior_c2ws for 2-pass sampling + if chunk_strategy.startswith("interp"): + # Start and end have alreay taken up two slots + # +1 means we need X + 1 prior frames to bound X times forwards for all test frames + + # Tuning up `num_prior_frames_ratio` is helpful when you observe sudden jump in the + # generated frames due to insufficient prior frames. This option is effective for + # complicated trajectory and when `interp` strategy is used (usually semi-dense-view + # regime). Recommended range is [1.0 (default), 1.5]. + if num_input_frames >= options.get("num_input_semi_dense", 9): + num_prior_frames = ( + math.ceil( + num_total_frames + / (T_second_pass - 2) + * options.get("num_prior_frames_ratio", 1.0) + ) + + 1 + ) + + if num_prior_frames + num_input_frames < T_first_pass: + num_prior_frames = T_first_pass - num_input_frames + + num_prior_frames = max( + num_prior_frames, + options.get("num_prior_frames", 0), + ) + + T_first_pass = num_prior_frames + num_input_frames + + if "gt" in chunk_strategy: + T_second_pass = T_second_pass + num_input_frames + + # Dynamically update context window length. + version_dict["T"] = [T_first_pass, T_second_pass] + + else: + num_prior_frames = ( + math.ceil( + num_total_frames + / ( + T_second_pass + - 2 + - (num_input_frames if "gt" in chunk_strategy else 0) + ) + * options.get("num_prior_frames_ratio", 1.0) + ) + + 1 + ) + + if num_prior_frames + num_input_frames < T_first_pass: + num_prior_frames = T_first_pass - num_input_frames + + num_prior_frames = max( + num_prior_frames, + options.get("num_prior_frames", 0), + ) + else: + num_prior_frames = max( + T_first_pass - num_input_frames, + options.get("num_prior_frames", 0), + ) + + if num_input_frames >= options.get("num_input_semi_dense", 9): + T_first_pass = num_prior_frames + num_input_frames + + # Dynamically update context window length. + version_dict["T"] = [T_first_pass, T_second_pass] + + return num_prior_frames + + +def infer_prior_inds( + c2ws, + num_prior_frames, + input_frame_indices, + options, +): + chunk_strategy = options.get("chunk_strategy", "nearest") + if chunk_strategy.startswith("interp"): + prior_frame_indices = np.array( + [i for i in range(c2ws.shape[0]) if i not in input_frame_indices] + ) + prior_frame_indices = prior_frame_indices[ + np.ceil( + np.linspace( + 0, prior_frame_indices.shape[0] - 1, num_prior_frames, endpoint=True + ) + ).astype(int) + ] # having a ceil here is actually safer for corner case + else: + prior_frame_indices = [] + while len(prior_frame_indices) < num_prior_frames: + closest_distance = np.abs( + np.arange(c2ws.shape[0])[None] + - np.concatenate( + [np.array(input_frame_indices), np.array(prior_frame_indices)] + )[:, None] + ).min(0) + prior_frame_indices.append(np.argsort(closest_distance)[-1]) + return np.sort(prior_frame_indices) + + +def compute_relative_inds( + source_inds, + target_inds, +): + assert len(source_inds) > 2 + # compute relative indices of target_inds within source_inds + relative_inds = [] + for ind in target_inds: + if ind in source_inds: + relative_ind = int(np.where(source_inds == ind)[0][0]) + elif ind < source_inds[0]: + # extrapolate + relative_ind = -((source_inds[0] - ind) / (source_inds[1] - source_inds[0])) + elif ind > source_inds[-1]: + # extrapolate + relative_ind = len(source_inds) + ( + (ind - source_inds[-1]) / (source_inds[-1] - source_inds[-2]) + ) + else: + # interpolate + lower_inds = source_inds[source_inds < ind] + upper_inds = source_inds[source_inds > ind] + if len(lower_inds) > 0 and len(upper_inds) > 0: + lower_ind = lower_inds[-1] + upper_ind = upper_inds[0] + relative_lower_ind = int(np.where(source_inds == lower_ind)[0][0]) + relative_upper_ind = int(np.where(source_inds == upper_ind)[0][0]) + relative_ind = relative_lower_ind + (ind - lower_ind) / ( + upper_ind - lower_ind + ) * (relative_upper_ind - relative_lower_ind) + else: + # Out of range + relative_inds.append(float("nan")) # Or some other placeholder + relative_inds.append(relative_ind) + return relative_inds + + +def find_nearest_source_inds( + source_c2ws, + target_c2ws, + nearest_num=1, + mode="translation", +): + dists = get_camera_dist(source_c2ws, target_c2ws, mode=mode).cpu().numpy() + sorted_inds = np.argsort(dists, axis=0).T + return sorted_inds[:, :nearest_num] + + +def chunk_input_and_test( + T, + input_c2ws, + test_c2ws, + input_ords, # orders + test_ords, # orders + options, + task: str = "img2img", + chunk_strategy: str = "gt", + gt_input_inds: list = [], +): + M, N = input_c2ws.shape[0], test_c2ws.shape[0] + + chunks = [] + if chunk_strategy.startswith("gt"): + assert len(gt_input_inds) < T, ( + f"Number of gt input frames {len(gt_input_inds)} should be " + f"less than {T} when `gt` chunking strategy is used." + ) + assert ( + list(range(M)) == gt_input_inds + ), "All input_c2ws should be gt when `gt` chunking strategy is used." + + # LEGACY CHUNKING STRATEGY + # num_test_per_chunk = T - len(gt_input_inds) + # test_inds_per_chunk = [i for i in range(T) if i not in gt_input_inds] + # for i in range(0, test_c2ws.shape[0], num_test_per_chunk): + # chunk = ["NULL"] * T + # for j, k in enumerate(gt_input_inds): + # chunk[k] = f"!{j:03d}" + # for j, k in enumerate( + # test_inds_per_chunk[: test_c2ws[i : i + num_test_per_chunk].shape[0]] + # ): + # chunk[k] = f">{i + j:03d}" + # chunks.append(chunk) + + num_test_seen = 0 + while num_test_seen < N: + chunk = [f"!{i:03d}" for i in gt_input_inds] + if chunk_strategy != "gt" and num_test_seen > 0: + pseudo_num_ratio = options.get("pseudo_num_ratio", 0.33) + if (N - num_test_seen) >= math.floor( + (T - len(gt_input_inds)) * pseudo_num_ratio + ): + pseudo_num = math.ceil((T - len(gt_input_inds)) * pseudo_num_ratio) + else: + pseudo_num = (T - len(gt_input_inds)) - (N - num_test_seen) + pseudo_num = min(pseudo_num, options.get("pseudo_num_max", 10000)) + + if "ltr" in chunk_strategy: + chunk.extend( + [ + f"!{i + len(gt_input_inds):03d}" + for i in range(num_test_seen - pseudo_num, num_test_seen) + ] + ) + elif "nearest" in chunk_strategy: + source_inds = np.concatenate( + [ + find_nearest_source_inds( + test_c2ws[:num_test_seen], + test_c2ws[num_test_seen:], + nearest_num=1, # pseudo_num, + mode="rotation", + ), + find_nearest_source_inds( + test_c2ws[:num_test_seen], + test_c2ws[num_test_seen:], + nearest_num=1, # pseudo_num, + mode="translation", + ), + ], + axis=1, + ) + ####### [HACK ALERT] keep running until pseudo num is stablized ######## + temp_pseudo_num = pseudo_num + while True: + nearest_source_inds = np.concatenate( + [ + np.sort( + [ + ind + for (ind, _) in collections.Counter( + [ + item + for item in source_inds[ + : T + - len(gt_input_inds) + - temp_pseudo_num + ] + .flatten() + .tolist() + if item + != ( + num_test_seen - 1 + ) # exclude the last one here + ] + ).most_common(pseudo_num - 1) + ], + ).astype(int), + [num_test_seen - 1], # always keep the last one + ] + ) + if len(nearest_source_inds) >= temp_pseudo_num: + break # stablized + else: + temp_pseudo_num = len(nearest_source_inds) + pseudo_num = len(nearest_source_inds) + ######################################################################## + chunk.extend( + [f"!{i + len(gt_input_inds):03d}" for i in nearest_source_inds] + ) + else: + raise NotImplementedError( + f"Chunking strategy {chunk_strategy} for the first pass is not implemented." + ) + + chunk.extend( + [ + f">{i:03d}" + for i in range( + num_test_seen, + min(num_test_seen + T - len(gt_input_inds) - pseudo_num, N), + ) + ] + ) + else: + chunk.extend( + [ + f">{i:03d}" + for i in range( + num_test_seen, + min(num_test_seen + T - len(gt_input_inds), N), + ) + ] + ) + + num_test_seen += sum([1 for c in chunk if c.startswith(">")]) + if len(chunk) < T: + chunk.extend(["NULL"] * (T - len(chunk))) + chunks.append(chunk) + + elif chunk_strategy.startswith("nearest"): + input_imgs = np.array([f"!{i:03d}" for i in range(M)]) + test_imgs = np.array([f">{i:03d}" for i in range(N)]) + + match = re.match(r"^nearest-(\d+)$", chunk_strategy) + if match: + nearest_num = int(match.group(1)) + assert ( + nearest_num < T + ), f"Nearest number of {nearest_num} should be less than {T}." + source_inds = find_nearest_source_inds( + input_c2ws, + test_c2ws, + nearest_num=nearest_num, + mode="translation", # during the second pass, consider translation only is enough + ) + + for i in range(0, N, T - nearest_num): + nearest_source_inds = np.sort( + [ + ind + for (ind, _) in collections.Counter( + source_inds[i : i + T - nearest_num].flatten().tolist() + ).most_common(nearest_num) + ] + ) + chunk = ( + input_imgs[nearest_source_inds].tolist() + + test_imgs[i : i + T - nearest_num].tolist() + ) + chunks.append(chunk + ["NULL"] * (T - len(chunk))) + + else: + # do not always condition on gt cond frames + if "gt" not in chunk_strategy: + gt_input_inds = [] + + source_inds = find_nearest_source_inds( + input_c2ws, + test_c2ws, + nearest_num=1, + mode="translation", # during the second pass, consider translation only is enough + )[:, 0] + + test_inds_per_input = {} + for test_idx, input_idx in enumerate(source_inds): + if input_idx not in test_inds_per_input: + test_inds_per_input[input_idx] = [] + test_inds_per_input[input_idx].append(test_idx) + + num_test_seen = 0 + chunk = input_imgs[gt_input_inds].tolist() + candidate_input_inds = sorted(list(test_inds_per_input.keys())) + + while num_test_seen < N: + input_idx = candidate_input_inds[0] + test_inds = test_inds_per_input[input_idx] + input_is_cond = input_idx in gt_input_inds + prefix_inds = [] if input_is_cond else [input_idx] + + if len(chunk) == T - len(prefix_inds) or not candidate_input_inds: + if chunk: + chunk += ["NULL"] * (T - len(chunk)) + chunks.append(chunk) + chunk = input_imgs[gt_input_inds].tolist() + if num_test_seen >= N: + break + continue + + candidate_chunk = ( + input_imgs[prefix_inds].tolist() + test_imgs[test_inds].tolist() + ) + + space_left = T - len(chunk) + if len(candidate_chunk) <= space_left: + chunk.extend(candidate_chunk) + num_test_seen += len(test_inds) + candidate_input_inds.pop(0) + else: + chunk.extend(candidate_chunk[:space_left]) + num_input_idx = 0 if input_is_cond else 1 + num_test_seen += space_left - num_input_idx + test_inds_per_input[input_idx] = test_inds[ + space_left - num_input_idx : + ] + + if len(chunk) == T: + chunks.append(chunk) + chunk = input_imgs[gt_input_inds].tolist() + + if chunk and chunk != input_imgs[gt_input_inds].tolist(): + chunks.append(chunk + ["NULL"] * (T - len(chunk))) + + elif chunk_strategy.startswith("interp"): + # `interp` chunk requires ordering info + assert input_ords is not None and test_ords is not None, ( + "When using `interp` chunking strategy, ordering of input " + "and test frames should be provided." + ) + + # if chunk_strategy is `interp*`` and task is `img2trajvid*`, we will not + # use input views since their order info within target views is unknown + if "img2trajvid" in task: + assert ( + list(range(len(gt_input_inds))) == gt_input_inds + ), "`img2trajvid` task should put `gt_input_inds` in start." + input_c2ws = input_c2ws[ + [ind for ind in range(M) if ind not in gt_input_inds] + ] + input_ords = [ + input_ords[ind] for ind in range(M) if ind not in gt_input_inds + ] + M = input_c2ws.shape[0] + + input_ords = [0] + input_ords # this is a hack accounting for test views + # before the first input view + input_ords[-1] += 0.01 # this is a hack ensuring last test stop is included + # in the last forward when input_ords[-1] == test_ords[-1] + input_ords = np.array(input_ords)[:, None] + input_ords_ = np.concatenate([input_ords[1:], np.full((1, 1), np.inf)]) + test_ords = np.array(test_ords)[None] + + in_stop_ranges = np.logical_and( + np.repeat(input_ords, N, axis=1) <= np.repeat(test_ords, M + 1, axis=0), + np.repeat(input_ords_, N, axis=1) > np.repeat(test_ords, M + 1, axis=0), + ) # (M, N) + assert (in_stop_ranges.sum(1) <= T - 2).all(), ( + "More input frames need to be sampled during the first pass to ensure " + f"#test frames during each forard in the second pass will not exceed {T - 2}." + ) + if input_ords[1, 0] <= test_ords[0, 0]: + assert not in_stop_ranges[0].any() + if input_ords[-1, 0] >= test_ords[0, -1]: + assert not in_stop_ranges[-1].any() + + gt_chunk = ( + [f"!{i:03d}" for i in gt_input_inds] if "gt" in chunk_strategy else [] + ) + chunk = gt_chunk + [] + # any test views before the first input views + if in_stop_ranges[0].any(): + for j, in_range in enumerate(in_stop_ranges[0]): + if in_range: + chunk.append(f">{j:03d}") + in_stop_ranges = in_stop_ranges[1:] + + i = 0 + base_i = len(gt_input_inds) if "img2trajvid" in task else 0 + chunk.append(f"!{i + base_i:03d}") + while i < len(in_stop_ranges): + in_stop_range = in_stop_ranges[i] + if not in_stop_range.any(): + i += 1 + continue + + input_left = i + 1 < M + space_left = T - len(chunk) + if sum(in_stop_range) + input_left <= space_left: + for j, in_range in enumerate(in_stop_range): + if in_range: + chunk.append(f">{j:03d}") + i += 1 + if input_left: + chunk.append(f"!{i + base_i:03d}") + + else: + chunk += ["NULL"] * space_left + chunks.append(chunk) + chunk = gt_chunk + [f"!{i + base_i:03d}"] + + if len(chunk) > 1: + chunk += ["NULL"] * (T - len(chunk)) + chunks.append(chunk) + + else: + raise NotImplementedError + + ( + input_inds_per_chunk, + input_sels_per_chunk, + test_inds_per_chunk, + test_sels_per_chunk, + ) = ( + [], + [], + [], + [], + ) + for chunk in chunks: + input_inds = [ + int(img.removeprefix("!")) for img in chunk if img.startswith("!") + ] + input_sels = [chunk.index(img) for img in chunk if img.startswith("!")] + test_inds = [int(img.removeprefix(">")) for img in chunk if img.startswith(">")] + test_sels = [chunk.index(img) for img in chunk if img.startswith(">")] + input_inds_per_chunk.append(input_inds) + input_sels_per_chunk.append(input_sels) + test_inds_per_chunk.append(test_inds) + test_sels_per_chunk.append(test_sels) + + if options.get("sampler_verbose", True): + + def colorize(item): + if item.startswith("!"): + return f"{Fore.RED}{item}{Style.RESET_ALL}" # Red for items starting with '!' + elif item.startswith(">"): + return f"{Fore.GREEN}{item}{Style.RESET_ALL}" # Green for items starting with '>' + return item # Default color if neither '!' nor '>' + + print("\nchunks:") + for chunk in chunks: + print(", ".join(colorize(item) for item in chunk)) + + return ( + chunks, + input_inds_per_chunk, # ordering of input in raw sequence + input_sels_per_chunk, # ordering of input in one-forward sequence of length T + test_inds_per_chunk, # ordering of test in raw sequence + test_sels_per_chunk, # oredering of test in one-forward sequence of length T + ) + + +def is_k_in_dict(d, k): + return any(map(lambda x: x.startswith(k), d.keys())) + + +def get_k_from_dict(d, k): + media_d = {} + for key, value in d.items(): + if key == k: + return value + if key.startswith(k): + media = key.split("/")[-1] + if media == "raw": + return value + media_d[media] = value + if len(media_d) == 0: + return torch.tensor([]) + assert ( + len(media_d) == 1 + ), f"multiple media found in {d} for key {k}: {media_d.keys()}" + return media_d[media] + + +def update_kv_for_dict(d, k, v): + for key in d.keys(): + if key.startswith(k): + d[key] = v + return d + + +def extend_dict(ds, d): + for key in d.keys(): + if key in ds: + ds[key] = torch.cat([ds[key], d[key]], 0) + else: + ds[key] = d[key] + return ds + + +def replace_or_include_input_for_dict( + samples, + test_indices, + imgs, + c2w, + K, +): + samples_new = {} + for sample, value in samples.items(): + if "rgb" in sample: + imgs[test_indices] = ( + value[test_indices] if value.shape[0] == imgs.shape[0] else value + ).to(device=imgs.device, dtype=imgs.dtype) + samples_new[sample] = imgs + elif "c2w" in sample: + c2w[test_indices] = ( + value[test_indices] if value.shape[0] == c2w.shape[0] else value + ).to(device=c2w.device, dtype=c2w.dtype) + samples_new[sample] = c2w + elif "intrinsics" in sample: + K[test_indices] = ( + value[test_indices] if value.shape[0] == K.shape[0] else value + ).to(device=K.device, dtype=K.dtype) + samples_new[sample] = K + else: + samples_new[sample] = value + return samples_new + + +def decode_output( + samples, + T, + indices=None, +): + # decode model output into dict if it is not + if isinstance(samples, dict): + # model with postprocessor and outputs dict + for sample, value in samples.items(): + if isinstance(value, torch.Tensor): + value = value.detach().cpu() + elif isinstance(value, np.ndarray): + value = torch.from_numpy(value) + else: + value = torch.tensor(value) + + if indices is not None and value.shape[0] == T: + value = value[indices] + samples[sample] = value + else: + # model without postprocessor and outputs tensor (rgb) + samples = samples.detach().cpu() + + if indices is not None and samples.shape[0] == T: + samples = samples[indices] + samples = {"samples-rgb/image": samples} + + return samples + + +def save_output( + samples, + save_path, + video_save_fps=2, +): + os.makedirs(save_path, exist_ok=True) + for sample in samples: + media_type = "video" + if "/" in sample: + sample_, media_type = sample.split("/") + else: + sample_ = sample + + value = samples[sample] + if isinstance(value, torch.Tensor): + value = value.detach().cpu() + elif isinstance(value, np.ndarray): + value = torch.from_numpy(value) + else: + value = torch.tensor(value) + + if media_type == "image": + value = (value.permute(0, 2, 3, 1) + 1) / 2.0 + value = (value * 255).clamp(0, 255).to(torch.uint8) + iio.imwrite( + os.path.join(save_path, f"{sample_}.mp4") + if sample_ + else f"{save_path}.mp4", + value, + fps=video_save_fps, + macro_block_size=1, + ffmpeg_log_level="error", + ) + os.makedirs(os.path.join(save_path, sample_), exist_ok=True) + for i, s in enumerate(value): + iio.imwrite( + os.path.join(save_path, sample_, f"{i:03d}.png"), + s, + ) + elif media_type == "video": + value = (value.permute(0, 2, 3, 1) + 1) / 2.0 + value = (value * 255).clamp(0, 255).to(torch.uint8) + iio.imwrite( + os.path.join(save_path, f"{sample_}.mp4"), + value, + fps=video_save_fps, + macro_block_size=1, + ffmpeg_log_level="error", + ) + elif media_type == "raw": + torch.save( + value, + os.path.join(save_path, f"{sample_}.pt"), + ) + else: + pass + + +def create_transforms_simple(save_path, img_paths, img_whs, c2ws, Ks): + import os.path as osp + + out_frames = [] + for img_path, img_wh, c2w, K in zip(img_paths, img_whs, c2ws, Ks): + out_frame = { + "fl_x": K[0][0].item(), + "fl_y": K[1][1].item(), + "cx": K[0][2].item(), + "cy": K[1][2].item(), + "w": img_wh[0].item(), + "h": img_wh[1].item(), + "file_path": f"./{osp.relpath(img_path, start=save_path)}" + if img_path is not None + else None, + "transform_matrix": c2w.tolist(), + } + out_frames.append(out_frame) + out = { + # "camera_model": "PINHOLE", + "orientation_override": "none", + "frames": out_frames, + } + with open(osp.join(save_path, "transforms.json"), "w") as of: + json.dump(out, of, indent=5) + + +class GradioTrackedSampler(EulerEDMSampler): + """ + A thin wrapper around the EulerEDMSampler that allows tracking progress and + aborting sampling for gradio demo. + """ + + def __init__(self, abort_event: threading.Event, *args, **kwargs): + super().__init__(*args, **kwargs) + self.abort_event = abort_event + + def __call__( # type: ignore + self, + denoiser, + x: torch.Tensor, + scale: float | torch.Tensor, + cond: dict, + uc: dict | None = None, + num_steps: int | None = None, + verbose: bool = True, + global_pbar: gr.Progress | None = None, + **guider_kwargs, + ) -> torch.Tensor | None: + uc = cond if uc is None else uc + x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( + x, + cond, + uc, + num_steps, + ) + for i in self.get_sigma_gen(num_sigmas, verbose=verbose): + gamma = ( + min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) + if self.s_tmin <= sigmas[i] <= self.s_tmax + else 0.0 + ) + x = self.sampler_step( + s_in * sigmas[i], + s_in * sigmas[i + 1], + denoiser, + x, + scale, + cond, + uc, + gamma, + **guider_kwargs, + ) + # Allow tracking progress in gradio demo. + if global_pbar is not None: + global_pbar.update() + # Allow aborting sampling in gradio demo. + if self.abort_event.is_set(): + return None + return x + + +def create_samplers( + guider_types: int | list[int], + discretization, + num_frames: list[int] | None, + num_steps: int, + cfg_min: float = 1.0, + device: str | torch.device = "cuda", + abort_event: threading.Event | None = None, +): + guider_mapping = { + 0: VanillaCFG, + 1: MultiviewCFG, + 2: MultiviewTemporalCFG, + } + samplers = [] + if not isinstance(guider_types, (list, tuple)): + guider_types = [guider_types] + for i, guider_type in enumerate(guider_types): + if guider_type not in guider_mapping: + raise ValueError( + f"Invalid guider type {guider_type}. Must be one of {list(guider_mapping.keys())}" + ) + guider_cls = guider_mapping[guider_type] + guider_args = () + if guider_type > 0: + guider_args += (cfg_min,) + if guider_type == 2: + assert num_frames is not None + guider_args = (num_frames[i], cfg_min) + guider = guider_cls(*guider_args) + + if abort_event is not None: + sampler = GradioTrackedSampler( + abort_event, + discretization=discretization, + guider=guider, + num_steps=num_steps, + s_churn=0.0, + s_tmin=0.0, + s_tmax=999.0, + s_noise=1.0, + verbose=True, + device=device, + ) + else: + sampler = EulerEDMSampler( + discretization=discretization, + guider=guider, + num_steps=num_steps, + s_churn=0.0, + s_tmin=0.0, + s_tmax=999.0, + s_noise=1.0, + verbose=True, + device=device, + ) + samplers.append(sampler) + return samplers + + +def get_value_dict( + curr_imgs, + curr_imgs_clip, + curr_input_frame_indices, + curr_c2ws, + curr_Ks, + curr_input_camera_indices, + all_c2ws, + camera_scale, +): + assert sorted(curr_input_camera_indices) == sorted( + range(len(curr_input_camera_indices)) + ) + H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8 + + value_dict = {} + value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices] + value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs) + value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool) + value_dict["cond_frames_mask"][curr_input_frame_indices] = True + value_dict["cond_aug"] = 0.0 + + c2w = to_hom_pose(curr_c2ws.float()) + w2c = torch.linalg.inv(c2w) + + # camera centering + ref_c2ws = all_c2ws + camera_dist_2med = torch.norm( + ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values, + dim=-1, + ) + valid_mask = camera_dist_2med <= torch.clamp( + torch.quantile(camera_dist_2med, 0.97) * 10, + max=1e6, + ) + c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True) + w2c = torch.linalg.inv(c2w) + + # camera normalization + camera_dists = c2w[:, :3, 3].clone() + translation_scaling_factor = ( + camera_scale + if torch.isclose( + torch.norm(camera_dists[0]), + torch.zeros(1), + atol=1e-5, + ).any() + else (camera_scale / torch.norm(camera_dists[0])) + ) + w2c[:, :3, 3] *= translation_scaling_factor + c2w[:, :3, 3] *= translation_scaling_factor + value_dict["plucker_coordinate"], _ = get_plucker_coordinates( + extrinsics_src=w2c[0], + extrinsics=w2c, + intrinsics=curr_Ks.float().clone(), + mode="plucker", + rel_zero_translation=True, + target_size=(H // F, W // F), + return_grid_cam=True, + ) + + value_dict["c2w"] = c2w + value_dict["K"] = curr_Ks + value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool) + value_dict["camera_mask"][curr_input_camera_indices] = True + + return value_dict + + +def do_sample( + model, + ae, + conditioner, + denoiser, + sampler, + value_dict, + H, + W, + C, + F, + T, + cfg, + encoding_t=1, + decoding_t=1, + verbose=True, + global_pbar=None, + **_, +): + imgs = value_dict["cond_frames"].to("cuda") + input_masks = value_dict["cond_frames_mask"].to("cuda") + pluckers = value_dict["plucker_coordinate"].to("cuda") + + num_samples = [1, T] + with torch.inference_mode(), torch.autocast("cuda"): + load_model(ae) + load_model(conditioner) + latents = torch.nn.functional.pad( + ae.encode(imgs[input_masks], encoding_t), (0, 0, 0, 0, 0, 1), value=1.0 + ) + c_crossattn = repeat(conditioner(imgs[input_masks]).mean(0), "d -> n 1 d", n=T) + uc_crossattn = torch.zeros_like(c_crossattn) + c_replace = latents.new_zeros(T, *latents.shape[1:]) + c_replace[input_masks] = latents + uc_replace = torch.zeros_like(c_replace) + c_concat = torch.cat( + [ + repeat( + input_masks, + "n -> n 1 h w", + h=pluckers.shape[2], + w=pluckers.shape[3], + ), + pluckers, + ], + 1, + ) + uc_concat = torch.cat( + [pluckers.new_zeros(T, 1, *pluckers.shape[-2:]), pluckers], 1 + ) + c_dense_vector = pluckers + uc_dense_vector = c_dense_vector + c = { + "crossattn": c_crossattn, + "replace": c_replace, + "concat": c_concat, + "dense_vector": c_dense_vector, + } + uc = { + "crossattn": uc_crossattn, + "replace": uc_replace, + "concat": uc_concat, + "dense_vector": uc_dense_vector, + } + unload_model(ae) + unload_model(conditioner) + + additional_model_inputs = {"num_frames": T} + additional_sampler_inputs = { + "c2w": value_dict["c2w"].to("cuda"), + "K": value_dict["K"].to("cuda"), + "input_frame_mask": value_dict["cond_frames_mask"].to("cuda"), + } + if global_pbar is not None: + additional_sampler_inputs["global_pbar"] = global_pbar + + shape = (math.prod(num_samples), C, H // F, W // F) + randn = torch.randn(shape).to("cuda") + + load_model(model) + samples_z = sampler( + lambda input, sigma, c: denoiser( + model, + input, + sigma, + c, + **additional_model_inputs, + ), + randn, + scale=cfg, + cond=c, + uc=uc, + verbose=verbose, + **additional_sampler_inputs, + ) + if samples_z is None: + return + unload_model(model) + + load_model(ae) + samples = ae.decode(samples_z, decoding_t) + unload_model(ae) + + return samples + + +def run_one_scene( + task, + version_dict, + model, + ae, + conditioner, + denoiser, + image_cond, + camera_cond, + save_path, + use_traj_prior, + traj_prior_Ks, + traj_prior_c2ws, + seed=23, + gradio=False, + abort_event=None, + first_pass_pbar=None, + second_pass_pbar=None, +): + H, W, T, C, F, options = ( + version_dict["H"], + version_dict["W"], + version_dict["T"], + version_dict["C"], + version_dict["f"], + version_dict["options"], + ) + + if isinstance(image_cond, str): + image_cond = {"img": [image_cond]} + imgs_clip, imgs, img_size = [], [], None + for i, (img, K) in enumerate(zip(image_cond["img"], camera_cond["K"])): + if isinstance(img, str) or img is None: + img, K = load_img_and_K(img or img_size, None, K=K, device="cpu") # type: ignore + img_size = img.shape[-2:] + if options.get("L_short", -1) == -1: + img, K = transform_img_and_K( + img, + (W, H), + K=K[None], + mode=( + options.get("transform_input", "crop") + if i in image_cond["input_indices"] + else options.get("transform_target", "crop") + ), + scale=( + 1.0 + if i in image_cond["input_indices"] + else options.get("transform_scale", 1.0) + ), + ) + else: + downsample = 3 + assert options["L_short"] % F * 2**downsample == 0, ( + "Short side of the image should be divisible by " + f"F*2**{downsample}={F * 2**downsample}." + ) + img, K = transform_img_and_K( + img, + options["L_short"], + K=K[None], + size_stride=F * 2**downsample, + mode=( + options.get("transform_input", "crop") + if i in image_cond["input_indices"] + else options.get("transform_target", "crop") + ), + scale=( + 1.0 + if i in image_cond["input_indices"] + else options.get("transform_scale", 1.0) + ), + ) + version_dict["W"] = W = img.shape[-1] + version_dict["H"] = H = img.shape[-2] + K = K[0] + K[0] /= W + K[1] /= H + camera_cond["K"][i] = K + img_clip = img + elif isinstance(img, np.ndarray): + img_size = torch.Size(img.shape[:2]) + img = torch.as_tensor(img).permute(2, 0, 1) + img = img.unsqueeze(0) + img = img / 255.0 * 2.0 - 1.0 + if not gradio: + img, K = transform_img_and_K(img, (W, H), K=K[None]) + assert K is not None + K = K[0] + K[0] /= W + K[1] /= H + camera_cond["K"][i] = K + img_clip = img + else: + assert ( + False + ), f"Variable `img` got {type(img)} type which is not supported!!!" + imgs_clip.append(img_clip) + imgs.append(img) + imgs_clip = torch.cat(imgs_clip, dim=0) + imgs = torch.cat(imgs, dim=0) + + if traj_prior_Ks is not None: + assert img_size is not None + for i, prior_k in enumerate(traj_prior_Ks): + img, prior_k = load_img_and_K(img_size, None, K=prior_k, device="cpu") # type: ignore + img, prior_k = transform_img_and_K( + img, + (W, H), + K=prior_k[None], + mode=options.get( + "transform_target", "crop" + ), # mode for prior is always same as target + scale=options.get( + "transform_scale", 1.0 + ), # scale for prior is always same as target + ) + prior_k = prior_k[0] + prior_k[0] /= W + prior_k[1] /= H + traj_prior_Ks[i] = prior_k + + options["num_frames"] = T + discretization = denoiser.discretization + torch.cuda.empty_cache() + + seed_everything(seed) + + # Get Data + input_indices = image_cond["input_indices"] + input_imgs = imgs[input_indices] + input_imgs_clip = imgs_clip[input_indices] + input_c2ws = camera_cond["c2w"][input_indices] + input_Ks = camera_cond["K"][input_indices] + + test_indices = [i for i in range(len(imgs)) if i not in input_indices] + test_imgs = imgs[test_indices] + test_imgs_clip = imgs_clip[test_indices] + test_c2ws = camera_cond["c2w"][test_indices] + test_Ks = camera_cond["K"][test_indices] + + if options.get("save_input", True): + save_output( + {"/image": input_imgs}, + save_path=os.path.join(save_path, "input"), + video_save_fps=2, + ) + + if not use_traj_prior: + chunk_strategy = options.get("chunk_strategy", "gt") + + ( + _, + input_inds_per_chunk, + input_sels_per_chunk, + test_inds_per_chunk, + test_sels_per_chunk, + ) = chunk_input_and_test( + T, + input_c2ws, + test_c2ws, + input_indices, + test_indices, + options=options, + task=task, + chunk_strategy=chunk_strategy, + gt_input_inds=list(range(input_c2ws.shape[0])), + ) + print( + f"One pass - chunking with `{chunk_strategy}` strategy: total " + f"{len(input_inds_per_chunk)} forward(s) ..." + ) + + all_samples = {} + all_test_inds = [] + for i, ( + chunk_input_inds, + chunk_input_sels, + chunk_test_inds, + chunk_test_sels, + ) in tqdm( + enumerate( + zip( + input_inds_per_chunk, + input_sels_per_chunk, + test_inds_per_chunk, + test_sels_per_chunk, + ) + ), + total=len(input_inds_per_chunk), + leave=False, + ): + ( + curr_input_sels, + curr_test_sels, + curr_input_maps, + curr_test_maps, + ) = pad_indices( + chunk_input_sels, + chunk_test_sels, + T=T, + padding_mode=options.get("t_padding_mode", "last"), + ) + curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ + assemble( + input=x[chunk_input_inds], + test=y[chunk_test_inds], + input_maps=curr_input_maps, + test_maps=curr_test_maps, + ) + for x, y in zip( + [ + torch.cat( + [ + input_imgs, + get_k_from_dict(all_samples, "samples-rgb").to( + input_imgs.device + ), + ], + dim=0, + ), + torch.cat( + [ + input_imgs_clip, + get_k_from_dict(all_samples, "samples-rgb").to( + input_imgs.device + ), + ], + dim=0, + ), + torch.cat([input_c2ws, test_c2ws[all_test_inds]], dim=0), + torch.cat([input_Ks, test_Ks[all_test_inds]], dim=0), + ], # procedually append generated prior views to the input views + [test_imgs, test_imgs_clip, test_c2ws, test_Ks], + ) + ] + value_dict = get_value_dict( + curr_imgs.to("cuda"), + curr_imgs_clip.to("cuda"), + curr_input_sels + + [ + sel + for (ind, sel) in zip( + np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]], + curr_test_sels, + ) + if test_indices[ind] in image_cond["input_indices"] + ], + curr_c2ws, + curr_Ks, + curr_input_sels + + [ + sel + for (ind, sel) in zip( + np.array(chunk_test_inds)[curr_test_maps[curr_test_maps != -1]], + curr_test_sels, + ) + if test_indices[ind] in camera_cond["input_indices"] + ], + all_c2ws=camera_cond["c2w"], + camera_scale=options.get("camera_scale", 2.0), + ) + samplers = create_samplers( + options["guider_types"], + discretization, + [len(curr_imgs)], + options["num_steps"], + options["cfg_min"], + abort_event=abort_event, + ) + assert len(samplers) == 1 + samples = do_sample( + model, + ae, + conditioner, + denoiser, + samplers[0], + value_dict, + H, + W, + C, + F, + T=len(curr_imgs), + cfg=( + options["cfg"][0] + if isinstance(options["cfg"], (list, tuple)) + else options["cfg"] + ), + **{k: options[k] for k in options if k not in ["cfg", "T"]}, + ) + samples = decode_output( + samples, len(curr_imgs), chunk_test_sels + ) # decode into dict + if options.get("save_first_pass", False): + save_output( + replace_or_include_input_for_dict( + samples, + chunk_test_sels, + curr_imgs, + curr_c2ws, + curr_Ks, + ), + save_path=os.path.join(save_path, "first-pass", f"forward_{i}"), + video_save_fps=2, + ) + extend_dict(all_samples, samples) + all_test_inds.extend(chunk_test_inds) + else: + assert traj_prior_c2ws is not None, ( + "`traj_prior_c2ws` should be set when using 2-pass sampling. One " + "potential reason is that the amount of input frames is larger than " + "T. Set `num_prior_frames` manually to overwrite the infered stats." + ) + traj_prior_c2ws = torch.as_tensor( + traj_prior_c2ws, + device=input_c2ws.device, + dtype=input_c2ws.dtype, + ) + + if traj_prior_Ks is None: + traj_prior_Ks = test_Ks[:1].repeat_interleave( + traj_prior_c2ws.shape[0], dim=0 + ) + + traj_prior_imgs = imgs.new_zeros(traj_prior_c2ws.shape[0], *imgs.shape[1:]) + traj_prior_imgs_clip = imgs_clip.new_zeros( + traj_prior_c2ws.shape[0], *imgs_clip.shape[1:] + ) + + # ---------------------------------- first pass ---------------------------------- + T_first_pass = T[0] if isinstance(T, (list, tuple)) else T + T_second_pass = T[1] if isinstance(T, (list, tuple)) else T + chunk_strategy_first_pass = options.get( + "chunk_strategy_first_pass", "gt-nearest" + ) + ( + _, + input_inds_per_chunk, + input_sels_per_chunk, + prior_inds_per_chunk, + prior_sels_per_chunk, + ) = chunk_input_and_test( + T_first_pass, + input_c2ws, + traj_prior_c2ws, + input_indices, + image_cond["prior_indices"], + options=options, + task=task, + chunk_strategy=chunk_strategy_first_pass, + gt_input_inds=list(range(input_c2ws.shape[0])), + ) + print( + f"Two passes (first) - chunking with `{chunk_strategy_first_pass}` strategy: total " + f"{len(input_inds_per_chunk)} forward(s) ..." + ) + + all_samples = {} + all_prior_inds = [] + for i, ( + chunk_input_inds, + chunk_input_sels, + chunk_prior_inds, + chunk_prior_sels, + ) in tqdm( + enumerate( + zip( + input_inds_per_chunk, + input_sels_per_chunk, + prior_inds_per_chunk, + prior_sels_per_chunk, + ) + ), + total=len(input_inds_per_chunk), + leave=False, + ): + ( + curr_input_sels, + curr_prior_sels, + curr_input_maps, + curr_prior_maps, + ) = pad_indices( + chunk_input_sels, + chunk_prior_sels, + T=T_first_pass, + padding_mode=options.get("t_padding_mode", "last"), + ) + curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ + assemble( + input=x[chunk_input_inds], + test=y[chunk_prior_inds], + input_maps=curr_input_maps, + test_maps=curr_prior_maps, + ) + for x, y in zip( + [ + torch.cat( + [ + input_imgs, + get_k_from_dict(all_samples, "samples-rgb").to( + input_imgs.device + ), + ], + dim=0, + ), + torch.cat( + [ + input_imgs_clip, + get_k_from_dict(all_samples, "samples-rgb").to( + input_imgs.device + ), + ], + dim=0, + ), + torch.cat([input_c2ws, traj_prior_c2ws[all_prior_inds]], dim=0), + torch.cat([input_Ks, traj_prior_Ks[all_prior_inds]], dim=0), + ], # procedually append generated prior views to the input views + [ + traj_prior_imgs, + traj_prior_imgs_clip, + traj_prior_c2ws, + traj_prior_Ks, + ], + ) + ] + value_dict = get_value_dict( + curr_imgs.to("cuda"), + curr_imgs_clip.to("cuda"), + curr_input_sels, + curr_c2ws, + curr_Ks, + list(range(T_first_pass)), + all_c2ws=camera_cond["c2w"], + camera_scale=options.get("camera_scale", 2.0), + ) + samplers = create_samplers( + options["guider_types"], + discretization, + [T_first_pass, T_second_pass], + options["num_steps"], + options["cfg_min"], + abort_event=abort_event, + ) + samples = do_sample( + model, + ae, + conditioner, + denoiser, + ( + samplers[1] + if len(samplers) > 1 + and options.get("ltr_first_pass", False) + and chunk_strategy_first_pass != "gt" + and i > 0 + else samplers[0] + ), + value_dict, + H, + W, + C, + F, + cfg=( + options["cfg"][0] + if isinstance(options["cfg"], (list, tuple)) + else options["cfg"] + ), + T=T_first_pass, + global_pbar=first_pass_pbar, + **{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]}, + ) + if samples is None: + return + samples = decode_output( + samples, T_first_pass, chunk_prior_sels + ) # decode into dict + extend_dict(all_samples, samples) + all_prior_inds.extend(chunk_prior_inds) + + if options.get("save_first_pass", True): + save_output( + all_samples, + save_path=os.path.join(save_path, "first-pass"), + video_save_fps=5, + ) + video_path_0 = os.path.join(save_path, "first-pass", "samples-rgb.mp4") + yield video_path_0 + + # ---------------------------------- second pass ---------------------------------- + prior_indices = image_cond["prior_indices"] + assert ( + prior_indices is not None + ), "`prior_frame_indices` needs to be set if using 2-pass sampling." + prior_argsort = np.argsort(input_indices + prior_indices).tolist() + prior_indices = np.array(input_indices + prior_indices)[prior_argsort].tolist() + gt_input_inds = [prior_argsort.index(i) for i in range(input_c2ws.shape[0])] + + traj_prior_imgs = torch.cat( + [input_imgs, get_k_from_dict(all_samples, "samples-rgb")], dim=0 + )[prior_argsort] + traj_prior_imgs_clip = torch.cat( + [ + input_imgs_clip, + get_k_from_dict(all_samples, "samples-rgb"), + ], + dim=0, + )[prior_argsort] + traj_prior_c2ws = torch.cat([input_c2ws, traj_prior_c2ws], dim=0)[prior_argsort] + traj_prior_Ks = torch.cat([input_Ks, traj_prior_Ks], dim=0)[prior_argsort] + + update_kv_for_dict(all_samples, "samples-rgb", traj_prior_imgs) + update_kv_for_dict(all_samples, "samples-c2ws", traj_prior_c2ws) + update_kv_for_dict(all_samples, "samples-intrinsics", traj_prior_Ks) + + chunk_strategy = options.get("chunk_strategy", "nearest") + ( + _, + prior_inds_per_chunk, + prior_sels_per_chunk, + test_inds_per_chunk, + test_sels_per_chunk, + ) = chunk_input_and_test( + T_second_pass, + traj_prior_c2ws, + test_c2ws, + prior_indices, + test_indices, + options=options, + task=task, + chunk_strategy=chunk_strategy, + gt_input_inds=gt_input_inds, + ) + print( + f"Two passes (second) - chunking with `{chunk_strategy}` strategy: total " + f"{len(prior_inds_per_chunk)} forward(s) ..." + ) + + all_samples = {} + all_test_inds = [] + for i, ( + chunk_prior_inds, + chunk_prior_sels, + chunk_test_inds, + chunk_test_sels, + ) in tqdm( + enumerate( + zip( + prior_inds_per_chunk, + prior_sels_per_chunk, + test_inds_per_chunk, + test_sels_per_chunk, + ) + ), + total=len(prior_inds_per_chunk), + leave=False, + ): + ( + curr_prior_sels, + curr_test_sels, + curr_prior_maps, + curr_test_maps, + ) = pad_indices( + chunk_prior_sels, + chunk_test_sels, + T=T_second_pass, + padding_mode="last", + ) + curr_imgs, curr_imgs_clip, curr_c2ws, curr_Ks = [ + assemble( + input=x[chunk_prior_inds], + test=y[chunk_test_inds], + input_maps=curr_prior_maps, + test_maps=curr_test_maps, + ) + for x, y in zip( + [ + traj_prior_imgs, + traj_prior_imgs_clip, + traj_prior_c2ws, + traj_prior_Ks, + ], + [test_imgs, test_imgs_clip, test_c2ws, test_Ks], + ) + ] + value_dict = get_value_dict( + curr_imgs.to("cuda"), + curr_imgs_clip.to("cuda"), + curr_prior_sels, + curr_c2ws, + curr_Ks, + list(range(T_second_pass)), + all_c2ws=camera_cond["c2w"], + camera_scale=options.get("camera_scale", 2.0), + ) + samples = do_sample( + model, + ae, + conditioner, + denoiser, + samplers[1] if len(samplers) > 1 else samplers[0], + value_dict, + H, + W, + C, + F, + T=T_second_pass, + cfg=( + options["cfg"][1] + if isinstance(options["cfg"], (list, tuple)) + and len(options["cfg"]) > 1 + else options["cfg"] + ), + global_pbar=second_pass_pbar, + **{k: options[k] for k in options if k not in ["cfg", "T", "sampler"]}, + ) + if samples is None: + return + samples = decode_output( + samples, T_second_pass, chunk_test_sels + ) # decode into dict + if options.get("save_second_pass", False): + save_output( + replace_or_include_input_for_dict( + samples, + chunk_test_sels, + curr_imgs, + curr_c2ws, + curr_Ks, + ), + save_path=os.path.join(save_path, "second-pass", f"forward_{i}"), + video_save_fps=2, + ) + extend_dict(all_samples, samples) + all_test_inds.extend(chunk_test_inds) + all_samples = { + key: value[np.argsort(all_test_inds)] for key, value in all_samples.items() + } + save_output( + replace_or_include_input_for_dict( + all_samples, + test_indices, + imgs.clone(), + camera_cond["c2w"].clone(), + camera_cond["K"].clone(), + ) + if options.get("replace_or_include_input", False) + else all_samples, + save_path=save_path, + video_save_fps=options.get("video_save_fps", 2), + ) + video_path_1 = os.path.join(save_path, "samples-rgb.mp4") + yield video_path_1 diff --git a/seva/geometry.py b/seva/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..0065447137cd1d64ee21f2235570df9b2c57ec78 --- /dev/null +++ b/seva/geometry.py @@ -0,0 +1,811 @@ +from typing import Literal + +import numpy as np +import roma +import scipy.interpolate +import torch +import torch.nn.functional as F + +DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default + + +def get_camera_dist( + source_c2ws: torch.Tensor, # N x 3 x 4 + target_c2ws: torch.Tensor, # M x 3 x 4 + mode: str = "translation", +): + if mode == "rotation": + dists = torch.acos( + ( + ( + torch.matmul( + source_c2ws[:, None, :3, :3], + target_c2ws[None, :, :3, :3].transpose(-1, -2), + ) + .diagonal(offset=0, dim1=-2, dim2=-1) + .sum(-1) + - 1 + ) + / 2 + ).clamp(-1, 1) + ) * (180 / torch.pi) + elif mode == "translation": + dists = torch.norm( + source_c2ws[:, None, :3, 3] - target_c2ws[None, :, :3, 3], dim=-1 + ) + else: + raise NotImplementedError( + f"Mode {mode} is not implemented for finding nearest source indices." + ) + return dists + + +def to_hom(X): + # get homogeneous coordinates of the input + X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1) + return X_hom + + +def to_hom_pose(pose): + # get homogeneous coordinates of the input pose + if pose.shape[-2:] == (3, 4): + pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1) + pose_hom[:, :3, :] = pose + return pose_hom + return pose + + +def get_default_intrinsics( + fov_rad=DEFAULT_FOV_RAD, + aspect_ratio=1.0, +): + if not isinstance(fov_rad, torch.Tensor): + fov_rad = torch.tensor( + [fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad + ) + if aspect_ratio >= 1.0: # W >= H + focal_x = 0.5 / torch.tan(0.5 * fov_rad) + focal_y = focal_x * aspect_ratio + else: # W < H + focal_y = 0.5 / torch.tan(0.5 * fov_rad) + focal_x = focal_y / aspect_ratio + intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3)) + intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack( + [focal_x, focal_y, torch.ones_like(focal_x)], dim=-1 + ) + intrinsics[:, :, -1] = torch.tensor( + [0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype + ) + return intrinsics + + +def get_image_grid(img_h, img_w): + # add 0.5 is VERY important especially when your img_h and img_w + # is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5) + x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5) + Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W] + xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2] + return to_hom(xy_grid) # [HW,3] + + +def img2cam(X, cam_intr): + return X @ cam_intr.inverse().transpose(-1, -2) + + +def cam2world(X, pose): + X_hom = to_hom(X) + pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4] + return X_hom @ pose_inv.transpose(-1, -2) + + +def get_center_and_ray( + img_h, img_w, pose, intr, zero_center_for_debugging=False +): # [HW,2] + # given the intrinsic/extrinsic matrices, get the camera center and ray directions] + # assert(opt.camera.model=="perspective") + + # compute center and ray + grid_img = get_image_grid(img_h, img_w) # [HW,3] + grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3] + center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3] + + # transform from camera to world coordinates + grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3] + center_3D = cam2world(center_3D_cam, pose) # [B,HW,3] + ray = grid_3D - center_3D # [B,HW,3] + + return center_3D_cam if zero_center_for_debugging else center_3D, ray, grid_3D_cam + + +def get_plucker_coordinates( + extrinsics_src, + extrinsics, + intrinsics=None, + fov_rad=DEFAULT_FOV_RAD, + mode="plucker", + rel_zero_translation=True, + zero_center_for_debugging=False, + target_size=[72, 72], # 576-size image + return_grid_cam=False, # save for later use if want restore +): + if intrinsics is None: + intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device) + else: + # for some data preprocessed in the early stage (e.g., MVI and CO3D), + # intrinsics are expressed in raw pixel space (e.g., 576x576) instead + # of normalized image coordinates + if not ( + torch.all(intrinsics[:, :2, -1] >= 0) + and torch.all(intrinsics[:, :2, -1] <= 1) + ): + intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8 + # you should ensure the intrisics are expressed in + # resolution-independent normalized image coordinates just performing a + # very simple verification here checking if principal points are + # between 0 and 1 + assert ( + torch.all(intrinsics[:, :2, -1] >= 0) + and torch.all(intrinsics[:, :2, -1] <= 1) + ), "Intrinsics should be expressed in resolution-independent normalized image coordinates." + + c2w_src = torch.linalg.inv(extrinsics_src) + if not rel_zero_translation: + c2w_src[:3, 3] = c2w_src[3, :3] = 0.0 + # transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera + extrinsics_rel = torch.einsum( + "vnm,vmp->vnp", extrinsics, c2w_src[None].repeat(extrinsics.shape[0], 1, 1) + ) + + intrinsics[:, :2] *= extrinsics.new_tensor( + [ + target_size[1], # w + target_size[0], # h + ] + ).view(1, -1, 1) + centers, rays, grid_cam = get_center_and_ray( + img_h=target_size[0], + img_w=target_size[1], + pose=extrinsics_rel[:, :3, :], + intr=intrinsics, + zero_center_for_debugging=zero_center_for_debugging, + ) + + if mode == "plucker" or "v1" in mode: + rays = torch.nn.functional.normalize(rays, dim=-1) + plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1) + else: + raise ValueError(f"Unknown Plucker coordinate mode: {mode}") + + plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size) + if return_grid_cam: + return plucker, grid_cam.reshape(-1, *target_size, 3) + return plucker + + +def rt_to_mat4( + R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None +) -> torch.Tensor: + """ + Args: + R (torch.Tensor): (..., 3, 3). + t (torch.Tensor): (..., 3). + s (torch.Tensor): (...,). + + Returns: + torch.Tensor: (..., 4, 4) + """ + mat34 = torch.cat([R, t[..., None]], dim=-1) + if s is None: + bottom = ( + mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]]) + .reshape((1,) * (mat34.dim() - 2) + (1, 4)) + .expand(mat34.shape[:-2] + (1, 4)) + ) + else: + bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0) + mat4 = torch.cat([mat34, bottom], dim=-2) + return mat4 + + +def get_preset_pose_fov( + option: Literal[ + "orbit", + "spiral", + "lemniscate", + "zoom-in", + "zoom-out", + "dolly zoom-in", + "dolly zoom-out", + "move-forward", + "move-backward", + "move-up", + "move-down", + "move-left", + "move-right", + "roll", + ], + num_frames: int, + start_w2c: torch.Tensor, + look_at: torch.Tensor, + up_direction: torch.Tensor | None = None, + fov: float = DEFAULT_FOV_RAD, + spiral_radii: list[float] = [0.5, 0.5, 0.2], + zoom_factor: float | None = None, +): + poses = fovs = None + if option == "orbit": + poses = torch.linalg.inv( + get_arc_horizontal_w2cs( + start_w2c, + look_at, + up_direction, + num_frames=num_frames, + endpoint=False, + ) + ).numpy() + fovs = np.full((num_frames,), fov) + elif option == "spiral": + poses = generate_spiral_path( + torch.linalg.inv(start_w2c)[None].numpy() @ np.diagflat([1, -1, -1, 1]), + np.array([1, 5]), + n_frames=num_frames, + n_rots=2, + zrate=0.5, + radii=spiral_radii, + endpoint=False, + ) @ np.diagflat([1, -1, -1, 1]) + poses = np.concatenate( + [ + poses, + np.array([0.0, 0.0, 0.0, 1.0])[None, None].repeat(len(poses), 0), + ], + 1, + ) + # We want the spiral trajectory to always start from start_w2c. Thus we + # apply the relative pose to get the final trajectory. + poses = ( + np.linalg.inv(start_w2c.numpy())[None] @ np.linalg.inv(poses[:1]) @ poses + ) + fovs = np.full((num_frames,), fov) + elif option == "lemniscate": + poses = torch.linalg.inv( + get_lemniscate_w2cs( + start_w2c, + look_at, + up_direction, + num_frames, + degree=60.0, + endpoint=False, + ) + ).numpy() + fovs = np.full((num_frames,), fov) + elif option == "roll": + poses = torch.linalg.inv( + get_roll_w2cs( + start_w2c, + look_at, + None, + num_frames, + degree=360.0, + endpoint=False, + ) + ).numpy() + fovs = np.full((num_frames,), fov) + elif option in [ + "dolly zoom-in", + "dolly zoom-out", + "zoom-in", + "zoom-out", + ]: + if option.startswith("dolly"): + direction = "backward" if option == "dolly zoom-in" else "forward" + poses = torch.linalg.inv( + get_moving_w2cs( + start_w2c, + look_at, + up_direction, + num_frames, + endpoint=True, + direction=direction, + ) + ).numpy() + else: + poses = torch.linalg.inv(start_w2c)[None].repeat(num_frames, 1, 1).numpy() + fov_rad_start = fov + if zoom_factor is None: + zoom_factor = 0.28 if option.endswith("zoom-in") else 1.5 + fov_rad_end = zoom_factor * fov + fovs = ( + np.linspace(0, 1, num_frames) * (fov_rad_end - fov_rad_start) + + fov_rad_start + ) + elif option in [ + "move-forward", + "move-backward", + "move-up", + "move-down", + "move-left", + "move-right", + ]: + poses = torch.linalg.inv( + get_moving_w2cs( + start_w2c, + look_at, + up_direction, + num_frames, + endpoint=True, + direction=option.removeprefix("move-"), + ) + ).numpy() + fovs = np.full((num_frames,), fov) + else: + raise ValueError(f"Unknown preset option {option}.") + + return poses, fovs + + +def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor: + """Triangulate a set of rays to find a single lookat point. + + Args: + origins (torch.Tensor): A (N, 3) array of ray origins. + viewdirs (torch.Tensor): A (N, 3) array of ray view directions. + + Returns: + torch.Tensor: A (3,) lookat point. + """ + + viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1) + eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None] + # Calculate projection matrix I - rr^T + I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :]) + # Compute sum of projections + sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3) + # Solve for the intersection point using least squares + lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0] + # Check NaNs. + assert not torch.any(torch.isnan(lookat)) + return lookat + + +def get_lookat_w2cs( + positions: torch.Tensor, + lookat: torch.Tensor, + up: torch.Tensor, + face_off: bool = False, +): + """ + Args: + positions: (N, 3) tensor of camera positions + lookat: (3,) tensor of lookat point + up: (3,) or (N, 3) tensor of up vector + + Returns: + w2cs: (N, 3, 3) tensor of world to camera rotation matrices + """ + forward_vectors = F.normalize(lookat - positions, dim=-1) + if face_off: + forward_vectors = -forward_vectors + if up.dim() == 1: + up = up[None] + right_vectors = F.normalize(torch.cross(forward_vectors, up, dim=-1), dim=-1) + down_vectors = F.normalize( + torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1 + ) + Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1) + w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions)) + return w2cs + + +def get_arc_horizontal_w2cs( + ref_w2c: torch.Tensor, + lookat: torch.Tensor, + up: torch.Tensor | None, + num_frames: int, + clockwise: bool = True, + face_off: bool = False, + endpoint: bool = False, + degree: float = 360.0, + ref_up_shift: float = 0.0, + ref_radius_scale: float = 1.0, + **_, +) -> torch.Tensor: + ref_c2w = torch.linalg.inv(ref_w2c) + ref_position = ref_c2w[:3, 3] + if up is None: + up = -ref_c2w[:3, 1] + assert up is not None + ref_position += up * ref_up_shift + ref_position *= ref_radius_scale + thetas = ( + torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device) + if endpoint + else torch.linspace( + 0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device + )[:-1] + ) + if not clockwise: + thetas = -thetas + positions = ( + torch.einsum( + "nij,j->ni", + roma.rotvec_to_rotmat(thetas[:, None] * up[None]), + ref_position - lookat, + ) + + lookat + ) + return get_lookat_w2cs(positions, lookat, up, face_off=face_off) + + +def get_lemniscate_w2cs( + ref_w2c: torch.Tensor, + lookat: torch.Tensor, + up: torch.Tensor | None, + num_frames: int, + degree: float, + endpoint: bool = False, + **_, +) -> torch.Tensor: + ref_c2w = torch.linalg.inv(ref_w2c) + a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi) + # Lemniscate curve in camera space. Starting at the origin. + thetas = ( + torch.linspace(0, 2 * torch.pi, num_frames, device=ref_w2c.device) + if endpoint + else torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1] + ) + torch.pi / 2 + positions = torch.stack( + [ + a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2), + a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2), + torch.zeros(num_frames, device=ref_w2c.device), + ], + dim=-1, + ) + # Transform to world space. + positions = torch.einsum( + "ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0) + ) + if up is None: + up = -ref_c2w[:3, 1] + assert up is not None + return get_lookat_w2cs(positions, lookat, up) + + +def get_moving_w2cs( + ref_w2c: torch.Tensor, + lookat: torch.Tensor, + up: torch.Tensor | None, + num_frames: int, + endpoint: bool = False, + direction: str = "forward", + tilt_xy: torch.Tensor = None, +): + """ + Args: + ref_w2c: (4, 4) tensor of the reference wolrd-to-camera matrix + lookat: (3,) tensor of lookat point + up: (3,) tensor of up vector + + Returns: + w2cs: (N, 3, 3) tensor of world to camera rotation matrices + """ + ref_c2w = torch.linalg.inv(ref_w2c) + ref_position = ref_c2w[:3, -1] + if up is None: + up = -ref_c2w[:3, 1] + + direction_vectors = { + "forward": (lookat - ref_position).clone(), + "backward": -(lookat - ref_position).clone(), + "up": up.clone(), + "down": -up.clone(), + "right": torch.cross((lookat - ref_position), up, dim=0), + "left": -torch.cross((lookat - ref_position), up, dim=0), + } + if direction not in direction_vectors: + raise ValueError( + f"Invalid direction: {direction}. Must be one of {list(direction_vectors.keys())}" + ) + + positions = ref_position + ( + F.normalize(direction_vectors[direction], dim=0) + * ( + torch.linspace(0, 0.99, num_frames, device=ref_w2c.device) + if endpoint + else torch.linspace(0, 1, num_frames + 1, device=ref_w2c.device)[:-1] + )[:, None] + ) + + if tilt_xy is not None: + positions[:, :2] += tilt_xy + + return get_lookat_w2cs(positions, lookat, up) + + +def get_roll_w2cs( + ref_w2c: torch.Tensor, + lookat: torch.Tensor, + up: torch.Tensor | None, + num_frames: int, + endpoint: bool = False, + degree: float = 360.0, + **_, +) -> torch.Tensor: + ref_c2w = torch.linalg.inv(ref_w2c) + ref_position = ref_c2w[:3, 3] + if up is None: + up = -ref_c2w[:3, 1] # Infer the up vector from the reference. + + # Create vertical angles + thetas = ( + torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device) + if endpoint + else torch.linspace( + 0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device + )[:-1] + )[:, None] + + lookat_vector = F.normalize(lookat[None].float(), dim=-1) + up = up[None] + up = ( + up * torch.cos(thetas) + + torch.cross(lookat_vector, up) * torch.sin(thetas) + + lookat_vector + * torch.einsum("ij,ij->i", lookat_vector, up)[:, None] + * (1 - torch.cos(thetas)) + ) + + # Normalize the camera orientation + return get_lookat_w2cs(ref_position[None].repeat(num_frames, 1), lookat, up) + + +def normalize(x): + """Normalization helper function.""" + return x / np.linalg.norm(x) + + +def viewmatrix(lookdir, up, position, subtract_position=False): + """Construct lookat view matrix.""" + vec2 = normalize((lookdir - position) if subtract_position else lookdir) + vec0 = normalize(np.cross(up, vec2)) + vec1 = normalize(np.cross(vec2, vec0)) + m = np.stack([vec0, vec1, vec2, position], axis=1) + return m + + +def poses_avg(poses): + """New pose using average position, z-axis, and up vector of input poses.""" + position = poses[:, :3, 3].mean(0) + z_axis = poses[:, :3, 2].mean(0) + up = poses[:, :3, 1].mean(0) + cam2world = viewmatrix(z_axis, up, position) + return cam2world + + +def generate_spiral_path( + poses, bounds, n_frames=120, n_rots=2, zrate=0.5, endpoint=False, radii=None +): + """Calculates a forward facing spiral path for rendering.""" + # Find a reasonable 'focus depth' for this dataset as a weighted average + # of near and far bounds in disparity space. + close_depth, inf_depth = bounds.min() * 0.9, bounds.max() * 5.0 + dt = 0.75 + focal = 1 / ((1 - dt) / close_depth + dt / inf_depth) + + # Get radii for spiral path using 90th percentile of camera positions. + positions = poses[:, :3, 3] + if radii is None: + radii = np.percentile(np.abs(positions), 90, 0) + radii = np.concatenate([radii, [1.0]]) + + # Generate poses for spiral path. + render_poses = [] + cam2world = poses_avg(poses) + up = poses[:, :3, 1].mean(0) + for theta in np.linspace(0.0, 2.0 * np.pi * n_rots, n_frames, endpoint=endpoint): + t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.0] + position = cam2world @ t + lookat = cam2world @ [0, 0, -focal, 1.0] + z_axis = position - lookat + render_poses.append(viewmatrix(z_axis, up, position)) + render_poses = np.stack(render_poses, axis=0) + return render_poses + + +def generate_interpolated_path( + poses: np.ndarray, + n_interp: int, + spline_degree: int = 5, + smoothness: float = 0.03, + rot_weight: float = 0.1, + endpoint: bool = False, +): + """Creates a smooth spline path between input keyframe camera poses. + + Spline is calculated with poses in format (position, lookat-point, up-point). + + Args: + poses: (n, 3, 4) array of input pose keyframes. + n_interp: returned path will have n_interp * (n - 1) total poses. + spline_degree: polynomial degree of B-spline. + smoothness: parameter for spline smoothing, 0 forces exact interpolation. + rot_weight: relative weighting of rotation/translation in spline solve. + + Returns: + Array of new camera poses with shape (n_interp * (n - 1), 3, 4). + """ + + def poses_to_points(poses, dist): + """Converts from pose matrices to (position, lookat, up) format.""" + pos = poses[:, :3, -1] + lookat = poses[:, :3, -1] - dist * poses[:, :3, 2] + up = poses[:, :3, -1] + dist * poses[:, :3, 1] + return np.stack([pos, lookat, up], 1) + + def points_to_poses(points): + """Converts from (position, lookat, up) format to pose matrices.""" + return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points]) + + def interp(points, n, k, s): + """Runs multidimensional B-spline interpolation on the input points.""" + sh = points.shape + pts = np.reshape(points, (sh[0], -1)) + k = min(k, sh[0] - 1) + tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s) + u = np.linspace(0, 1, n, endpoint=endpoint) + new_points = np.array(scipy.interpolate.splev(u, tck)) + new_points = np.reshape(new_points.T, (n, sh[1], sh[2])) + return new_points + + points = poses_to_points(poses, dist=rot_weight) + new_points = interp( + points, n_interp * (points.shape[0] - 1), k=spline_degree, s=smoothness + ) + return points_to_poses(new_points) + + +def similarity_from_cameras(c2w, strict_scaling=False, center_method="focus"): + """ + reference: nerf-factory + Get a similarity transform to normalize dataset + from c2w (OpenCV convention) cameras + :param c2w: (N, 4) + :return T (4,4) , scale (float) + """ + t = c2w[:, :3, 3] + R = c2w[:, :3, :3] + + # (1) Rotate the world so that z+ is the up axis + # we estimate the up axis by averaging the camera up axes + ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1) + world_up = np.mean(ups, axis=0) + world_up /= np.linalg.norm(world_up) + + up_camspace = np.array([0.0, -1.0, 0.0]) + c = (up_camspace * world_up).sum() + cross = np.cross(world_up, up_camspace) + skew = np.array( + [ + [0.0, -cross[2], cross[1]], + [cross[2], 0.0, -cross[0]], + [-cross[1], cross[0], 0.0], + ] + ) + if c > -1: + R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c) + else: + # In the unlikely case the original data has y+ up axis, + # rotate 180-deg about x axis + R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) + + # R_align = np.eye(3) # DEBUG + R = R_align @ R + fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1) + t = (R_align @ t[..., None])[..., 0] + + # (2) Recenter the scene. + if center_method == "focus": + # find the closest point to the origin for each camera's center ray + nearest = t + (fwds * -t).sum(-1)[:, None] * fwds + translate = -np.median(nearest, axis=0) + elif center_method == "poses": + # use center of the camera positions + translate = -np.median(t, axis=0) + else: + raise ValueError(f"Unknown center_method {center_method}") + + transform = np.eye(4) + transform[:3, 3] = translate + transform[:3, :3] = R_align + + # (3) Rescale the scene using camera distances + scale_fn = np.max if strict_scaling else np.median + inv_scale = scale_fn(np.linalg.norm(t + translate, axis=-1)) + if inv_scale == 0: + inv_scale = 1.0 + scale = 1.0 / inv_scale + transform[:3, :] *= scale + + return transform + + +def align_principle_axes(point_cloud): + # Compute centroid + centroid = np.median(point_cloud, axis=0) + + # Translate point cloud to centroid + translated_point_cloud = point_cloud - centroid + + # Compute covariance matrix + covariance_matrix = np.cov(translated_point_cloud, rowvar=False) + + # Compute eigenvectors and eigenvalues + eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix) + + # Sort eigenvectors by eigenvalues (descending order) so that the z-axis + # is the principal axis with the smallest eigenvalue. + sort_indices = eigenvalues.argsort()[::-1] + eigenvectors = eigenvectors[:, sort_indices] + + # Check orientation of eigenvectors. If the determinant of the eigenvectors is + # negative, then we need to flip the sign of one of the eigenvectors. + if np.linalg.det(eigenvectors) < 0: + eigenvectors[:, 0] *= -1 + + # Create rotation matrix + rotation_matrix = eigenvectors.T + + # Create SE(3) matrix (4x4 transformation matrix) + transform = np.eye(4) + transform[:3, :3] = rotation_matrix + transform[:3, 3] = -rotation_matrix @ centroid + + return transform + + +def transform_points(matrix, points): + """Transform points using a SE(4) matrix. + + Args: + matrix: 4x4 SE(4) matrix + points: Nx3 array of points + + Returns: + Nx3 array of transformed points + """ + assert matrix.shape == (4, 4) + assert len(points.shape) == 2 and points.shape[1] == 3 + return points @ matrix[:3, :3].T + matrix[:3, 3] + + +def transform_cameras(matrix, camtoworlds): + """Transform cameras using a SE(4) matrix. + + Args: + matrix: 4x4 SE(4) matrix + camtoworlds: Nx4x4 array of camera-to-world matrices + + Returns: + Nx4x4 array of transformed camera-to-world matrices + """ + assert matrix.shape == (4, 4) + assert len(camtoworlds.shape) == 3 and camtoworlds.shape[1:] == (4, 4) + camtoworlds = np.einsum("nij, ki -> nkj", camtoworlds, matrix) + scaling = np.linalg.norm(camtoworlds[:, 0, :3], axis=1) + camtoworlds[:, :3, :3] = camtoworlds[:, :3, :3] / scaling[:, None, None] + return camtoworlds + + +def normalize_scene(camtoworlds, points=None, camera_center_method="focus"): + T1 = similarity_from_cameras(camtoworlds, center_method=camera_center_method) + camtoworlds = transform_cameras(T1, camtoworlds) + if points is not None: + points = transform_points(T1, points) + T2 = align_principle_axes(points) + camtoworlds = transform_cameras(T2, camtoworlds) + points = transform_points(T2, points) + return camtoworlds, points, T2 @ T1 + else: + return camtoworlds, T1 diff --git a/seva/gui.py b/seva/gui.py new file mode 100644 index 0000000000000000000000000000000000000000..90be6d16e9acdfc2d61be39d6c354a0d3688addf --- /dev/null +++ b/seva/gui.py @@ -0,0 +1,975 @@ +import colorsys +import dataclasses +import threading +import time +from pathlib import Path + +import numpy as np +import scipy +import splines +import splines.quaternion +import torch +import viser +import viser.transforms as vt + +from seva.geometry import get_preset_pose_fov + + +@dataclasses.dataclass +class Keyframe(object): + position: np.ndarray + wxyz: np.ndarray + override_fov_enabled: bool + override_fov_rad: float + aspect: float + override_transition_enabled: bool + override_transition_sec: float | None + + @staticmethod + def from_camera(camera: viser.CameraHandle, aspect: float) -> "Keyframe": + return Keyframe( + camera.position, + camera.wxyz, + override_fov_enabled=False, + override_fov_rad=camera.fov, + aspect=aspect, + override_transition_enabled=False, + override_transition_sec=None, + ) + + @staticmethod + def from_se3(se3: vt.SE3, fov: float, aspect: float) -> "Keyframe": + return Keyframe( + se3.translation(), + se3.rotation().wxyz, + override_fov_enabled=False, + override_fov_rad=fov, + aspect=aspect, + override_transition_enabled=False, + override_transition_sec=None, + ) + + +class CameraTrajectory(object): + def __init__( + self, + server: viser.ViserServer, + duration_element: viser.GuiInputHandle[float], + scene_scale: float, + scene_node_prefix: str = "/", + ): + self._server = server + self._keyframes: dict[int, tuple[Keyframe, viser.CameraFrustumHandle]] = {} + self._keyframe_counter: int = 0 + self._spline_nodes: list[viser.SceneNodeHandle] = [] + self._camera_edit_panel: viser.Gui3dContainerHandle | None = None + + self._orientation_spline: splines.quaternion.KochanekBartels | None = None + self._position_spline: splines.KochanekBartels | None = None + self._fov_spline: splines.KochanekBartels | None = None + + self._keyframes_visible: bool = True + + self._duration_element = duration_element + self._scene_node_prefix = scene_node_prefix + + self.scene_scale = scene_scale + # These parameters should be overridden externally. + self.loop: bool = False + self.framerate: float = 30.0 + self.tension: float = 0.0 # Tension / alpha term. + self.default_fov: float = 0.0 + self.default_transition_sec: float = 0.0 + self.show_spline: bool = True + + def set_keyframes_visible(self, visible: bool) -> None: + self._keyframes_visible = visible + for keyframe in self._keyframes.values(): + keyframe[1].visible = visible + + def add_camera(self, keyframe: Keyframe, keyframe_index: int | None = None) -> None: + """Add a new camera, or replace an old one if `keyframe_index` is passed in.""" + server = self._server + + # Add a keyframe if we aren't replacing an existing one. + if keyframe_index is None: + keyframe_index = self._keyframe_counter + self._keyframe_counter += 1 + + print( + f"{keyframe.wxyz=} {keyframe.position=} {keyframe_index=} {keyframe.aspect=}" + ) + frustum_handle = server.scene.add_camera_frustum( + str(Path(self._scene_node_prefix) / f"cameras/{keyframe_index}"), + fov=( + keyframe.override_fov_rad + if keyframe.override_fov_enabled + else self.default_fov + ), + aspect=keyframe.aspect, + scale=0.1 * self.scene_scale, + color=(200, 10, 30), + wxyz=keyframe.wxyz, + position=keyframe.position, + visible=self._keyframes_visible, + ) + self._server.scene.add_icosphere( + str(Path(self._scene_node_prefix) / f"cameras/{keyframe_index}/sphere"), + radius=0.03, + color=(200, 10, 30), + ) + + @frustum_handle.on_click + def _(_) -> None: + if self._camera_edit_panel is not None: + self._camera_edit_panel.remove() + self._camera_edit_panel = None + + with server.scene.add_3d_gui_container( + "/camera_edit_panel", + position=keyframe.position, + ) as camera_edit_panel: + self._camera_edit_panel = camera_edit_panel + override_fov = server.gui.add_checkbox( + "Override FOV", initial_value=keyframe.override_fov_enabled + ) + override_fov_degrees = server.gui.add_slider( + "Override FOV (degrees)", + 5.0, + 175.0, + step=0.1, + initial_value=keyframe.override_fov_rad * 180.0 / np.pi, + disabled=not keyframe.override_fov_enabled, + ) + delete_button = server.gui.add_button( + "Delete", color="red", icon=viser.Icon.TRASH + ) + go_to_button = server.gui.add_button("Go to") + close_button = server.gui.add_button("Close") + + @override_fov.on_update + def _(_) -> None: + keyframe.override_fov_enabled = override_fov.value + override_fov_degrees.disabled = not override_fov.value + self.add_camera(keyframe, keyframe_index) + + @override_fov_degrees.on_update + def _(_) -> None: + keyframe.override_fov_rad = override_fov_degrees.value / 180.0 * np.pi + self.add_camera(keyframe, keyframe_index) + + @delete_button.on_click + def _(event: viser.GuiEvent) -> None: + assert event.client is not None + with event.client.gui.add_modal("Confirm") as modal: + event.client.gui.add_markdown("Delete keyframe?") + confirm_button = event.client.gui.add_button( + "Yes", color="red", icon=viser.Icon.TRASH + ) + exit_button = event.client.gui.add_button("Cancel") + + @confirm_button.on_click + def _(_) -> None: + assert camera_edit_panel is not None + + keyframe_id = None + for i, keyframe_tuple in self._keyframes.items(): + if keyframe_tuple[1] is frustum_handle: + keyframe_id = i + break + assert keyframe_id is not None + + self._keyframes.pop(keyframe_id) + frustum_handle.remove() + camera_edit_panel.remove() + self._camera_edit_panel = None + modal.close() + self.update_spline() + + @exit_button.on_click + def _(_) -> None: + modal.close() + + @go_to_button.on_click + def _(event: viser.GuiEvent) -> None: + assert event.client is not None + client = event.client + T_world_current = vt.SE3.from_rotation_and_translation( + vt.SO3(client.camera.wxyz), client.camera.position + ) + T_world_target = vt.SE3.from_rotation_and_translation( + vt.SO3(keyframe.wxyz), keyframe.position + ) @ vt.SE3.from_translation(np.array([0.0, 0.0, -0.5])) + + T_current_target = T_world_current.inverse() @ T_world_target + + for j in range(10): + T_world_set = T_world_current @ vt.SE3.exp( + T_current_target.log() * j / 9.0 + ) + + # Important bit: we atomically set both the orientation and + # the position of the camera. + with client.atomic(): + client.camera.wxyz = T_world_set.rotation().wxyz + client.camera.position = T_world_set.translation() + time.sleep(1.0 / 30.0) + + @close_button.on_click + def _(_) -> None: + assert camera_edit_panel is not None + camera_edit_panel.remove() + self._camera_edit_panel = None + + self._keyframes[keyframe_index] = (keyframe, frustum_handle) + + def update_aspect(self, aspect: float) -> None: + for keyframe_index, frame in self._keyframes.items(): + frame = dataclasses.replace(frame[0], aspect=aspect) + self.add_camera(frame, keyframe_index=keyframe_index) + + def get_aspect(self) -> float: + """Get W/H aspect ratio, which is shared across all keyframes.""" + assert len(self._keyframes) > 0 + return next(iter(self._keyframes.values()))[0].aspect + + def reset(self) -> None: + for frame in self._keyframes.values(): + print(f"removing {frame[1]}") + frame[1].remove() + self._keyframes.clear() + self.update_spline() + print("camera traj reset") + + def spline_t_from_t_sec(self, time: np.ndarray) -> np.ndarray: + """From a time value in seconds, compute a t value for our geometric + spline interpolation. An increment of 1 for the latter will move the + camera forward by one keyframe. + + We use a PCHIP spline here to guarantee monotonicity. + """ + transition_times_cumsum = self.compute_transition_times_cumsum() + spline_indices = np.arange(transition_times_cumsum.shape[0]) + + if self.loop: + # In the case of a loop, we pad the spline to match the start/end + # slopes. + interpolator = scipy.interpolate.PchipInterpolator( + x=np.concatenate( + [ + [-(transition_times_cumsum[-1] - transition_times_cumsum[-2])], + transition_times_cumsum, + transition_times_cumsum[-1:] + transition_times_cumsum[1:2], + ], + axis=0, + ), + y=np.concatenate( + [[-1], spline_indices, [spline_indices[-1] + 1]], # type: ignore + axis=0, + ), + ) + else: + interpolator = scipy.interpolate.PchipInterpolator( + x=transition_times_cumsum, y=spline_indices + ) + + # Clip to account for floating point error. + return np.clip(interpolator(time), 0, spline_indices[-1]) + + def interpolate_pose_and_fov_rad( + self, normalized_t: float + ) -> tuple[vt.SE3, float] | None: + if len(self._keyframes) < 2: + return None + + self._fov_spline = splines.KochanekBartels( + [ + ( + keyframe[0].override_fov_rad + if keyframe[0].override_fov_enabled + else self.default_fov + ) + for keyframe in self._keyframes.values() + ], + tcb=(self.tension, 0.0, 0.0), + endconditions="closed" if self.loop else "natural", + ) + + assert self._orientation_spline is not None + assert self._position_spline is not None + assert self._fov_spline is not None + + max_t = self.compute_duration() + t = max_t * normalized_t + spline_t = float(self.spline_t_from_t_sec(np.array(t))) + + quat = self._orientation_spline.evaluate(spline_t) + assert isinstance(quat, splines.quaternion.UnitQuaternion) + return ( + vt.SE3.from_rotation_and_translation( + vt.SO3(np.array([quat.scalar, *quat.vector])), + self._position_spline.evaluate(spline_t), + ), + float(self._fov_spline.evaluate(spline_t)), + ) + + def update_spline(self) -> None: + num_frames = int(self.compute_duration() * self.framerate) + keyframes = list(self._keyframes.values()) + + if num_frames <= 0 or not self.show_spline or len(keyframes) < 2: + for node in self._spline_nodes: + node.remove() + self._spline_nodes.clear() + return + + transition_times_cumsum = self.compute_transition_times_cumsum() + + self._orientation_spline = splines.quaternion.KochanekBartels( + [ + splines.quaternion.UnitQuaternion.from_unit_xyzw( + np.roll(keyframe[0].wxyz, shift=-1) + ) + for keyframe in keyframes + ], + tcb=(self.tension, 0.0, 0.0), + endconditions="closed" if self.loop else "natural", + ) + self._position_spline = splines.KochanekBartels( + [keyframe[0].position for keyframe in keyframes], + tcb=(self.tension, 0.0, 0.0), + endconditions="closed" if self.loop else "natural", + ) + + # Update visualized spline. + points_array = self._position_spline.evaluate( + self.spline_t_from_t_sec( + np.linspace(0, transition_times_cumsum[-1], num_frames) + ) + ) + colors_array = np.array( + [ + colorsys.hls_to_rgb(h, 0.5, 1.0) + for h in np.linspace(0.0, 1.0, len(points_array)) + ] + ) + + # Clear prior spline nodes. + for node in self._spline_nodes: + node.remove() + self._spline_nodes.clear() + + self._spline_nodes.append( + self._server.scene.add_spline_catmull_rom( + str(Path(self._scene_node_prefix) / "camera_spline"), + positions=points_array, + color=(220, 220, 220), + closed=self.loop, + line_width=1.0, + segments=points_array.shape[0] + 1, + ) + ) + self._spline_nodes.append( + self._server.scene.add_point_cloud( + str(Path(self._scene_node_prefix) / "camera_spline/points"), + points=points_array, + colors=colors_array, + point_size=0.04, + ) + ) + + def make_transition_handle(i: int) -> None: + assert self._position_spline is not None + transition_pos = self._position_spline.evaluate( + float( + self.spline_t_from_t_sec( + (transition_times_cumsum[i] + transition_times_cumsum[i + 1]) + / 2.0, + ) + ) + ) + transition_sphere = self._server.scene.add_icosphere( + str(Path(self._scene_node_prefix) / f"camera_spline/transition_{i}"), + radius=0.04, + color=(255, 0, 0), + position=transition_pos, + ) + self._spline_nodes.append(transition_sphere) + + @transition_sphere.on_click + def _(_) -> None: + server = self._server + + if self._camera_edit_panel is not None: + self._camera_edit_panel.remove() + self._camera_edit_panel = None + + keyframe_index = (i + 1) % len(self._keyframes) + keyframe = keyframes[keyframe_index][0] + + with server.scene.add_3d_gui_container( + "/camera_edit_panel", + position=transition_pos, + ) as camera_edit_panel: + self._camera_edit_panel = camera_edit_panel + override_transition_enabled = server.gui.add_checkbox( + "Override transition", + initial_value=keyframe.override_transition_enabled, + ) + override_transition_sec = server.gui.add_number( + "Override transition (sec)", + initial_value=( + keyframe.override_transition_sec + if keyframe.override_transition_sec is not None + else self.default_transition_sec + ), + min=0.001, + max=30.0, + step=0.001, + disabled=not override_transition_enabled.value, + ) + close_button = server.gui.add_button("Close") + + @override_transition_enabled.on_update + def _(_) -> None: + keyframe.override_transition_enabled = ( + override_transition_enabled.value + ) + override_transition_sec.disabled = ( + not override_transition_enabled.value + ) + self._duration_element.value = self.compute_duration() + + @override_transition_sec.on_update + def _(_) -> None: + keyframe.override_transition_sec = override_transition_sec.value + self._duration_element.value = self.compute_duration() + + @close_button.on_click + def _(_) -> None: + assert camera_edit_panel is not None + camera_edit_panel.remove() + self._camera_edit_panel = None + + (num_transitions_plus_1,) = transition_times_cumsum.shape + for i in range(num_transitions_plus_1 - 1): + make_transition_handle(i) + + def compute_duration(self) -> float: + """Compute the total duration of the trajectory.""" + total = 0.0 + for i, (keyframe, frustum) in enumerate(self._keyframes.values()): + if i == 0 and not self.loop: + continue + del frustum + total += ( + keyframe.override_transition_sec + if keyframe.override_transition_enabled + and keyframe.override_transition_sec is not None + else self.default_transition_sec + ) + return total + + def compute_transition_times_cumsum(self) -> np.ndarray: + """Compute the total duration of the trajectory.""" + total = 0.0 + out = [0.0] + for i, (keyframe, frustum) in enumerate(self._keyframes.values()): + if i == 0: + continue + del frustum + total += ( + keyframe.override_transition_sec + if keyframe.override_transition_enabled + and keyframe.override_transition_sec is not None + else self.default_transition_sec + ) + out.append(total) + + if self.loop: + keyframe = next(iter(self._keyframes.values()))[0] + total += ( + keyframe.override_transition_sec + if keyframe.override_transition_enabled + and keyframe.override_transition_sec is not None + else self.default_transition_sec + ) + out.append(total) + + return np.array(out) + + +@dataclasses.dataclass +class GuiState: + preview_render: bool + preview_fov: float + preview_aspect: float + camera_traj_list: list | None + active_input_index: int + + +def define_gui( + server: viser.ViserServer, + init_fov: float = 75.0, + img_wh: tuple[int, int] = (576, 576), + **kwargs, +) -> GuiState: + gui_state = GuiState( + preview_render=False, + preview_fov=0.0, + preview_aspect=1.0, + camera_traj_list=None, + active_input_index=0, + ) + + with server.gui.add_folder( + "Preset camera trajectories", order=99, expand_by_default=False + ): + preset_traj_dropdown = server.gui.add_dropdown( + "Options", + [ + "orbit", + "spiral", + "lemniscate", + "zoom-out", + "dolly zoom-out", + ], + initial_value="orbit", + hint="Select a preset camera trajectory.", + ) + preset_duration_num = server.gui.add_number( + "Duration (sec)", + min=1.0, + max=60.0, + step=0.5, + initial_value=2.0, + ) + preset_submit_button = server.gui.add_button( + "Submit", + icon=viser.Icon.PICK, + hint="Add a new keyframe at the current pose.", + ) + + @preset_submit_button.on_click + def _(event: viser.GuiEvent) -> None: + camera_traj.reset() + gui_state.camera_traj_list = None + + duration = preset_duration_num.value + fps = framerate_number.value + num_frames = int(duration * fps) + transition_sec = duration / num_frames + transition_sec_number.value = transition_sec + assert event.client_id is not None + transition_sec_number.disabled = True + loop_checkbox.disabled = True + add_keyframe_button.disabled = True + + camera = server.get_clients()[event.client_id].camera + start_w2c = torch.linalg.inv( + torch.as_tensor( + vt.SE3.from_rotation_and_translation( + vt.SO3(camera.wxyz), camera.position + ).as_matrix(), + dtype=torch.float32, + ) + ) + look_at = torch.as_tensor(camera.look_at, dtype=torch.float32) + up_direction = torch.as_tensor(camera.up_direction, dtype=torch.float32) + poses, fovs = get_preset_pose_fov( + option=preset_traj_dropdown.value, # type: ignore + num_frames=num_frames, + start_w2c=start_w2c, + look_at=look_at, + up_direction=up_direction, + fov=camera.fov, + ) + assert poses is not None and fovs is not None + for pose, fov in zip(poses, fovs): + camera_traj.add_camera( + Keyframe.from_se3( + vt.SE3.from_matrix(pose), + fov=fov, + aspect=img_wh[0] / img_wh[1], + ) + ) + + duration_number.value = camera_traj.compute_duration() + camera_traj.update_spline() + + with server.gui.add_folder("Advanced", expand_by_default=False, order=100): + transition_sec_number = server.gui.add_number( + "Transition (sec)", + min=0.001, + max=30.0, + step=0.001, + initial_value=1.5, + hint="Time in seconds between each keyframe, which can also be overridden on a per-transition basis.", + ) + framerate_number = server.gui.add_number( + "FPS", min=0.1, max=240.0, step=1e-2, initial_value=30.0 + ) + framerate_buttons = server.gui.add_button_group("", ("24", "30", "60")) + duration_number = server.gui.add_number( + "Duration (sec)", + min=0.0, + max=1e8, + step=0.001, + initial_value=0.0, + disabled=True, + ) + + @framerate_buttons.on_click + def _(_) -> None: + framerate_number.value = float(framerate_buttons.value) + + fov_degree_slider = server.gui.add_slider( + "FOV", + initial_value=init_fov, + min=0.1, + max=175.0, + step=0.01, + hint="Field-of-view for rendering, which can also be overridden on a per-keyframe basis.", + ) + + @fov_degree_slider.on_update + def _(_) -> None: + fov_radians = fov_degree_slider.value / 180.0 * np.pi + for client in server.get_clients().values(): + client.camera.fov = fov_radians + camera_traj.default_fov = fov_radians + + # Updating the aspect ratio will also re-render the camera frustums. + # Could rethink this. + camera_traj.update_aspect(img_wh[0] / img_wh[1]) + compute_and_update_preview_camera_state() + + scene_node_prefix = "/render_assets" + base_scene_node = server.scene.add_frame(scene_node_prefix, show_axes=False) + add_keyframe_button = server.gui.add_button( + "Add keyframe", + icon=viser.Icon.PLUS, + hint="Add a new keyframe at the current pose.", + ) + + @add_keyframe_button.on_click + def _(event: viser.GuiEvent) -> None: + assert event.client_id is not None + camera = server.get_clients()[event.client_id].camera + pose = vt.SE3.from_rotation_and_translation( + vt.SO3(camera.wxyz), camera.position + ) + print(f"client {event.client_id} at {camera.position} {camera.wxyz}") + print(f"camera pose {pose.as_matrix()}") + + # Add this camera to the trajectory. + camera_traj.add_camera( + Keyframe.from_camera( + camera, + aspect=img_wh[0] / img_wh[1], + ), + ) + duration_number.value = camera_traj.compute_duration() + camera_traj.update_spline() + + clear_keyframes_button = server.gui.add_button( + "Clear keyframes", + icon=viser.Icon.TRASH, + hint="Remove all keyframes from the render trajectory.", + ) + + @clear_keyframes_button.on_click + def _(event: viser.GuiEvent) -> None: + assert event.client_id is not None + client = server.get_clients()[event.client_id] + with client.atomic(), client.gui.add_modal("Confirm") as modal: + client.gui.add_markdown("Clear all keyframes?") + confirm_button = client.gui.add_button( + "Yes", color="red", icon=viser.Icon.TRASH + ) + exit_button = client.gui.add_button("Cancel") + + @confirm_button.on_click + def _(_) -> None: + camera_traj.reset() + modal.close() + + duration_number.value = camera_traj.compute_duration() + add_keyframe_button.disabled = False + transition_sec_number.disabled = False + transition_sec_number.value = 1.5 + loop_checkbox.disabled = False + + nonlocal gui_state + gui_state.camera_traj_list = None + + @exit_button.on_click + def _(_) -> None: + modal.close() + + play_button = server.gui.add_button("Play", icon=viser.Icon.PLAYER_PLAY) + pause_button = server.gui.add_button( + "Pause", icon=viser.Icon.PLAYER_PAUSE, visible=False + ) + + # Poll the play button to see if we should be playing endlessly. + def play() -> None: + while True: + while not play_button.visible: + max_frame = int(framerate_number.value * duration_number.value) + if max_frame > 0: + assert preview_frame_slider is not None + preview_frame_slider.value = ( + preview_frame_slider.value + 1 + ) % max_frame + time.sleep(1.0 / framerate_number.value) + time.sleep(0.1) + + threading.Thread(target=play).start() + + # Play the camera trajectory when the play button is pressed. + @play_button.on_click + def _(_) -> None: + play_button.visible = False + pause_button.visible = True + + # Play the camera trajectory when the play button is pressed. + @pause_button.on_click + def _(_) -> None: + play_button.visible = True + pause_button.visible = False + + preview_render_button = server.gui.add_button( + "Preview render", + hint="Show a preview of the render in the viewport.", + icon=viser.Icon.CAMERA_CHECK, + ) + preview_render_stop_button = server.gui.add_button( + "Exit render preview", + color="red", + icon=viser.Icon.CAMERA_CANCEL, + visible=False, + ) + + @preview_render_button.on_click + def _(_) -> None: + gui_state.preview_render = True + preview_render_button.visible = False + preview_render_stop_button.visible = True + play_button.visible = False + pause_button.visible = True + preset_submit_button.disabled = True + + maybe_pose_and_fov_rad = compute_and_update_preview_camera_state() + if maybe_pose_and_fov_rad is None: + remove_preview_camera() + return + pose, fov = maybe_pose_and_fov_rad + del fov + + # Hide all render assets when we're previewing the render. + nonlocal base_scene_node + base_scene_node.visible = False + + # Back up and then set camera poses. + for client in server.get_clients().values(): + camera_pose_backup_from_id[client.client_id] = ( + client.camera.position, + client.camera.look_at, + client.camera.up_direction, + ) + with client.atomic(): + client.camera.wxyz = pose.rotation().wxyz + client.camera.position = pose.translation() + + def stop_preview_render() -> None: + gui_state.preview_render = False + preview_render_button.visible = True + preview_render_stop_button.visible = False + play_button.visible = True + pause_button.visible = False + preset_submit_button.disabled = False + + # Revert camera poses. + for client in server.get_clients().values(): + if client.client_id not in camera_pose_backup_from_id: + continue + cam_position, cam_look_at, cam_up = camera_pose_backup_from_id.pop( + client.client_id + ) + with client.atomic(): + client.camera.position = cam_position + client.camera.look_at = cam_look_at + client.camera.up_direction = cam_up + client.flush() + + # Un-hide render assets. + nonlocal base_scene_node + base_scene_node.visible = True + remove_preview_camera() + + @preview_render_stop_button.on_click + def _(_) -> None: + stop_preview_render() + + def get_max_frame_index() -> int: + return max(1, int(framerate_number.value * duration_number.value) - 1) + + def add_preview_frame_slider() -> viser.GuiInputHandle[int] | None: + """Helper for creating the current frame # slider. This is removed and + re-added anytime the `max` value changes.""" + + preview_frame_slider = server.gui.add_slider( + "Preview frame", + min=0, + max=get_max_frame_index(), + step=1, + initial_value=0, + order=set_traj_button.order + 0.01, + disabled=get_max_frame_index() == 1, + ) + play_button.disabled = preview_frame_slider.disabled + preview_render_button.disabled = preview_frame_slider.disabled + set_traj_button.disabled = preview_frame_slider.disabled + + @preview_frame_slider.on_update + def _(_) -> None: + nonlocal preview_camera_handle + maybe_pose_and_fov_rad = compute_and_update_preview_camera_state() + if maybe_pose_and_fov_rad is None: + return + pose, fov_rad = maybe_pose_and_fov_rad + + preview_camera_handle = server.scene.add_camera_frustum( + str(Path(scene_node_prefix) / "preview_camera"), + fov=fov_rad, + aspect=img_wh[0] / img_wh[1], + scale=0.35, + wxyz=pose.rotation().wxyz, + position=pose.translation(), + color=(10, 200, 30), + ) + if gui_state.preview_render: + for client in server.get_clients().values(): + with client.atomic(): + client.camera.wxyz = pose.rotation().wxyz + client.camera.position = pose.translation() + + return preview_frame_slider + + set_traj_button = server.gui.add_button( + "Set camera trajectory", + color="green", + icon=viser.Icon.CHECK, + hint="Save the camera trajectory for rendering.", + ) + + @set_traj_button.on_click + def _(event: viser.GuiEvent) -> None: + assert event.client is not None + num_frames = int(framerate_number.value * duration_number.value) + + def get_intrinsics(W, H, fov_rad): + focal = 0.5 * H / np.tan(0.5 * fov_rad) + return np.array( + [[focal, 0.0, 0.5 * W], [0.0, focal, 0.5 * H], [0.0, 0.0, 1.0]] + ) + + camera_traj_list = [] + for i in range(num_frames): + maybe_pose_and_fov_rad = camera_traj.interpolate_pose_and_fov_rad( + i / num_frames + ) + if maybe_pose_and_fov_rad is None: + return + pose, fov_rad = maybe_pose_and_fov_rad + H = img_wh[1] + W = img_wh[0] + K = get_intrinsics(W, H, fov_rad) + w2c = pose.inverse().as_matrix() + camera_traj_list.append( + { + "w2c": w2c.flatten().tolist(), + "K": K.flatten().tolist(), + "img_wh": (W, H), + } + ) + nonlocal gui_state + gui_state.camera_traj_list = camera_traj_list + print(f"Get camera_traj_list: {gui_state.camera_traj_list}") + + stop_preview_render() + + preview_frame_slider = add_preview_frame_slider() + + loop_checkbox = server.gui.add_checkbox( + "Loop", False, hint="Add a segment between the first and last keyframes." + ) + + @loop_checkbox.on_update + def _(_) -> None: + camera_traj.loop = loop_checkbox.value + duration_number.value = camera_traj.compute_duration() + + @transition_sec_number.on_update + def _(_) -> None: + camera_traj.default_transition_sec = transition_sec_number.value + duration_number.value = camera_traj.compute_duration() + + preview_camera_handle: viser.SceneNodeHandle | None = None + + def remove_preview_camera() -> None: + nonlocal preview_camera_handle + if preview_camera_handle is not None: + preview_camera_handle.remove() + preview_camera_handle = None + + def compute_and_update_preview_camera_state() -> tuple[vt.SE3, float] | None: + """Update the render tab state with the current preview camera pose. + Returns current camera pose + FOV if available.""" + + if preview_frame_slider is None: + return None + maybe_pose_and_fov_rad = camera_traj.interpolate_pose_and_fov_rad( + preview_frame_slider.value / get_max_frame_index() + ) + if maybe_pose_and_fov_rad is None: + remove_preview_camera() + return None + pose, fov_rad = maybe_pose_and_fov_rad + gui_state.preview_fov = fov_rad + gui_state.preview_aspect = camera_traj.get_aspect() + return pose, fov_rad + + # We back up the camera poses before and after we start previewing renders. + camera_pose_backup_from_id: dict[int, tuple] = {} + + # Update the # of frames. + @duration_number.on_update + @framerate_number.on_update + def _(_) -> None: + remove_preview_camera() # Will be re-added when slider is updated. + + nonlocal preview_frame_slider + old = preview_frame_slider + assert old is not None + + preview_frame_slider = add_preview_frame_slider() + if preview_frame_slider is not None: + old.remove() + else: + preview_frame_slider = old + + camera_traj.framerate = framerate_number.value + camera_traj.update_spline() + + camera_traj = CameraTrajectory( + server, + duration_number, + scene_node_prefix=scene_node_prefix, + **kwargs, + ) + camera_traj.default_fov = fov_degree_slider.value / 180.0 * np.pi + camera_traj.default_transition_sec = transition_sec_number.value + + return gui_state diff --git a/seva/model.py b/seva/model.py new file mode 100644 index 0000000000000000000000000000000000000000..c5d719c774be3154419f77c731b3cc0743245bba --- /dev/null +++ b/seva/model.py @@ -0,0 +1,234 @@ +from dataclasses import dataclass, field + +import torch +import torch.nn as nn + +from seva.modules.layers import ( + Downsample, + GroupNorm32, + ResBlock, + TimestepEmbedSequential, + Upsample, + timestep_embedding, +) +from seva.modules.transformer import MultiviewTransformer + + +@dataclass +class SevaParams(object): + in_channels: int = 11 + model_channels: int = 320 + out_channels: int = 4 + num_frames: int = 21 + num_res_blocks: int = 2 + attention_resolutions: list[int] = field(default_factory=lambda: [4, 2, 1]) + channel_mult: list[int] = field(default_factory=lambda: [1, 2, 4, 4]) + num_head_channels: int = 64 + transformer_depth: list[int] = field(default_factory=lambda: [1, 1, 1, 1]) + context_dim: int = 1024 + dense_in_channels: int = 6 + dropout: float = 0.0 + unflatten_names: list[str] = field( + default_factory=lambda: ["middle_ds8", "output_ds4", "output_ds2"] + ) + + def __post_init__(self): + assert len(self.channel_mult) == len(self.transformer_depth) + + +class Seva(nn.Module): + def __init__(self, params: SevaParams) -> None: + super().__init__() + self.params = params + self.model_channels = params.model_channels + self.out_channels = params.out_channels + self.num_head_channels = params.num_head_channels + + time_embed_dim = params.model_channels * 4 + self.time_embed = nn.Sequential( + nn.Linear(params.model_channels, time_embed_dim), + nn.SiLU(), + nn.Linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + nn.Conv2d(params.in_channels, params.model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = params.model_channels + input_block_chans = [params.model_channels] + ch = params.model_channels + ds = 1 + for level, mult in enumerate(params.channel_mult): + for _ in range(params.num_res_blocks): + input_layers: list[ResBlock | MultiviewTransformer | Downsample] = [ + ResBlock( + channels=ch, + emb_channels=time_embed_dim, + out_channels=mult * params.model_channels, + dense_in_channels=params.dense_in_channels, + dropout=params.dropout, + ) + ] + ch = mult * params.model_channels + if ds in params.attention_resolutions: + num_heads = ch // params.num_head_channels + dim_head = params.num_head_channels + input_layers.append( + MultiviewTransformer( + ch, + num_heads, + dim_head, + name=f"input_ds{ds}", + depth=params.transformer_depth[level], + context_dim=params.context_dim, + unflatten_names=params.unflatten_names, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*input_layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(params.channel_mult) - 1: + ds *= 2 + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential(Downsample(ch, out_channels=out_ch)) + ) + ch = out_ch + input_block_chans.append(ch) + self._feature_size += ch + + num_heads = ch // params.num_head_channels + dim_head = params.num_head_channels + + self.middle_block = TimestepEmbedSequential( + ResBlock( + channels=ch, + emb_channels=time_embed_dim, + out_channels=None, + dense_in_channels=params.dense_in_channels, + dropout=params.dropout, + ), + MultiviewTransformer( + ch, + num_heads, + dim_head, + name=f"middle_ds{ds}", + depth=params.transformer_depth[-1], + context_dim=params.context_dim, + unflatten_names=params.unflatten_names, + ), + ResBlock( + channels=ch, + emb_channels=time_embed_dim, + out_channels=None, + dense_in_channels=params.dense_in_channels, + dropout=params.dropout, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(params.channel_mult))[::-1]: + for i in range(params.num_res_blocks + 1): + ich = input_block_chans.pop() + output_layers: list[ResBlock | MultiviewTransformer | Upsample] = [ + ResBlock( + channels=ch + ich, + emb_channels=time_embed_dim, + out_channels=params.model_channels * mult, + dense_in_channels=params.dense_in_channels, + dropout=params.dropout, + ) + ] + ch = params.model_channels * mult + if ds in params.attention_resolutions: + num_heads = ch // params.num_head_channels + dim_head = params.num_head_channels + + output_layers.append( + MultiviewTransformer( + ch, + num_heads, + dim_head, + name=f"output_ds{ds}", + depth=params.transformer_depth[level], + context_dim=params.context_dim, + unflatten_names=params.unflatten_names, + ) + ) + if level and i == params.num_res_blocks: + out_ch = ch + ds //= 2 + output_layers.append(Upsample(ch, out_ch)) + self.output_blocks.append(TimestepEmbedSequential(*output_layers)) + self._feature_size += ch + + self.out = nn.Sequential( + GroupNorm32(32, ch), + nn.SiLU(), + nn.Conv2d(self.model_channels, params.out_channels, 3, padding=1), + ) + + def forward( + self, + x: torch.Tensor, + t: torch.Tensor, + y: torch.Tensor, + dense_y: torch.Tensor, + num_frames: int | None = None, + ) -> torch.Tensor: + num_frames = num_frames or self.params.num_frames + t_emb = timestep_embedding(t, self.model_channels) + t_emb = self.time_embed(t_emb) + + hs = [] + h = x + for module in self.input_blocks: + h = module( + h, + emb=t_emb, + context=y, + dense_emb=dense_y, + num_frames=num_frames, + ) + hs.append(h) + h = self.middle_block( + h, + emb=t_emb, + context=y, + dense_emb=dense_y, + num_frames=num_frames, + ) + for module in self.output_blocks: + h = torch.cat([h, hs.pop()], dim=1) + h = module( + h, + emb=t_emb, + context=y, + dense_emb=dense_y, + num_frames=num_frames, + ) + h = h.type(x.dtype) + return self.out(h) + + +class SGMWrapper(nn.Module): + def __init__(self, module: Seva): + super().__init__() + self.module = module + + def forward( + self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs + ) -> torch.Tensor: + x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1) + return self.module( + x, + t=t, + y=c["crossattn"], + dense_y=c["dense_vector"], + **kwargs, + ) diff --git a/seva/modules/__init__.py b/seva/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/seva/modules/autoencoder.py b/seva/modules/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..e2ce7b7d76b926c43c80e207cd2279aeef12050c --- /dev/null +++ b/seva/modules/autoencoder.py @@ -0,0 +1,51 @@ +import torch +from diffusers.models import AutoencoderKL # type: ignore +from torch import nn + + +class AutoEncoder(nn.Module): + scale_factor: float = 0.18215 + downsample: int = 8 + + def __init__(self, chunk_size: int | None = None): + super().__init__() + self.module = AutoencoderKL.from_pretrained( + "stabilityai/stable-diffusion-2-1-base", + subfolder="vae", + force_download=False, + low_cpu_mem_usage=False, + ) + self.module.eval().requires_grad_(False) # type: ignore + self.chunk_size = chunk_size + + def _encode(self, x: torch.Tensor) -> torch.Tensor: + return ( + self.module.encode(x).latent_dist.mean # type: ignore + * self.scale_factor + ) + + def encode(self, x: torch.Tensor, chunk_size: int | None = None) -> torch.Tensor: + chunk_size = chunk_size or self.chunk_size + if chunk_size is not None: + return torch.cat( + [self._encode(x_chunk) for x_chunk in x.split(chunk_size)], + dim=0, + ) + else: + return self._encode(x) + + def _decode(self, z: torch.Tensor) -> torch.Tensor: + return self.module.decode(z / self.scale_factor).sample # type: ignore + + def decode(self, z: torch.Tensor, chunk_size: int | None = None) -> torch.Tensor: + chunk_size = chunk_size or self.chunk_size + if chunk_size is not None: + return torch.cat( + [self._decode(z_chunk) for z_chunk in z.split(chunk_size)], + dim=0, + ) + else: + return self._decode(z) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.decode(self.encode(x)) diff --git a/seva/modules/conditioner.py b/seva/modules/conditioner.py new file mode 100644 index 0000000000000000000000000000000000000000..31915d778c2ca0b118ba424bcb201fe35bf15e09 --- /dev/null +++ b/seva/modules/conditioner.py @@ -0,0 +1,39 @@ +import kornia +import open_clip +import torch +from torch import nn + + +class CLIPConditioner(nn.Module): + mean: torch.Tensor + std: torch.Tensor + + def __init__(self): + super().__init__() + self.module = open_clip.create_model_and_transforms( + "ViT-H-14", pretrained="laion2b_s32b_b79k" + )[0] + self.module.eval().requires_grad_(False) # type: ignore + self.register_buffer( + "mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False + ) + self.register_buffer( + "std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False + ) + + def preprocess(self, x: torch.Tensor) -> torch.Tensor: + x = kornia.geometry.resize( + x, + (224, 224), + interpolation="bicubic", + align_corners=True, + antialias=True, + ) + x = (x + 1.0) / 2.0 + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.preprocess(x) + x = self.module.encode_image(x) + return x diff --git a/seva/modules/layers.py b/seva/modules/layers.py new file mode 100644 index 0000000000000000000000000000000000000000..ab1786d2d5cf6033720f968a1f181a37eb0b1423 --- /dev/null +++ b/seva/modules/layers.py @@ -0,0 +1,139 @@ +import math + +import torch +import torch.nn.functional as F +from einops import repeat +from torch import nn + +from .transformer import MultiviewTransformer + + +def timestep_embedding( + timesteps: torch.Tensor, + dim: int, + max_period: int = 10000, + repeat_only: bool = False, +) -> torch.Tensor: + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) + * torch.arange(start=0, end=half, dtype=torch.float32) + / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat( + [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 + ) + else: + embedding = repeat(timesteps, "b -> b d", d=dim) + return embedding + + +class Upsample(nn.Module): + def __init__(self, channels: int, out_channels: int | None = None): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.conv = nn.Conv2d(self.channels, self.out_channels, 3, 1, 1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + assert x.shape[1] == self.channels + x = F.interpolate(x, scale_factor=2, mode="nearest") + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, channels: int, out_channels: int | None = None): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.op = nn.Conv2d(self.channels, self.out_channels, 3, 2, 1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + assert x.shape[1] == self.channels + return self.op(x) + + +class GroupNorm32(nn.GroupNorm): + def forward(self, input: torch.Tensor) -> torch.Tensor: + return super().forward(input.float()).type(input.dtype) + + +class TimestepEmbedSequential(nn.Sequential): + def forward( # type: ignore[override] + self, + x: torch.Tensor, + emb: torch.Tensor, + context: torch.Tensor, + dense_emb: torch.Tensor, + num_frames: int, + ) -> torch.Tensor: + for layer in self: + if isinstance(layer, MultiviewTransformer): + assert num_frames is not None + x = layer(x, context, num_frames) + elif isinstance(layer, ResBlock): + x = layer(x, emb, dense_emb) + else: + x = layer(x) + return x + + +class ResBlock(nn.Module): + def __init__( + self, + channels: int, + emb_channels: int, + out_channels: int | None, + dense_in_channels: int, + dropout: float, + ): + super().__init__() + out_channels = out_channels or channels + + self.in_layers = nn.Sequential( + GroupNorm32(32, channels), + nn.SiLU(), + nn.Conv2d(channels, out_channels, 3, 1, 1), + ) + self.emb_layers = nn.Sequential( + nn.SiLU(), nn.Linear(emb_channels, out_channels) + ) + self.dense_emb_layers = nn.Sequential( + nn.Conv2d(dense_in_channels, 2 * channels, 1, 1, 0) + ) + self.out_layers = nn.Sequential( + GroupNorm32(32, out_channels), + nn.SiLU(), + nn.Dropout(dropout), + nn.Conv2d(out_channels, out_channels, 3, 1, 1), + ) + if out_channels == channels: + self.skip_connection = nn.Identity() + else: + self.skip_connection = nn.Conv2d(channels, out_channels, 1, 1, 0) + + def forward( + self, x: torch.Tensor, emb: torch.Tensor, dense_emb: torch.Tensor + ) -> torch.Tensor: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + dense = self.dense_emb_layers( + F.interpolate( + dense_emb, size=h.shape[2:], mode="bilinear", align_corners=True + ) + ).type(h.dtype) + dense_scale, dense_shift = torch.chunk(dense, 2, dim=1) + h = h * (1 + dense_scale) + dense_shift + h = in_conv(h) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + h = h + emb_out + h = self.out_layers(h) + h = self.skip_connection(x) + h + return h diff --git a/seva/modules/preprocessor.py b/seva/modules/preprocessor.py new file mode 100644 index 0000000000000000000000000000000000000000..c5794463b3bb6892d5311b94c296bb83ea5245bf --- /dev/null +++ b/seva/modules/preprocessor.py @@ -0,0 +1,116 @@ +import contextlib +import os +import os.path as osp +import sys +from typing import cast + +import imageio.v3 as iio +import numpy as np +import torch + + +class Dust3rPipeline(object): + def __init__(self, device: str | torch.device = "cuda"): + submodule_path = osp.realpath( + osp.join(osp.dirname(__file__), "../../third_party/dust3r/") + ) + if submodule_path not in sys.path: + sys.path.insert(0, submodule_path) + try: + with open(os.devnull, "w") as f, contextlib.redirect_stdout(f): + from dust3r.cloud_opt import ( # type: ignore[import] + GlobalAlignerMode, + global_aligner, + ) + from dust3r.image_pairs import make_pairs # type: ignore[import] + from dust3r.inference import inference # type: ignore[import] + from dust3r.model import AsymmetricCroCo3DStereo # type: ignore[import] + from dust3r.utils.image import load_images # type: ignore[import] + except ImportError: + raise ImportError( + "Missing required submodule: 'dust3r'. Please ensure that all submodules are properly set up.\n\n" + "To initialize them, run the following command in the project root:\n" + " git submodule update --init --recursive" + ) + + self.device = torch.device(device) + self.model = AsymmetricCroCo3DStereo.from_pretrained( + "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" + ).to(self.device) + + self._GlobalAlignerMode = GlobalAlignerMode + self._global_aligner = global_aligner + self._make_pairs = make_pairs + self._inference = inference + self._load_images = load_images + + def infer_cameras_and_points( + self, + img_paths: list[str], + Ks: list[list] = None, + c2ws: list[list] = None, + batch_size: int = 16, + schedule: str = "cosine", + lr: float = 0.01, + niter: int = 500, + min_conf_thr: int = 3, + ) -> tuple[ + list[np.ndarray], np.ndarray, np.ndarray, list[np.ndarray], list[np.ndarray] + ]: + num_img = len(img_paths) + if num_img == 1: + print("Only one image found, duplicating it to create a stereo pair.") + img_paths = img_paths * 2 + + images = self._load_images(img_paths, size=512) + pairs = self._make_pairs( + images, + scene_graph="complete", + prefilter=None, + symmetrize=True, + ) + output = self._inference(pairs, self.model, self.device, batch_size=batch_size) + + ori_imgs = [iio.imread(p) for p in img_paths] + ori_img_whs = np.array([img.shape[1::-1] for img in ori_imgs]) + img_whs = np.concatenate([image["true_shape"][:, ::-1] for image in images], 0) + + scene = self._global_aligner( + output, + device=self.device, + mode=self._GlobalAlignerMode.PointCloudOptimizer, + same_focals=True, + optimize_pp=False, # True, + min_conf_thr=min_conf_thr, + ) + + # if Ks is not None: + # scene.preset_focal( + # torch.tensor([[K[0, 0], K[1, 1]] for K in Ks]) + # ) + + if c2ws is not None: + scene.preset_pose(c2ws) + + _ = scene.compute_global_alignment( + init="msp", niter=niter, schedule=schedule, lr=lr + ) + + imgs = cast(list, scene.imgs) + Ks = scene.get_intrinsics().detach().cpu().numpy().copy() + c2ws = scene.get_im_poses().detach().cpu().numpy() # type: ignore + pts3d = [x.detach().cpu().numpy() for x in scene.get_pts3d()] # type: ignore + if num_img > 1: + masks = [x.detach().cpu().numpy() for x in scene.get_masks()] + points = [p[m] for p, m in zip(pts3d, masks)] + point_colors = [img[m] for img, m in zip(imgs, masks)] + else: + points = [p.reshape(-1, 3) for p in pts3d] + point_colors = [img.reshape(-1, 3) for img in imgs] + + # Convert back to the original image size. + imgs = ori_imgs + Ks[:, :2, -1] *= ori_img_whs / img_whs + Ks[:, :2, :2] *= (ori_img_whs / img_whs).mean(axis=1, keepdims=True)[..., None] + + return imgs, Ks, c2ws, points, point_colors diff --git a/seva/modules/transformer.py b/seva/modules/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..0941cd1e057ff341f19a5b76f784386b123edd23 --- /dev/null +++ b/seva/modules/transformer.py @@ -0,0 +1,247 @@ +import torch +import torch.nn.functional as F +from einops import rearrange, repeat +from torch import nn +from torch.nn.attention import SDPBackend, sdpa_kernel + + +class GEGLU(nn.Module): + def __init__(self, dim_in: int, dim_out: int): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__( + self, + dim: int, + dim_out: int | None = None, + mult: int = 4, + dropout: float = 0.0, + ): + super().__init__() + inner_dim = int(dim * mult) + dim_out = dim_out or dim + self.net = nn.Sequential( + GEGLU(dim, inner_dim), nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.net(x) + + +class Attention(nn.Module): + def __init__( + self, + query_dim: int, + context_dim: int | None = None, + heads: int = 8, + dim_head: int = 64, + dropout: float = 0.0, + ): + super().__init__() + self.heads = heads + self.dim_head = dim_head + inner_dim = dim_head * heads + context_dim = context_dim or query_dim + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) + ) + + def forward( + self, x: torch.Tensor, context: torch.Tensor | None = None + ) -> torch.Tensor: + q = self.to_q(x) + context = context if context is not None else x + k = self.to_k(context) + v = self.to_v(context) + q, k, v = map( + lambda t: rearrange(t, "b l (h d) -> b h l d", h=self.heads), + (q, k, v), + ) + with sdpa_kernel(SDPBackend.FLASH_ATTENTION): + out = F.scaled_dot_product_attention(q, k, v) + out = rearrange(out, "b h l d -> b l (h d)") + out = self.to_out(out) + return out + + +class TransformerBlock(nn.Module): + def __init__( + self, + dim: int, + n_heads: int, + d_head: int, + context_dim: int, + dropout: float = 0.0, + ): + super().__init__() + self.attn1 = Attention( + query_dim=dim, + context_dim=None, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) + self.ff = FeedForward(dim, dropout=dropout) + self.attn2 = Attention( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + + def forward(self, x: torch.Tensor, context: torch.Tensor) -> torch.Tensor: + x = self.attn1(self.norm1(x)) + x + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class TransformerBlockTimeMix(nn.Module): + def __init__( + self, + dim: int, + n_heads: int, + d_head: int, + context_dim: int, + dropout: float = 0.0, + ): + super().__init__() + inner_dim = n_heads * d_head + self.norm_in = nn.LayerNorm(dim) + self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout) + self.attn1 = Attention( + query_dim=inner_dim, + context_dim=None, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) + self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout) + self.attn2 = Attention( + query_dim=inner_dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) + self.norm1 = nn.LayerNorm(inner_dim) + self.norm2 = nn.LayerNorm(inner_dim) + self.norm3 = nn.LayerNorm(inner_dim) + + def forward( + self, x: torch.Tensor, context: torch.Tensor, num_frames: int + ) -> torch.Tensor: + _, s, _ = x.shape + x = rearrange(x, "(b t) s c -> (b s) t c", t=num_frames) + x = self.ff_in(self.norm_in(x)) + x + x = self.attn1(self.norm1(x), context=None) + x + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x = rearrange(x, "(b s) t c -> (b t) s c", s=s) + return x + + +class SkipConnect(nn.Module): + def __init__(self): + super().__init__() + + def forward( + self, x_spatial: torch.Tensor, x_temporal: torch.Tensor + ) -> torch.Tensor: + return x_spatial + x_temporal + + +class MultiviewTransformer(nn.Module): + def __init__( + self, + in_channels: int, + n_heads: int, + d_head: int, + name: str, + unflatten_names: list[str] = [], + depth: int = 1, + context_dim: int = 1024, + dropout: float = 0.0, + ): + super().__init__() + self.in_channels = in_channels + self.name = name + self.unflatten_names = unflatten_names + + inner_dim = n_heads * d_head + self.norm = nn.GroupNorm(32, in_channels, eps=1e-6) + self.proj_in = nn.Linear(in_channels, inner_dim) + self.transformer_blocks = nn.ModuleList( + [ + TransformerBlock( + inner_dim, + n_heads, + d_head, + context_dim=context_dim, + dropout=dropout, + ) + for _ in range(depth) + ] + ) + self.proj_out = nn.Linear(inner_dim, in_channels) + self.time_mixer = SkipConnect() + self.time_mix_blocks = nn.ModuleList( + [ + TransformerBlockTimeMix( + inner_dim, + n_heads, + d_head, + context_dim=context_dim, + dropout=dropout, + ) + for _ in range(depth) + ] + ) + + def forward( + self, x: torch.Tensor, context: torch.Tensor, num_frames: int + ) -> torch.Tensor: + assert context.ndim == 3 + _, _, h, w = x.shape + x_in = x + + time_context = context + time_context_first_timestep = time_context[::num_frames] + time_context = repeat( + time_context_first_timestep, "b ... -> (b n) ...", n=h * w + ) + + if self.name in self.unflatten_names: + context = context[::num_frames] + + x = self.norm(x) + x = rearrange(x, "b c h w -> b (h w) c") + x = self.proj_in(x) + + for block, mix_block in zip(self.transformer_blocks, self.time_mix_blocks): + if self.name in self.unflatten_names: + x = rearrange(x, "(b t) (h w) c -> b (t h w) c", t=num_frames, h=h, w=w) + x = block(x, context=context) + if self.name in self.unflatten_names: + x = rearrange(x, "b (t h w) c -> (b t) (h w) c", t=num_frames, h=h, w=w) + x_mix = mix_block(x, context=time_context, num_frames=num_frames) + x = self.time_mixer(x_spatial=x, x_temporal=x_mix) + + x = self.proj_out(x) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + out = x + x_in + return out diff --git a/seva/sampling.py b/seva/sampling.py new file mode 100644 index 0000000000000000000000000000000000000000..576226ee3ee1fef3451c430e4ed302a4f1a46a50 --- /dev/null +++ b/seva/sampling.py @@ -0,0 +1,405 @@ +import numpy as np +import torch +import torch.nn as nn +from einops import rearrange +from tqdm import tqdm + +from seva.geometry import get_camera_dist + + +def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor: + """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError( + f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" + ) + return x[(...,) + (None,) * dims_to_append] + + +def append_zero(x: torch.Tensor) -> torch.Tensor: + return torch.cat([x, x.new_zeros([1])]) + + +def to_d(x: torch.Tensor, sigma: torch.Tensor, denoised: torch.Tensor) -> torch.Tensor: + return (x - denoised) / append_dims(sigma, x.ndim) + + +def make_betas( + num_timesteps: int, linear_start: float = 1e-4, linear_end: float = 2e-2 +) -> np.ndarray: + betas = ( + torch.linspace( + linear_start**0.5, linear_end**0.5, num_timesteps, dtype=torch.float64 + ) + ** 2 + ) + return betas.numpy() + + +def generate_roughly_equally_spaced_steps( + num_substeps: int, max_step: int +) -> np.ndarray: + return np.linspace(max_step - 1, 0, num_substeps, endpoint=False).astype(int)[::-1] + + +class EpsScaling(object): + def __call__( + self, sigma: torch.Tensor + ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + c_skip = torch.ones_like(sigma, device=sigma.device) + c_out = -sigma + c_in = 1 / (sigma**2 + 1.0) ** 0.5 + c_noise = sigma.clone() + return c_skip, c_out, c_in, c_noise + + +class DDPMDiscretization(object): + def __init__( + self, + linear_start: float = 5e-06, + linear_end: float = 0.012, + num_timesteps: int = 1000, + log_snr_shift: float | None = 2.4, + ): + self.num_timesteps = num_timesteps + + betas = make_betas( + num_timesteps, + linear_start=linear_start, + linear_end=linear_end, + ) + self.log_snr_shift = log_snr_shift + + alphas = 1.0 - betas # first alpha here is on data side + self.alphas_cumprod = np.cumprod(alphas, axis=0) + + def get_sigmas(self, n: int, device: str | torch.device = "cpu") -> torch.Tensor: + if n < self.num_timesteps: + timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps) + alphas_cumprod = self.alphas_cumprod[timesteps] + elif n == self.num_timesteps: + alphas_cumprod = self.alphas_cumprod + else: + raise ValueError(f"Expected n <= {self.num_timesteps}, but got n = {n}.") + + sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 + if self.log_snr_shift is not None: + sigmas = sigmas * np.exp(self.log_snr_shift) + return torch.flip( + torch.tensor(sigmas, dtype=torch.float32, device=device), (0,) + ) + + def __call__( + self, + n: int, + do_append_zero: bool = True, + flip: bool = False, + device: str | torch.device = "cpu", + ) -> torch.Tensor: + sigmas = self.get_sigmas(n, device=device) + sigmas = append_zero(sigmas) if do_append_zero else sigmas + return sigmas if not flip else torch.flip(sigmas, (0,)) + + +class DiscreteDenoiser(object): + sigmas: torch.Tensor + + def __init__( + self, + discretization: DDPMDiscretization, + num_idx: int = 1000, + device: str | torch.device = "cpu", + ): + self.scaling = EpsScaling() + self.discretization = discretization + self.num_idx = num_idx + self.device = device + + self.register_sigmas() + + def register_sigmas(self): + self.sigmas = self.discretization( + self.num_idx, do_append_zero=False, flip=True, device=self.device + ) + + def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor: + dists = sigma - self.sigmas[:, None] + return dists.abs().argmin(dim=0).view(sigma.shape) + + def idx_to_sigma(self, idx: torch.Tensor | int) -> torch.Tensor: + return self.sigmas[idx] + + def __call__( + self, + network: nn.Module, + input: torch.Tensor, + sigma: torch.Tensor, + cond: dict, + **additional_model_inputs, + ) -> torch.Tensor: + sigma = self.idx_to_sigma(self.sigma_to_idx(sigma)) + sigma_shape = sigma.shape + sigma = append_dims(sigma, input.ndim) + c_skip, c_out, c_in, c_noise = self.scaling(sigma) + c_noise = self.sigma_to_idx(c_noise.reshape(sigma_shape)) + if "replace" in cond: + x, mask = cond.pop("replace").split((input.shape[1], 1), dim=1) + input = input * (1 - mask) + x * mask + return ( + network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out + + input * c_skip + ) + + +class ConstantScaleRule(object): + def __call__(self, scale: float | torch.Tensor) -> float | torch.Tensor: + return scale + + +class MultiviewScaleRule(object): + def __init__(self, min_scale: float = 1.0): + self.min_scale = min_scale + + def __call__( + self, + scale: float | torch.Tensor, + c2w: torch.Tensor, + K: torch.Tensor, + input_frame_mask: torch.Tensor, + ) -> torch.Tensor: + c2w_input = c2w[input_frame_mask] + rotation_diff = get_camera_dist(c2w, c2w_input, mode="rotation").min(-1).values + translation_diff = ( + get_camera_dist(c2w, c2w_input, mode="translation").min(-1).values + ) + K_diff = ( + ((K[:, None] - K[input_frame_mask][None]).flatten(-2) == 0).all(-1).any(-1) + ) + close_frame = (rotation_diff < 10.0) & (translation_diff < 1e-5) & K_diff + if isinstance(scale, torch.Tensor): + scale = scale.clone() + scale[close_frame] = self.min_scale + elif isinstance(scale, float): + scale = torch.where(close_frame, self.min_scale, scale) + else: + raise ValueError(f"Invalid scale type {type(scale)}.") + return scale + + +class ConstantScaleSchedule(object): + def __call__( + self, sigma: float | torch.Tensor, scale: float | torch.Tensor + ) -> float | torch.Tensor: + if isinstance(sigma, float): + return scale + elif isinstance(sigma, torch.Tensor): + if len(sigma.shape) == 1 and isinstance(scale, torch.Tensor): + sigma = append_dims(sigma, scale.ndim) + return scale * torch.ones_like(sigma) + else: + raise ValueError(f"Invalid sigma type {type(sigma)}.") + + +class ConstantGuidance(object): + def __call__( + self, + uncond: torch.Tensor, + cond: torch.Tensor, + scale: float | torch.Tensor, + ) -> torch.Tensor: + if isinstance(scale, torch.Tensor) and len(scale.shape) == 1: + scale = append_dims(scale, cond.ndim) + return uncond + scale * (cond - uncond) + + +class VanillaCFG(object): + def __init__(self): + self.scale_rule = ConstantScaleRule() + self.scale_schedule = ConstantScaleSchedule() + self.guidance = ConstantGuidance() + + def __call__( + self, x: torch.Tensor, sigma: float | torch.Tensor, scale: float | torch.Tensor + ) -> torch.Tensor: + x_u, x_c = x.chunk(2) + scale = self.scale_rule(scale) + scale_value = self.scale_schedule(sigma, scale) + x_pred = self.guidance(x_u, x_c, scale_value) + return x_pred + + def prepare_inputs( + self, x: torch.Tensor, s: torch.Tensor, c: dict, uc: dict + ) -> tuple[torch.Tensor, torch.Tensor, dict]: + c_out = dict() + + for k in c: + if k in ["vector", "crossattn", "concat", "replace", "dense_vector"]: + c_out[k] = torch.cat((uc[k], c[k]), 0) + else: + assert c[k] == uc[k] + c_out[k] = c[k] + return torch.cat([x] * 2), torch.cat([s] * 2), c_out + + +class MultiviewCFG(VanillaCFG): + def __init__(self, cfg_min: float = 1.0): + self.scale_min = cfg_min + self.scale_rule = MultiviewScaleRule(min_scale=cfg_min) + self.scale_schedule = ConstantScaleSchedule() + self.guidance = ConstantGuidance() + + def __call__( # type: ignore + self, + x: torch.Tensor, + sigma: float | torch.Tensor, + scale: float | torch.Tensor, + c2w: torch.Tensor, + K: torch.Tensor, + input_frame_mask: torch.Tensor, + ) -> torch.Tensor: + x_u, x_c = x.chunk(2) + scale = self.scale_rule(scale, c2w, K, input_frame_mask) + scale_value = self.scale_schedule(sigma, scale) + x_pred = self.guidance(x_u, x_c, scale_value) + return x_pred + + +class MultiviewTemporalCFG(MultiviewCFG): + def __init__(self, num_frames: int, cfg_min: float = 1.0): + super().__init__(cfg_min=cfg_min) + + self.num_frames = num_frames + distance_matrix = ( + torch.arange(num_frames)[None] - torch.arange(num_frames)[:, None] + ).abs() + self.distance_matrix = distance_matrix + + def __call__( + self, + x: torch.Tensor, + sigma: float | torch.Tensor, + scale: float | torch.Tensor, + c2w: torch.Tensor, + K: torch.Tensor, + input_frame_mask: torch.Tensor, + ) -> torch.Tensor: + input_frame_mask = rearrange( + input_frame_mask, "(b t) ... -> b t ...", t=self.num_frames + ) + min_distance = ( + self.distance_matrix[None].to(x.device) + + (~input_frame_mask[:, None]) * self.num_frames + ).min(-1)[0] + min_distance = min_distance / min_distance.max(-1, keepdim=True)[0].clamp(min=1) + scale = min_distance * (scale - self.scale_min) + self.scale_min + scale = rearrange(scale, "b t ... -> (b t) ...") + scale = append_dims(scale, x.ndim) + return super().__call__(x, sigma, scale, c2w, K, input_frame_mask.flatten(0, 1)) + + +class EulerEDMSampler(object): + def __init__( + self, + discretization: DDPMDiscretization, + guider: VanillaCFG | MultiviewCFG | MultiviewTemporalCFG, + num_steps: int | None = None, + verbose: bool = False, + device: str | torch.device = "cuda", + s_churn=0.0, + s_tmin=0.0, + s_tmax=float("inf"), + s_noise=1.0, + ): + self.num_steps = num_steps + self.discretization = discretization + self.guider = guider + self.verbose = verbose + self.device = device + + self.s_churn = s_churn + self.s_tmin = s_tmin + self.s_tmax = s_tmax + self.s_noise = s_noise + + def prepare_sampling_loop( + self, x: torch.Tensor, cond: dict, uc: dict, num_steps: int | None = None + ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, dict, dict]: + num_steps = num_steps or self.num_steps + assert num_steps is not None, "num_steps must be specified" + sigmas = self.discretization(num_steps, device=self.device) + x *= torch.sqrt(1.0 + sigmas[0] ** 2.0) + num_sigmas = len(sigmas) + s_in = x.new_ones([x.shape[0]]) + return x, s_in, sigmas, num_sigmas, cond, uc + + def get_sigma_gen(self, num_sigmas: int, verbose: bool = True) -> range | tqdm: + sigma_generator = range(num_sigmas - 1) + if self.verbose and verbose: + sigma_generator = tqdm( + sigma_generator, + total=num_sigmas - 1, + desc="Sampling", + leave=False, + ) + return sigma_generator + + def sampler_step( + self, + sigma: torch.Tensor, + next_sigma: torch.Tensor, + denoiser, + x: torch.Tensor, + scale: float | torch.Tensor, + cond: dict, + uc: dict, + gamma: float = 0.0, + **guider_kwargs, + ) -> torch.Tensor: + sigma_hat = sigma * (gamma + 1.0) + 1e-6 + + eps = torch.randn_like(x) * self.s_noise + x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 + + denoised = denoiser(*self.guider.prepare_inputs(x, sigma_hat, cond, uc)) + denoised = self.guider(denoised, sigma_hat, scale, **guider_kwargs) + d = to_d(x, sigma_hat, denoised) + dt = append_dims(next_sigma - sigma_hat, x.ndim) + return x + dt * d + + def __call__( + self, + denoiser, + x: torch.Tensor, + scale: float | torch.Tensor, + cond: dict, + uc: dict | None = None, + num_steps: int | None = None, + verbose: bool = True, + **guider_kwargs, + ) -> torch.Tensor: + uc = cond if uc is None else uc + x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( + x, + cond, + uc, + num_steps, + ) + for i in self.get_sigma_gen(num_sigmas, verbose=verbose): + gamma = ( + min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) + if self.s_tmin <= sigmas[i] <= self.s_tmax + else 0.0 + ) + x = self.sampler_step( + s_in * sigmas[i], + s_in * sigmas[i + 1], + denoiser, + x, + scale, + cond, + uc, + gamma, + **guider_kwargs, + ) + return x diff --git a/seva/utils.py b/seva/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..7934ec233f066f8a849703ae66936649081f9faf --- /dev/null +++ b/seva/utils.py @@ -0,0 +1,56 @@ +import os + +import safetensors.torch +import torch +from huggingface_hub import hf_hub_download + +from seva.model import Seva, SevaParams + + +def seed_everything(seed: int = 0): + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + +def print_load_warning(missing: list[str], unexpected: list[str]) -> None: + if len(missing) > 0 and len(unexpected) > 0: + print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) + print("\n" + "-" * 79 + "\n") + print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) + elif len(missing) > 0: + print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) + elif len(unexpected) > 0: + print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) + + +def load_model( + pretrained_model_name_or_path: str = "stabilityai/stable-virtual-camera", + weight_name: str = "model.safetensors", + device: str | torch.device = "cuda", + verbose: bool = False, +) -> Seva: + if os.path.isdir(pretrained_model_name_or_path): + weight_path = os.path.join(pretrained_model_name_or_path, weight_name) + else: + weight_path = hf_hub_download( + repo_id=pretrained_model_name_or_path, filename=weight_name + ) + _ = hf_hub_download( + repo_id=pretrained_model_name_or_path, filename="config.yaml" + ) + + state_dict = safetensors.torch.load_file( + weight_path, + device=str(device), + ) + + with torch.device("meta"): + model = Seva(SevaParams()).to(torch.bfloat16) + + missing, unexpected = model.load_state_dict(state_dict, strict=False, assign=True) + if verbose: + print_load_warning(missing, unexpected) + return model diff --git a/third_party/dust3r/.gitignore b/third_party/dust3r/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..194e236cbd708160926c3513b4232285eb47b029 --- /dev/null +++ b/third_party/dust3r/.gitignore @@ -0,0 +1,132 @@ +data/ +checkpoints/ + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +pip-wheel-metadata/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ diff --git a/third_party/dust3r/.gitmodules b/third_party/dust3r/.gitmodules new file mode 100644 index 0000000000000000000000000000000000000000..c950ef981a8d2e47599dd7acbbe1bf8de9a42aca --- /dev/null +++ b/third_party/dust3r/.gitmodules @@ -0,0 +1,3 @@ +[submodule "croco"] + path = croco + url = https://github.com/naver/croco diff --git a/third_party/dust3r/LICENSE b/third_party/dust3r/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..a97986e3a8ddd49973959f6c748dfa8b881b64d3 --- /dev/null +++ b/third_party/dust3r/LICENSE @@ -0,0 +1,7 @@ +DUSt3R, Copyright (c) 2024-present Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. + +A summary of the CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/ + +The CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode diff --git a/third_party/dust3r/NOTICE b/third_party/dust3r/NOTICE new file mode 100644 index 0000000000000000000000000000000000000000..81da544dd534c5465361f35cf6a5a0cfff7c1d3f --- /dev/null +++ b/third_party/dust3r/NOTICE @@ -0,0 +1,12 @@ +DUSt3R +Copyright 2024-present NAVER Corp. + +This project contains subcomponents with separate copyright notices and license terms. +Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses. + +==== + +naver/croco +https://github.com/naver/croco/ + +Creative Commons Attribution-NonCommercial-ShareAlike 4.0 diff --git a/third_party/dust3r/README.md b/third_party/dust3r/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e7c7a4f9328a62e55a93f757fc41dcbca18ef546 --- /dev/null +++ b/third_party/dust3r/README.md @@ -0,0 +1,390 @@ +![demo](assets/dust3r.jpg) + +Official implementation of `DUSt3R: Geometric 3D Vision Made Easy` +[[Project page](https://dust3r.europe.naverlabs.com/)], [[DUSt3R arxiv](https://arxiv.org/abs/2312.14132)] + +> **Make sure to also check [MASt3R](https://github.com/naver/mast3r): Our new model with a local feature head, metric pointmaps, and a more scalable global alignment!** + +![Example of reconstruction from two images](assets/pipeline1.jpg) + +![High level overview of DUSt3R capabilities](assets/dust3r_archi.jpg) + +```bibtex +@inproceedings{dust3r_cvpr24, + title={DUSt3R: Geometric 3D Vision Made Easy}, + author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud}, + booktitle = {CVPR}, + year = {2024} +} + +@misc{dust3r_arxiv23, + title={DUSt3R: Geometric 3D Vision Made Easy}, + author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud}, + year={2023}, + eprint={2312.14132}, + archivePrefix={arXiv}, + primaryClass={cs.CV} +} +``` + +## Table of Contents + +- [Table of Contents](#table-of-contents) +- [License](#license) +- [Get Started](#get-started) + - [Installation](#installation) + - [Checkpoints](#checkpoints) + - [Interactive demo](#interactive-demo) + - [Interactive demo with docker](#interactive-demo-with-docker) +- [Usage](#usage) +- [Training](#training) + - [Datasets](#datasets) + - [Demo](#demo) + - [Our Hyperparameters](#our-hyperparameters) + +## License + +The code is distributed under the CC BY-NC-SA 4.0 License. +See [LICENSE](LICENSE) for more information. + +```python +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +``` + +## Get Started + +### Installation + +1. Clone DUSt3R. +```bash +git clone --recursive https://github.com/naver/dust3r +cd dust3r +# if you have already cloned dust3r: +# git submodule update --init --recursive +``` + +2. Create the environment, here we show an example using conda. +```bash +conda create -n dust3r python=3.11 cmake=3.14.0 +conda activate dust3r +conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system +pip install -r requirements.txt +# Optional: you can also install additional packages to: +# - add support for HEIC images +# - add pyrender, used to render depthmap in some datasets preprocessing +# - add required packages for visloc.py +pip install -r requirements_optional.txt +``` + +3. Optional, compile the cuda kernels for RoPE (as in CroCo v2). +```bash +# DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime. +cd croco/models/curope/ +python setup.py build_ext --inplace +cd ../../../ +``` + +### Checkpoints + +You can obtain the checkpoints by two ways: + +1) You can use our huggingface_hub integration: the models will be downloaded automatically. + +2) Otherwise, We provide several pre-trained models: + +| Modelname | Training resolutions | Head | Encoder | Decoder | +|-------------|----------------------|------|---------|---------| +| [`DUSt3R_ViTLarge_BaseDecoder_224_linear.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_224_linear.pth) | 224x224 | Linear | ViT-L | ViT-B | +| [`DUSt3R_ViTLarge_BaseDecoder_512_linear.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_linear.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | Linear | ViT-L | ViT-B | +| [`DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth`](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth) | 512x384, 512x336, 512x288, 512x256, 512x160 | DPT | ViT-L | ViT-B | + +You can check the hyperparameters we used to train these models in the [section: Our Hyperparameters](#our-hyperparameters) + +To download a specific model, for example `DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth`: +```bash +mkdir -p checkpoints/ +wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/ +``` + +For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. Again, see [section: Our Hyperparameters](#our-hyperparameters) for details. + +### Interactive demo + +In this demo, you should be able run DUSt3R on your machine to reconstruct a scene. +First select images that depicts the same scene. + +You can adjust the global alignment schedule and its number of iterations. + +> [!NOTE] +> If you selected one or two images, the global alignment procedure will be skipped (mode=GlobalAlignerMode.PairViewer) + +Hit "Run" and wait. +When the global alignment ends, the reconstruction appears. +Use the slider "min_conf_thr" to show or remove low confidence areas. + +```bash +python3 demo.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt + +# Use --weights to load a checkpoint from a local file, eg --weights checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth +# Use --image_size to select the correct resolution for the selected checkpoint. 512 (default) or 224 +# Use --local_network to make it accessible on the local network, or --server_name to specify the url manually +# Use --server_port to change the port, by default it will search for an available port starting at 7860 +# Use --device to use a different device, by default it's "cuda" +``` + +### Interactive demo with docker + +To run DUSt3R using Docker, including with NVIDIA CUDA support, follow these instructions: + +1. **Install Docker**: If not already installed, download and install `docker` and `docker compose` from the [Docker website](https://www.docker.com/get-started). + +2. **Install NVIDIA Docker Toolkit**: For GPU support, install the NVIDIA Docker toolkit from the [Nvidia website](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html). + +3. **Build the Docker image and run it**: `cd` into the `./docker` directory and run the following commands: + +```bash +cd docker +bash run.sh --with-cuda --model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt" +``` + +Or if you want to run the demo without CUDA support, run the following command: + +```bash +cd docker +bash run.sh --model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt" +``` + +By default, `demo.py` is lanched with the option `--local_network`. +Visit `http://localhost:7860/` to access the web UI (or replace `localhost` with the machine's name to access it from the network). + +`run.sh` will launch docker-compose using either the [docker-compose-cuda.yml](docker/docker-compose-cuda.yml) or [docker-compose-cpu.ym](docker/docker-compose-cpu.yml) config file, then it starts the demo using [entrypoint.sh](docker/files/entrypoint.sh). + + +![demo](assets/demo.jpg) + +## Usage + +```python +from dust3r.inference import inference +from dust3r.model import AsymmetricCroCo3DStereo +from dust3r.utils.image import load_images +from dust3r.image_pairs import make_pairs +from dust3r.cloud_opt import global_aligner, GlobalAlignerMode + +if __name__ == '__main__': + device = 'cuda' + batch_size = 1 + schedule = 'cosine' + lr = 0.01 + niter = 300 + + model_name = "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" + # you can put the path to a local checkpoint in model_name if needed + model = AsymmetricCroCo3DStereo.from_pretrained(model_name).to(device) + # load_images can take a list of images or a directory + images = load_images(['croco/assets/Chateau1.png', 'croco/assets/Chateau2.png'], size=512) + pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True) + output = inference(pairs, model, device, batch_size=batch_size) + + # at this stage, you have the raw dust3r predictions + view1, pred1 = output['view1'], output['pred1'] + view2, pred2 = output['view2'], output['pred2'] + # here, view1, pred1, view2, pred2 are dicts of lists of len(2) + # -> because we symmetrize we have (im1, im2) and (im2, im1) pairs + # in each view you have: + # an integer image identifier: view1['idx'] and view2['idx'] + # the img: view1['img'] and view2['img'] + # the image shape: view1['true_shape'] and view2['true_shape'] + # an instance string output by the dataloader: view1['instance'] and view2['instance'] + # pred1 and pred2 contains the confidence values: pred1['conf'] and pred2['conf'] + # pred1 contains 3D points for view1['img'] in view1['img'] space: pred1['pts3d'] + # pred2 contains 3D points for view2['img'] in view1['img'] space: pred2['pts3d_in_other_view'] + + # next we'll use the global_aligner to align the predictions + # depending on your task, you may be fine with the raw output and not need it + # with only two input images, you could use GlobalAlignerMode.PairViewer: it would just convert the output + # if using GlobalAlignerMode.PairViewer, no need to run compute_global_alignment + scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer) + loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr) + + # retrieve useful values from scene: + imgs = scene.imgs + focals = scene.get_focals() + poses = scene.get_im_poses() + pts3d = scene.get_pts3d() + confidence_masks = scene.get_masks() + + # visualize reconstruction + scene.show() + + # find 2D-2D matches between the two images + from dust3r.utils.geometry import find_reciprocal_matches, xy_grid + pts2d_list, pts3d_list = [], [] + for i in range(2): + conf_i = confidence_masks[i].cpu().numpy() + pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i]) # imgs[i].shape[:2] = (H, W) + pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i]) + reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list) + print(f'found {num_matches} matches') + matches_im1 = pts2d_list[1][reciprocal_in_P2] + matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2] + + # visualize a few matches + import numpy as np + from matplotlib import pyplot as pl + n_viz = 10 + match_idx_to_viz = np.round(np.linspace(0, num_matches-1, n_viz)).astype(int) + viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz] + + H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2] + img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) + img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0) + img = np.concatenate((img0, img1), axis=1) + pl.figure() + pl.imshow(img) + cmap = pl.get_cmap('jet') + for i in range(n_viz): + (x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T + pl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False) + pl.show(block=True) + +``` +![matching example on croco pair](assets/matching.jpg) + +## Training + +In this section, we present a short demonstration to get started with training DUSt3R. + +### Datasets +At this moment, we have added the following training datasets: + - [CO3Dv2](https://github.com/facebookresearch/co3d) - [Creative Commons Attribution-NonCommercial 4.0 International](https://github.com/facebookresearch/co3d/blob/main/LICENSE) + - [ARKitScenes](https://github.com/apple/ARKitScenes) - [Creative Commons Attribution-NonCommercial-ShareAlike 4.0](https://github.com/apple/ARKitScenes/tree/main?tab=readme-ov-file#license) + - [ScanNet++](https://kaldir.vc.in.tum.de/scannetpp/) - [non-commercial research and educational purposes](https://kaldir.vc.in.tum.de/scannetpp/static/scannetpp-terms-of-use.pdf) + - [BlendedMVS](https://github.com/YoYo000/BlendedMVS) - [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/) + - [WayMo Open dataset](https://github.com/waymo-research/waymo-open-dataset) - [Non-Commercial Use](https://waymo.com/open/terms/) + - [Habitat-Sim](https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md) + - [MegaDepth](https://www.cs.cornell.edu/projects/megadepth/) + - [StaticThings3D](https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/README.md#staticthings3d) + - [WildRGB-D](https://github.com/wildrgbd/wildrgbd/) + +For each dataset, we provide a preprocessing script in the `datasets_preprocess` directory and an archive containing the list of pairs when needed. +You have to download the datasets yourself from their official sources, agree to their license, download our list of pairs, and run the preprocessing script. + +Links: + +[ARKitScenes pairs](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/arkitscenes_pairs.zip) +[ScanNet++ pairs](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/scannetpp_pairs.zip) +[BlendedMVS pairs](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/blendedmvs_pairs.npy) +[WayMo Open dataset pairs](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/waymo_pairs.npz) +[Habitat metadata](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/habitat_5views_v1_512x512_metadata.tar.gz) +[MegaDepth pairs](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/megadepth_pairs.npz) +[StaticThings3D pairs](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/staticthings_pairs.npy) + +> [!NOTE] +> They are not strictly equivalent to what was used to train DUSt3R, but they should be close enough. + +### Demo +For this training demo, we're going to download and prepare a subset of [CO3Dv2](https://github.com/facebookresearch/co3d) - [Creative Commons Attribution-NonCommercial 4.0 International](https://github.com/facebookresearch/co3d/blob/main/LICENSE) and launch the training code on it. +The demo model will be trained for a few epochs on a very small dataset. +It will not be very good. + +```bash +# download and prepare the co3d subset +mkdir -p data/co3d_subset +cd data/co3d_subset +git clone https://github.com/facebookresearch/co3d +cd co3d +python3 ./co3d/download_dataset.py --download_folder ../ --single_sequence_subset +rm ../*.zip +cd ../../.. + +python3 datasets_preprocess/preprocess_co3d.py --co3d_dir data/co3d_subset --output_dir data/co3d_subset_processed --single_sequence_subset + +# download the pretrained croco v2 checkpoint +mkdir -p checkpoints/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth -P checkpoints/ + +# the training of dust3r is done in 3 steps. +# for this example we'll do fewer epochs, for the actual hyperparameters we used in the paper, see the next section: "Our Hyperparameters" +# step 1 - train dust3r for 224 resolution +torchrun --nproc_per_node=4 train.py \ + --train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=224, transform=ColorJitter)" \ + --test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=224, seed=777)" \ + --model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ + --train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ + --test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ + --pretrained "checkpoints/CroCo_V2_ViTLarge_BaseDecoder.pth" \ + --lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 16 --accum_iter 1 \ + --save_freq 1 --keep_freq 5 --eval_freq 1 \ + --output_dir "checkpoints/dust3r_demo_224" + +# step 2 - train dust3r for 512 resolution +torchrun --nproc_per_node=4 train.py \ + --train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter)" \ + --test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), seed=777)" \ + --model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ + --train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ + --test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ + --pretrained "checkpoints/dust3r_demo_224/checkpoint-best.pth" \ + --lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 4 --accum_iter 4 \ + --save_freq 1 --keep_freq 5 --eval_freq 1 \ + --output_dir "checkpoints/dust3r_demo_512" + +# step 3 - train dust3r for 512 resolution with dpt +torchrun --nproc_per_node=4 train.py \ + --train_dataset "1000 @ Co3d(split='train', ROOT='data/co3d_subset_processed', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter)" \ + --test_dataset "100 @ Co3d(split='test', ROOT='data/co3d_subset_processed', resolution=(512,384), seed=777)" \ + --model "AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ + --train_criterion "ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ + --test_criterion "Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ + --pretrained "checkpoints/dust3r_demo_512/checkpoint-best.pth" \ + --lr 0.0001 --min_lr 1e-06 --warmup_epochs 1 --epochs 10 --batch_size 2 --accum_iter 8 \ + --save_freq 1 --keep_freq 5 --eval_freq 1 --disable_cudnn_benchmark \ + --output_dir "checkpoints/dust3r_demo_512dpt" + +``` + +### Our Hyperparameters + +Here are the commands we used for training the models: + +```bash +# NOTE: ROOT path omitted for datasets +# 224 linear +torchrun --nproc_per_node 8 train.py \ + --train_dataset=" + 100_000 @ Habitat(1_000_000, split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ BlendedMVS(split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ MegaDepth(split='train', aug_crop=16, resolution=224, transform=ColorJitter) + 100_000 @ ARKitScenes(aug_crop=256, resolution=224, transform=ColorJitter) + 100_000 @ Co3d(split='train', aug_crop=16, mask_bg='rand', resolution=224, transform=ColorJitter) + 100_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=224, transform=ColorJitter) + 100_000 @ ScanNetpp(split='train', aug_crop=256, resolution=224, transform=ColorJitter) + 100_000 @ InternalUnreleasedDataset(aug_crop=128, resolution=224, transform=ColorJitter) " \ + --test_dataset=" Habitat(1_000, split='val', resolution=224, seed=777) + 1_000 @ BlendedMVS(split='val', resolution=224, seed=777) + 1_000 @ MegaDepth(split='val', resolution=224, seed=777) + 1_000 @ Co3d(split='test', mask_bg='rand', resolution=224, seed=777) " \ + --train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ + --test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ + --model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ + --pretrained="checkpoints/CroCo_V2_ViTLarge_BaseDecoder.pth" \ + --lr=0.0001 --min_lr=1e-06 --warmup_epochs=10 --epochs=100 --batch_size=16 --accum_iter=1 \ + --save_freq=5 --keep_freq=10 --eval_freq=1 \ + --output_dir="checkpoints/dust3r_224" + +# 512 linear +torchrun --nproc_per_node 8 train.py \ + --train_dataset=" + 10_000 @ Habitat(1_000_000, split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ BlendedMVS(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ MegaDepth(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ARKitScenes(aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Co3d(split='train', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ScanNetpp(split='train', aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ InternalUnreleasedDataset(aug_crop=128, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) " \ + --test_dataset=" Habitat(1_000, split='val', resolution=(512,384), seed=777) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), seed=777) + 1_000 @ MegaDepth(split='val', resolution=(512,336), seed=777) + 1_000 @ Co3d(split='test', resolution=(512,384), seed=777) " \ + --train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ + --test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ + --model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ + --pretrained="checkpoints/dust3r_224/checkpoint-best.pth" \ + --lr=0.0001 --min_lr=1e-06 --warmup_epochs=20 --epochs=100 --batch_size=4 --accum_iter=2 \ + --save_freq=10 --keep_freq=10 --eval_freq=1 --print_freq=10 \ + --output_dir="checkpoints/dust3r_512" + +# 512 dpt +torchrun --nproc_per_node 8 train.py \ + --train_dataset=" + 10_000 @ Habitat(1_000_000, split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ BlendedMVS(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ MegaDepth(split='train', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ARKitScenes(aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ Co3d(split='train', aug_crop=16, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ StaticThings3D(aug_crop=256, mask_bg='rand', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ ScanNetpp(split='train', aug_crop=256, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) + 10_000 @ InternalUnreleasedDataset(aug_crop=128, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], transform=ColorJitter) " \ + --test_dataset=" Habitat(1_000, split='val', resolution=(512,384), seed=777) + 1_000 @ BlendedMVS(split='val', resolution=(512,384), seed=777) + 1_000 @ MegaDepth(split='val', resolution=(512,336), seed=777) + 1_000 @ Co3d(split='test', resolution=(512,384), seed=777) " \ + --train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" \ + --test_criterion="Regr3D_ScaleShiftInv(L21, gt_scale=True)" \ + --model="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)" \ + --pretrained="checkpoints/dust3r_512/checkpoint-best.pth" \ + --lr=0.0001 --min_lr=1e-06 --warmup_epochs=15 --epochs=90 --batch_size=4 --accum_iter=2 \ + --save_freq=5 --keep_freq=10 --eval_freq=1 --print_freq=10 --disable_cudnn_benchmark \ + --output_dir="checkpoints/dust3r_512dpt" + +``` diff --git a/third_party/dust3r/assets/demo.jpg b/third_party/dust3r/assets/demo.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c815d468d83a7e91a0ccc24a2f491b10178e955f --- /dev/null +++ b/third_party/dust3r/assets/demo.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:957a892f9033fb3e733546a202e3c07e362618c708eacf050979d4c4edd5435f +size 339600 diff --git a/third_party/dust3r/assets/dust3r.jpg b/third_party/dust3r/assets/dust3r.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2f65b18fdb613950a683186b2b0fbcbbbcad82e4 Binary files /dev/null and b/third_party/dust3r/assets/dust3r.jpg differ diff --git a/third_party/dust3r/assets/dust3r_archi.jpg b/third_party/dust3r/assets/dust3r_archi.jpg new file mode 100644 index 0000000000000000000000000000000000000000..332de7f7dfd78ef70b9cf3defcebafec1e1a8d6e Binary files /dev/null and b/third_party/dust3r/assets/dust3r_archi.jpg differ diff --git a/third_party/dust3r/assets/matching.jpg b/third_party/dust3r/assets/matching.jpg new file mode 100644 index 0000000000000000000000000000000000000000..636e69c70921c7dac3872fedaee4d508af7ba4db --- /dev/null +++ b/third_party/dust3r/assets/matching.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ecfe07fd00505045a155902c5686cc23060782a8b020f7596829fb60584a79ee +size 159312 diff --git a/third_party/dust3r/assets/pipeline1.jpg b/third_party/dust3r/assets/pipeline1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5a0fc1e800b92fae577d6293ad50c8ee1815c3e8 Binary files /dev/null and b/third_party/dust3r/assets/pipeline1.jpg differ diff --git a/third_party/dust3r/croco/LICENSE b/third_party/dust3r/croco/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..d9b84b1a65f9db6d8920a9048d162f52ba3ea56d --- /dev/null +++ b/third_party/dust3r/croco/LICENSE @@ -0,0 +1,52 @@ +CroCo, Copyright (c) 2022-present Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. + +A summary of the CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/ + +The CC BY-NC-SA 4.0 license is located here: + https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode + + +SEE NOTICE BELOW WITH RESPECT TO THE FILE: models/pos_embed.py, models/blocks.py + +*************************** + +NOTICE WITH RESPECT TO THE FILE: models/pos_embed.py + +This software is being redistributed in a modifiled form. The original form is available here: + +https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py + +This software in this file incorporates parts of the following software available here: + +Transformer: https://github.com/tensorflow/models/blob/master/official/legacy/transformer/model_utils.py +available under the following license: https://github.com/tensorflow/models/blob/master/LICENSE + +MoCo v3: https://github.com/facebookresearch/moco-v3 +available under the following license: https://github.com/facebookresearch/moco-v3/blob/main/LICENSE + +DeiT: https://github.com/facebookresearch/deit +available under the following license: https://github.com/facebookresearch/deit/blob/main/LICENSE + + +ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW: + +https://github.com/facebookresearch/mae/blob/main/LICENSE + +Attribution-NonCommercial 4.0 International + +*************************** + +NOTICE WITH RESPECT TO THE FILE: models/blocks.py + +This software is being redistributed in a modifiled form. The original form is available here: + +https://github.com/rwightman/pytorch-image-models + +ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW: + +https://github.com/rwightman/pytorch-image-models/blob/master/LICENSE + +Apache License +Version 2.0, January 2004 +http://www.apache.org/licenses/ \ No newline at end of file diff --git a/third_party/dust3r/croco/NOTICE b/third_party/dust3r/croco/NOTICE new file mode 100644 index 0000000000000000000000000000000000000000..d51bb365036c12d428d6e3a4fd00885756d5261c --- /dev/null +++ b/third_party/dust3r/croco/NOTICE @@ -0,0 +1,21 @@ +CroCo +Copyright 2022-present NAVER Corp. + +This project contains subcomponents with separate copyright notices and license terms. +Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses. + +==== + +facebookresearch/mae +https://github.com/facebookresearch/mae + +Attribution-NonCommercial 4.0 International + +==== + +rwightman/pytorch-image-models +https://github.com/rwightman/pytorch-image-models + +Apache License +Version 2.0, January 2004 +http://www.apache.org/licenses/ \ No newline at end of file diff --git a/third_party/dust3r/croco/README.MD b/third_party/dust3r/croco/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..38e33b001a60bd16749317fb297acd60f28a6f1b --- /dev/null +++ b/third_party/dust3r/croco/README.MD @@ -0,0 +1,124 @@ +# CroCo + CroCo v2 / CroCo-Stereo / CroCo-Flow + +[[`CroCo arXiv`](https://arxiv.org/abs/2210.10716)] [[`CroCo v2 arXiv`](https://arxiv.org/abs/2211.10408)] [[`project page and demo`](https://croco.europe.naverlabs.com/)] + +This repository contains the code for our CroCo model presented in our NeurIPS'22 paper [CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion](https://openreview.net/pdf?id=wZEfHUM5ri) and its follow-up extension published at ICCV'23 [Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow](https://openaccess.thecvf.com/content/ICCV2023/html/Weinzaepfel_CroCo_v2_Improved_Cross-view_Completion_Pre-training_for_Stereo_Matching_and_ICCV_2023_paper.html), refered to as CroCo v2: + +![image](assets/arch.jpg) + +```bibtex +@inproceedings{croco, + title={{CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion}}, + author={{Weinzaepfel, Philippe and Leroy, Vincent and Lucas, Thomas and Br\'egier, Romain and Cabon, Yohann and Arora, Vaibhav and Antsfeld, Leonid and Chidlovskii, Boris and Csurka, Gabriela and Revaud J\'er\^ome}}, + booktitle={{NeurIPS}}, + year={2022} +} + +@inproceedings{croco_v2, + title={{CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow}}, + author={Weinzaepfel, Philippe and Lucas, Thomas and Leroy, Vincent and Cabon, Yohann and Arora, Vaibhav and Br{\'e}gier, Romain and Csurka, Gabriela and Antsfeld, Leonid and Chidlovskii, Boris and Revaud, J{\'e}r{\^o}me}, + booktitle={ICCV}, + year={2023} +} +``` + +## License + +The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](LICENSE) for more information. +Some components are based on code from [MAE](https://github.com/facebookresearch/mae) released under the CC BY-NC-SA 4.0 License and [timm](https://github.com/rwightman/pytorch-image-models) released under the Apache 2.0 License. +Some components for stereo matching and optical flow are based on code from [unimatch](https://github.com/autonomousvision/unimatch) released under the MIT license. + +## Preparation + +1. Install dependencies on a machine with a NVidia GPU using e.g. conda. Note that `habitat-sim` is required only for the interactive demo and the synthetic pre-training data generation. If you don't plan to use it, you can ignore the line installing it and use a more recent python version. + +```bash +conda create -n croco python=3.7 cmake=3.14.0 +conda activate croco +conda install habitat-sim headless -c conda-forge -c aihabitat +conda install pytorch torchvision -c pytorch +conda install notebook ipykernel matplotlib +conda install ipywidgets widgetsnbextension +conda install scikit-learn tqdm quaternion opencv # only for pretraining / habitat data generation + +``` + +2. Compile cuda kernels for RoPE + +CroCo v2 relies on RoPE positional embeddings for which you need to compile some cuda kernels. +```bash +cd models/curope/ +python setup.py build_ext --inplace +cd ../../ +``` + +This can be a bit long as we compile for all cuda architectures, feel free to update L9 of `models/curope/setup.py` to compile for specific architectures only. +You might also need to set the environment `CUDA_HOME` in case you use a custom cuda installation. + +In case you cannot provide, we also provide a slow pytorch version, which will be automatically loaded. + +3. Download pre-trained model + +We provide several pre-trained models: + +| modelname | pre-training data | pos. embed. | Encoder | Decoder | +|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------|---------| +| [`CroCo.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth) | Habitat | cosine | ViT-B | Small | +| [`CroCo_V2_ViTBase_SmallDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_SmallDecoder.pth) | Habitat + real | RoPE | ViT-B | Small | +| [`CroCo_V2_ViTBase_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_BaseDecoder.pth) | Habitat + real | RoPE | ViT-B | Base | +| [`CroCo_V2_ViTLarge_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth) | Habitat + real | RoPE | ViT-L | Base | + +To download a specific model, i.e., the first one (`CroCo.pth`) +```bash +mkdir -p pretrained_models/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth -P pretrained_models/ +``` + +## Reconstruction example + +Simply run after downloading the `CroCo_V2_ViTLarge_BaseDecoder` pretrained model (or update the corresponding line in `demo.py`) +```bash +python demo.py +``` + +## Interactive demonstration of cross-view completion reconstruction on the Habitat simulator + +First download the test scene from Habitat: +```bash +python -m habitat_sim.utils.datasets_download --uids habitat_test_scenes --data-path habitat-sim-data/ +``` + +Then, run the Notebook demo `interactive_demo.ipynb`. + +In this demo, you should be able to sample a random reference viewpoint from an [Habitat](https://github.com/facebookresearch/habitat-sim) test scene. Use the sliders to change viewpoint and select a masked target view to reconstruct using CroCo. +![croco_interactive_demo](https://user-images.githubusercontent.com/1822210/200516576-7937bc6a-55f8-49ed-8618-3ddf89433ea4.jpg) + +## Pre-training + +### CroCo + +To pre-train CroCo, please first generate the pre-training data from the Habitat simulator, following the instructions in [datasets/habitat_sim/README.MD](datasets/habitat_sim/README.MD) and then run the following command: +``` +torchrun --nproc_per_node=4 pretrain.py --output_dir ./output/pretraining/ +``` + +Our CroCo pre-training was launched on a single server with 4 GPUs. +It should take around 10 days with A100 or 15 days with V100 to do the 400 pre-training epochs, but decent performances are obtained earlier in training. +Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case. +The first run can take a few minutes to start, to parse all available pre-training pairs. + +### CroCo v2 + +For CroCo v2 pre-training, in addition to the generation of the pre-training data from the Habitat simulator above, please pre-extract the crops from the real datasets following the instructions in [datasets/crops/README.MD](datasets/crops/README.MD). +Then, run the following command for the largest model (ViT-L encoder, Base decoder): +``` +torchrun --nproc_per_node=8 pretrain.py --model "CroCoNet(enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_num_heads=12, dec_depth=12, pos_embed='RoPE100')" --dataset "habitat_release+ARKitScenes+MegaDepth+3DStreetView+IndoorVL" --warmup_epochs 12 --max_epoch 125 --epochs 250 --amp 0 --keep_freq 5 --output_dir ./output/pretraining_crocov2/ +``` + +Our CroCo v2 pre-training was launched on a single server with 8 GPUs for the largest model, and on a single server with 4 GPUs for the smaller ones, keeping a batch size of 64 per gpu in all cases. +The largest model should take around 12 days on A100. +Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case. + +## Stereo matching and Optical flow downstream tasks + +For CroCo-Stereo and CroCo-Flow, please refer to [stereoflow/README.MD](stereoflow/README.MD). diff --git a/third_party/dust3r/croco/assets/Chateau1.png b/third_party/dust3r/croco/assets/Chateau1.png new file mode 100644 index 0000000000000000000000000000000000000000..295b00e46972ffcacaca60c2c7c7ec7a04c762fa --- /dev/null +++ b/third_party/dust3r/croco/assets/Chateau1.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71ffb8c7d77e5ced0bb3dcd2cb0db84d0e98e6ff5ffd2d02696a7156e5284857 +size 112106 diff --git a/third_party/dust3r/croco/assets/Chateau2.png b/third_party/dust3r/croco/assets/Chateau2.png new file mode 100644 index 0000000000000000000000000000000000000000..97b3c058ff180a6d0c0853ab533b0823a06f8425 --- /dev/null +++ b/third_party/dust3r/croco/assets/Chateau2.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3a0be9e19f6b89491d692c71e3f2317c2288a898a990561d48b7667218b47c8 +size 109905 diff --git a/third_party/dust3r/croco/assets/arch.jpg b/third_party/dust3r/croco/assets/arch.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3f5b032729ddc58c06d890a0ebda1749276070c4 Binary files /dev/null and b/third_party/dust3r/croco/assets/arch.jpg differ diff --git a/third_party/dust3r/croco/croco-stereo-flow-demo.ipynb b/third_party/dust3r/croco/croco-stereo-flow-demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..2b00a7607ab5f82d1857041969bfec977e56b3e0 --- /dev/null +++ b/third_party/dust3r/croco/croco-stereo-flow-demo.ipynb @@ -0,0 +1,191 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9bca0f41", + "metadata": {}, + "source": [ + "# Simple inference example with CroCo-Stereo or CroCo-Flow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "80653ef7", + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n", + "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)." + ] + }, + { + "cell_type": "markdown", + "id": "4f033862", + "metadata": {}, + "source": [ + "First download the model(s) of your choice by running\n", + "```\n", + "bash stereoflow/download_model.sh crocostereo.pth\n", + "bash stereoflow/download_model.sh crocoflow.pth\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1fb2e392", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n", + "device = torch.device('cuda:0' if use_gpu else 'cpu')\n", + "import matplotlib.pylab as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e0e25d77", + "metadata": {}, + "outputs": [], + "source": [ + "from stereoflow.test import _load_model_and_criterion\n", + "from stereoflow.engine import tiled_pred\n", + "from stereoflow.datasets_stereo import img_to_tensor, vis_disparity\n", + "from stereoflow.datasets_flow import flowToColor\n", + "tile_overlap=0.7 # recommended value, higher value can be slightly better but slower" + ] + }, + { + "cell_type": "markdown", + "id": "86a921f5", + "metadata": {}, + "source": [ + "### CroCo-Stereo example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64e483cb", + "metadata": {}, + "outputs": [], + "source": [ + "image1 = np.asarray(Image.open(''))\n", + "image2 = np.asarray(Image.open(''))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f0d04303", + "metadata": {}, + "outputs": [], + "source": [ + "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocostereo.pth', None, device)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47dc14b5", + "metadata": {}, + "outputs": [], + "source": [ + "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n", + "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n", + "with torch.inference_mode():\n", + " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n", + "pred = pred.squeeze(0).squeeze(0).cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "583b9f16", + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(vis_disparity(pred))\n", + "plt.axis('off')" + ] + }, + { + "cell_type": "markdown", + "id": "d2df5d70", + "metadata": {}, + "source": [ + "### CroCo-Flow example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9ee257a7", + "metadata": {}, + "outputs": [], + "source": [ + "image1 = np.asarray(Image.open(''))\n", + "image2 = np.asarray(Image.open(''))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d5edccf0", + "metadata": {}, + "outputs": [], + "source": [ + "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocoflow.pth', None, device)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b19692c3", + "metadata": {}, + "outputs": [], + "source": [ + "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n", + "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n", + "with torch.inference_mode():\n", + " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n", + "pred = pred.squeeze(0).permute(1,2,0).cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26f79db3", + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(flowToColor(pred))\n", + "plt.axis('off')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/third_party/dust3r/croco/datasets/__init__.py b/third_party/dust3r/croco/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/dust3r/croco/datasets/crops/README.MD b/third_party/dust3r/croco/datasets/crops/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..47ddabebb177644694ee247ae878173a3a16644f --- /dev/null +++ b/third_party/dust3r/croco/datasets/crops/README.MD @@ -0,0 +1,104 @@ +## Generation of crops from the real datasets + +The instructions below allow to generate the crops used for pre-training CroCo v2 from the following real-world datasets: ARKitScenes, MegaDepth, 3DStreetView and IndoorVL. + +### Download the metadata of the crops to generate + +First, download the metadata and put them in `./data/`: +``` +mkdir -p data +cd data/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/crop_metadata.zip +unzip crop_metadata.zip +rm crop_metadata.zip +cd .. +``` + +### Prepare the original datasets + +Second, download the original datasets in `./data/original_datasets/`. +``` +mkdir -p data/original_datasets +``` + +##### ARKitScenes + +Download the `raw` dataset from https://github.com/apple/ARKitScenes/blob/main/DATA.md and put it in `./data/original_datasets/ARKitScenes/`. +The resulting file structure should be like: +``` +./data/original_datasets/ARKitScenes/ +└───Training + └───40753679 + │ │ ultrawide + │ │ ... + └───40753686 + │ + ... +``` + +##### MegaDepth + +Download `MegaDepth v1 Dataset` from https://www.cs.cornell.edu/projects/megadepth/ and put it in `./data/original_datasets/MegaDepth/`. +The resulting file structure should be like: + +``` +./data/original_datasets/MegaDepth/ +└───0000 +│ └───images +│ │ │ 1000557903_87fa96b8a4_o.jpg +│ │ └ ... +│ └─── ... +└───0001 +│ │ +│ └ ... +└─── ... +``` + +##### 3DStreetView + +Download `3D_Street_View` dataset from https://github.com/amir32002/3D_Street_View and put it in `./data/original_datasets/3DStreetView/`. +The resulting file structure should be like: + +``` +./data/original_datasets/3DStreetView/ +└───dataset_aligned +│ └───0002 +│ │ │ 0000002_0000001_0000002_0000001.jpg +│ │ └ ... +│ └─── ... +└───dataset_unaligned +│ └───0003 +│ │ │ 0000003_0000001_0000002_0000001.jpg +│ │ └ ... +│ └─── ... +``` + +##### IndoorVL + +Download the `IndoorVL` datasets using [Kapture](https://github.com/naver/kapture). + +``` +pip install kapture +mkdir -p ./data/original_datasets/IndoorVL +cd ./data/original_datasets/IndoorVL +kapture_download_dataset.py update +kapture_download_dataset.py install "HyundaiDepartmentStore_*" +kapture_download_dataset.py install "GangnamStation_*" +cd - +``` + +### Extract the crops + +Now, extract the crops for each of the dataset: +``` +for dataset in ARKitScenes MegaDepth 3DStreetView IndoorVL; +do + python3 datasets/crops/extract_crops_from_images.py --crops ./data/crop_metadata/${dataset}/crops_release.txt --root-dir ./data/original_datasets/${dataset}/ --output-dir ./data/${dataset}_crops/ --imsize 256 --nthread 8 --max-subdir-levels 5 --ideal-number-pairs-in-dir 500; +done +``` + +##### Note for IndoorVL + +Due to some legal issues, we can only release 144,228 pairs out of the 1,593,689 pairs used in the paper. +To account for it in terms of number of pre-training iterations, the pre-training command in this repository uses 125 training epochs including 12 warm-up epochs and learning rate cosine schedule of 250, instead of 100, 10 and 200 respectively. +The impact on the performance is negligible. diff --git a/third_party/dust3r/croco/datasets/crops/extract_crops_from_images.py b/third_party/dust3r/croco/datasets/crops/extract_crops_from_images.py new file mode 100644 index 0000000000000000000000000000000000000000..032be73899d7f72604ae0d1bc00cdb67728fd72e --- /dev/null +++ b/third_party/dust3r/croco/datasets/crops/extract_crops_from_images.py @@ -0,0 +1,184 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Extracting crops for pre-training +# -------------------------------------------------------- + +import argparse +import functools +import math +import os +from multiprocessing import Pool + +from PIL import Image +from tqdm import tqdm + + +def arg_parser(): + parser = argparse.ArgumentParser( + "Generate cropped image pairs from image crop list" + ) + + parser.add_argument("--crops", type=str, required=True, help="crop file") + parser.add_argument("--root-dir", type=str, required=True, help="root directory") + parser.add_argument( + "--output-dir", type=str, required=True, help="output directory" + ) + parser.add_argument("--imsize", type=int, default=256, help="size of the crops") + parser.add_argument( + "--nthread", type=int, required=True, help="number of simultaneous threads" + ) + parser.add_argument( + "--max-subdir-levels", + type=int, + default=5, + help="maximum number of subdirectories", + ) + parser.add_argument( + "--ideal-number-pairs-in-dir", + type=int, + default=500, + help="number of pairs stored in a dir", + ) + return parser + + +def main(args): + listing_path = os.path.join(args.output_dir, "listing.txt") + + print(f"Loading list of crops ... ({args.nthread} threads)") + crops, num_crops_to_generate = load_crop_file(args.crops) + + print(f"Preparing jobs ({len(crops)} candidate image pairs)...") + num_levels = min( + math.ceil(math.log(num_crops_to_generate, args.ideal_number_pairs_in_dir)), + args.max_subdir_levels, + ) + num_pairs_in_dir = math.ceil(num_crops_to_generate ** (1 / num_levels)) + + jobs = prepare_jobs(crops, num_levels, num_pairs_in_dir) + del crops + + os.makedirs(args.output_dir, exist_ok=True) + mmap = Pool(args.nthread).imap_unordered if args.nthread > 1 else map + call = functools.partial(save_image_crops, args) + + print(f"Generating cropped images to {args.output_dir} ...") + with open(listing_path, "w") as listing: + listing.write("# pair_path\n") + for results in tqdm(mmap(call, jobs), total=len(jobs)): + for path in results: + listing.write(f"{path}\n") + print("Finished writing listing to", listing_path) + + +def load_crop_file(path): + data = open(path).read().splitlines() + pairs = [] + num_crops_to_generate = 0 + for line in tqdm(data): + if line.startswith("#"): + continue + line = line.split(", ") + if len(line) < 8: + img1, img2, rotation = line + pairs.append((img1, img2, int(rotation), [])) + else: + l1, r1, t1, b1, l2, r2, t2, b2 = map(int, line) + rect1, rect2 = (l1, t1, r1, b1), (l2, t2, r2, b2) + pairs[-1][-1].append((rect1, rect2)) + num_crops_to_generate += 1 + return pairs, num_crops_to_generate + + +def prepare_jobs(pairs, num_levels, num_pairs_in_dir): + jobs = [] + powers = [num_pairs_in_dir**level for level in reversed(range(num_levels))] + + def get_path(idx): + idx_array = [] + d = idx + for level in range(num_levels - 1): + idx_array.append(idx // powers[level]) + idx = idx % powers[level] + idx_array.append(d) + return "/".join(map(lambda x: hex(x)[2:], idx_array)) + + idx = 0 + for pair_data in tqdm(pairs): + img1, img2, rotation, crops = pair_data + if -60 <= rotation and rotation <= 60: + rotation = 0 # most likely not a true rotation + paths = [get_path(idx + k) for k in range(len(crops))] + idx += len(crops) + jobs.append(((img1, img2), rotation, crops, paths)) + return jobs + + +def load_image(path): + try: + return Image.open(path).convert("RGB") + except Exception as e: + print("skipping", path, e) + raise OSError() + + +def save_image_crops(args, data): + # load images + img_pair, rot, crops, paths = data + try: + img1, img2 = [ + load_image(os.path.join(args.root_dir, impath)) for impath in img_pair + ] + except OSError as e: + return [] + + def area(sz): + return sz[0] * sz[1] + + tgt_size = (args.imsize, args.imsize) + + def prepare_crop(img, rect, rot=0): + # actual crop + img = img.crop(rect) + + # resize to desired size + interp = ( + Image.Resampling.LANCZOS + if area(img.size) > 4 * area(tgt_size) + else Image.Resampling.BICUBIC + ) + img = img.resize(tgt_size, resample=interp) + + # rotate the image + rot90 = (round(rot / 90) % 4) * 90 + if rot90 == 90: + img = img.transpose(Image.Transpose.ROTATE_90) + elif rot90 == 180: + img = img.transpose(Image.Transpose.ROTATE_180) + elif rot90 == 270: + img = img.transpose(Image.Transpose.ROTATE_270) + return img + + results = [] + for (rect1, rect2), path in zip(crops, paths): + crop1 = prepare_crop(img1, rect1) + crop2 = prepare_crop(img2, rect2, rot) + + fullpath1 = os.path.join(args.output_dir, path + "_1.jpg") + fullpath2 = os.path.join(args.output_dir, path + "_2.jpg") + os.makedirs(os.path.dirname(fullpath1), exist_ok=True) + + assert not os.path.isfile(fullpath1), fullpath1 + assert not os.path.isfile(fullpath2), fullpath2 + crop1.save(fullpath1) + crop2.save(fullpath2) + results.append(path) + + return results + + +if __name__ == "__main__": + args = arg_parser().parse_args() + main(args) diff --git a/third_party/dust3r/croco/datasets/habitat_sim/README.MD b/third_party/dust3r/croco/datasets/habitat_sim/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..a505781ff9eb91bce7f1d189e848f8ba1c560940 --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/README.MD @@ -0,0 +1,76 @@ +## Generation of synthetic image pairs using Habitat-Sim + +These instructions allow to generate pre-training pairs from the Habitat simulator. +As we did not save metadata of the pairs used in the original paper, they are not strictly the same, but these data use the same setting and are equivalent. + +### Download Habitat-Sim scenes +Download Habitat-Sim scenes: +- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +- We used scenes from the HM3D, habitat-test-scenes, Replica, ReplicaCad and ScanNet datasets. +- Please put the scenes under `./data/habitat-sim-data/scene_datasets/` following the structure below, or update manually paths in `paths.py`. +``` +./data/ +└──habitat-sim-data/ + └──scene_datasets/ + ├──hm3d/ + ├──gibson/ + ├──habitat-test-scenes/ + ├──replica_cad_baked_lighting/ + ├──replica_cad/ + ├──ReplicaDataset/ + └──scannet/ +``` + +### Image pairs generation +We provide metadata to generate reproducible images pairs for pretraining and validation. +Experiments described in the paper used similar data, but whose generation was not reproducible at the time. + +Specifications: +- 256x256 resolution images, with 60 degrees field of view . +- Up to 1000 image pairs per scene. +- Number of scenes considered/number of images pairs per dataset: + - Scannet: 1097 scenes / 985 209 pairs + - HM3D: + - hm3d/train: 800 / 800k pairs + - hm3d/val: 100 scenes / 100k pairs + - hm3d/minival: 10 scenes / 10k pairs + - habitat-test-scenes: 3 scenes / 3k pairs + - replica_cad_baked_lighting: 13 scenes / 13k pairs + +- Scenes from hm3d/val and hm3d/minival pairs were not used for the pre-training but kept for validation purposes. + +Download metadata and extract it: +```bash +mkdir -p data/habitat_release_metadata/ +cd data/habitat_release_metadata/ +wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/habitat_release_metadata/multiview_habitat_metadata.tar.gz +tar -xvf multiview_habitat_metadata.tar.gz +cd ../.. +# Location of the metadata +METADATA_DIR="./data/habitat_release_metadata/multiview_habitat_metadata" +``` + +Generate image pairs from metadata: +- The following command will print a list of commandlines to generate image pairs for each scene: +```bash +# Target output directory +PAIRS_DATASET_DIR="./data/habitat_release/" +python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR +``` +- One can launch multiple of such commands in parallel e.g. using GNU Parallel: +```bash +python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR | parallel -j 16 +``` + +## Metadata generation + +Image pairs were randomly sampled using the following commands, whose outputs contain randomness and are thus not exactly reproducible: +```bash +# Print commandlines to generate image pairs from the different scenes available. +PAIRS_DATASET_DIR=MY_CUSTOM_PATH +python datasets/habitat_sim/generate_multiview_images.py --list_commands --output_dir=$PAIRS_DATASET_DIR + +# Once a dataset is generated, pack metadata files for reproducibility. +METADATA_DIR=MY_CUSTON_PATH +python datasets/habitat_sim/pack_metadata_files.py $PAIRS_DATASET_DIR $METADATA_DIR +``` diff --git a/third_party/dust3r/croco/datasets/habitat_sim/__init__.py b/third_party/dust3r/croco/datasets/habitat_sim/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/third_party/dust3r/croco/datasets/habitat_sim/generate_from_metadata.py b/third_party/dust3r/croco/datasets/habitat_sim/generate_from_metadata.py new file mode 100644 index 0000000000000000000000000000000000000000..91e6371b03ff919308f557babc3fc7a565510d22 --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/generate_from_metadata.py @@ -0,0 +1,126 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Script to generate image pairs for a given scene reproducing poses provided in a metadata file. +""" +import argparse +import json +import os + +import cv2 +import PIL.Image +import quaternion +from datasets.habitat_sim.multiview_habitat_sim_generator import ( + MultiviewHabitatSimGenerator, +) +from datasets.habitat_sim.paths import SCENES_DATASET +from tqdm import tqdm + + +def generate_multiview_images_from_metadata( + metadata_filename, + output_dir, + overload_params=dict(), + scene_datasets_paths=None, + exist_ok=False, +): + """ + Generate images from a metadata file for reproducibility purposes. + """ + # Reorder paths by decreasing label length, to avoid collisions when testing if a string by such label + if scene_datasets_paths is not None: + scene_datasets_paths = dict( + sorted(scene_datasets_paths.items(), key=lambda x: len(x[0]), reverse=True) + ) + + with open(metadata_filename, "r") as f: + input_metadata = json.load(f) + metadata = dict() + for key, value in input_metadata.items(): + # Optionally replace some paths + if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": + if scene_datasets_paths is not None: + for dataset_label, dataset_path in scene_datasets_paths.items(): + if value.startswith(dataset_label): + value = os.path.normpath( + os.path.join( + dataset_path, os.path.relpath(value, dataset_label) + ) + ) + break + metadata[key] = value + + # Overload some parameters + for key, value in overload_params.items(): + metadata[key] = value + + generation_entries = dict( + [ + (key, value) + for key, value in metadata.items() + if not (key in ("multiviews", "output_dir", "generate_depth")) + ] + ) + generate_depth = metadata["generate_depth"] + + os.makedirs(output_dir, exist_ok=exist_ok) + + generator = MultiviewHabitatSimGenerator(**generation_entries) + + # Generate views + for idx_label, data in tqdm(metadata["multiviews"].items()): + positions = data["positions"] + orientations = data["orientations"] + n = len(positions) + for oidx in range(n): + observation = generator.render_viewpoint( + positions[oidx], quaternion.from_float_array(orientations[oidx]) + ) + observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1 + # Color image saved using PIL + img = PIL.Image.fromarray(observation["color"][:, :, :3]) + filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg") + img.save(filename) + if generate_depth: + # Depth image as EXR file + filename = os.path.join( + output_dir, f"{idx_label}_{observation_label}_depth.exr" + ) + cv2.imwrite( + filename, + observation["depth"], + [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF], + ) + # Camera parameters + camera_params = dict( + [ + (key, observation[key].tolist()) + for key in ("camera_intrinsics", "R_cam2world", "t_cam2world") + ] + ) + filename = os.path.join( + output_dir, f"{idx_label}_{observation_label}_camera_params.json" + ) + with open(filename, "w") as f: + json.dump(camera_params, f) + # Save metadata + with open(os.path.join(output_dir, "metadata.json"), "w") as f: + json.dump(metadata, f) + + generator.close() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--metadata_filename", required=True) + parser.add_argument("--output_dir", required=True) + args = parser.parse_args() + + generate_multiview_images_from_metadata( + metadata_filename=args.metadata_filename, + output_dir=args.output_dir, + scene_datasets_paths=SCENES_DATASET, + overload_params=dict(), + exist_ok=True, + ) diff --git a/third_party/dust3r/croco/datasets/habitat_sim/generate_from_metadata_files.py b/third_party/dust3r/croco/datasets/habitat_sim/generate_from_metadata_files.py new file mode 100644 index 0000000000000000000000000000000000000000..f7a613ac65727edbbdd883c0e33fdde15730606a --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/generate_from_metadata_files.py @@ -0,0 +1,37 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Script generating commandlines to generate image pairs from metadata files. +""" +import argparse +import glob +import os + +from tqdm import tqdm + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--input_dir", required=True) + parser.add_argument("--output_dir", required=True) + parser.add_argument( + "--prefix", + default="", + help="Commanline prefix, useful e.g. to setup environment.", + ) + args = parser.parse_args() + + input_metadata_filenames = glob.iglob( + f"{args.input_dir}/**/metadata.json", recursive=True + ) + + for metadata_filename in tqdm(input_metadata_filenames): + output_dir = os.path.join( + args.output_dir, + os.path.relpath(os.path.dirname(metadata_filename), args.input_dir), + ) + # Do not process the scene if the metadata file already exists + if os.path.exists(os.path.join(output_dir, "metadata.json")): + continue + commandline = f"{args.prefix}python datasets/habitat_sim/generate_from_metadata.py --metadata_filename={metadata_filename} --output_dir={output_dir}" + print(commandline) diff --git a/third_party/dust3r/croco/datasets/habitat_sim/generate_multiview_images.py b/third_party/dust3r/croco/datasets/habitat_sim/generate_multiview_images.py new file mode 100644 index 0000000000000000000000000000000000000000..d1673925469d5c57626d202a5a189b55ccc57aa6 --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/generate_multiview_images.py @@ -0,0 +1,232 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import argparse +import json +import os +import shutil + +import cv2 +import numpy as np +import PIL.Image +import quaternion +from datasets.habitat_sim.multiview_habitat_sim_generator import ( + MultiviewHabitatSimGenerator, + NoNaviguableSpaceError, +) +from datasets.habitat_sim.paths import list_scenes_available +from tqdm import tqdm + + +def generate_multiview_images_for_scene( + scene_dataset_config_file, + scene, + navmesh, + output_dir, + views_count, + size, + exist_ok=False, + generate_depth=False, + **kwargs, +): + """ + Generate tuples of overlapping views for a given scene. + generate_depth: generate depth images and camera parameters. + """ + if os.path.exists(output_dir) and not exist_ok: + print(f"Scene {scene}: data already generated. Ignoring generation.") + return + try: + print(f"Scene {scene}: {size} multiview acquisitions to generate...") + os.makedirs(output_dir, exist_ok=exist_ok) + + metadata_filename = os.path.join(output_dir, "metadata.json") + + metadata_template = dict( + scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + views_count=views_count, + size=size, + generate_depth=generate_depth, + **kwargs, + ) + metadata_template["multiviews"] = dict() + + if os.path.exists(metadata_filename): + print("Metadata file already exists:", metadata_filename) + print("Loading already generated metadata file...") + with open(metadata_filename, "r") as f: + metadata = json.load(f) + + for key in metadata_template.keys(): + if key != "multiviews": + assert ( + metadata_template[key] == metadata[key] + ), f"existing file is inconsistent with the input parameters:\nKey: {key}\nmetadata: {metadata[key]}\ntemplate: {metadata_template[key]}." + else: + print("No temporary file found. Starting generation from scratch...") + metadata = metadata_template + + starting_id = len(metadata["multiviews"]) + print(f"Starting generation from index {starting_id}/{size}...") + if starting_id >= size: + print("Generation already done.") + return + + generator = MultiviewHabitatSimGenerator( + scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + views_count=views_count, + size=size, + **kwargs, + ) + + for idx in tqdm(range(starting_id, size)): + # Generate / re-generate the observations + try: + data = generator[idx] + observations = data["observations"] + positions = data["positions"] + orientations = data["orientations"] + + idx_label = f"{idx:08}" + for oidx, observation in enumerate(observations): + observation_label = ( + f"{oidx + 1}" # Leonid is indexing starting from 1 + ) + # Color image saved using PIL + img = PIL.Image.fromarray(observation["color"][:, :, :3]) + filename = os.path.join( + output_dir, f"{idx_label}_{observation_label}.jpeg" + ) + img.save(filename) + if generate_depth: + # Depth image as EXR file + filename = os.path.join( + output_dir, f"{idx_label}_{observation_label}_depth.exr" + ) + cv2.imwrite( + filename, + observation["depth"], + [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF], + ) + # Camera parameters + camera_params = dict( + [ + (key, observation[key].tolist()) + for key in ( + "camera_intrinsics", + "R_cam2world", + "t_cam2world", + ) + ] + ) + filename = os.path.join( + output_dir, + f"{idx_label}_{observation_label}_camera_params.json", + ) + with open(filename, "w") as f: + json.dump(camera_params, f) + metadata["multiviews"][idx_label] = { + "positions": positions.tolist(), + "orientations": orientations.tolist(), + "covisibility_ratios": data["covisibility_ratios"].tolist(), + "valid_fractions": data["valid_fractions"].tolist(), + "pairwise_visibility_ratios": data[ + "pairwise_visibility_ratios" + ].tolist(), + } + except RecursionError: + print( + "Recursion error: unable to sample observations for this scene. We will stop there." + ) + break + + # Regularly save a temporary metadata file, in case we need to restart the generation + if idx % 10 == 0: + with open(metadata_filename, "w") as f: + json.dump(metadata, f) + + # Save metadata + with open(metadata_filename, "w") as f: + json.dump(metadata, f) + + generator.close() + except NoNaviguableSpaceError: + pass + + +def create_commandline(scene_data, generate_depth, exist_ok=False): + """ + Create a commandline string to generate a scene. + """ + + def my_formatting(val): + if val is None or val == "": + return '""' + else: + return val + + commandline = f"""python {__file__} --scene {my_formatting(scene_data.scene)} + --scene_dataset_config_file {my_formatting(scene_data.scene_dataset_config_file)} + --navmesh {my_formatting(scene_data.navmesh)} + --output_dir {my_formatting(scene_data.output_dir)} + --generate_depth {int(generate_depth)} + --exist_ok {int(exist_ok)} + """ + commandline = " ".join(commandline.split()) + return commandline + + +if __name__ == "__main__": + os.umask(2) + + parser = argparse.ArgumentParser( + description="""Example of use -- listing commands to generate data for scenes available: + > python datasets/habitat_sim/generate_multiview_habitat_images.py --list_commands + """ + ) + + parser.add_argument("--output_dir", type=str, required=True) + parser.add_argument( + "--list_commands", action="store_true", help="list commandlines to run if true" + ) + parser.add_argument("--scene", type=str, default="") + parser.add_argument("--scene_dataset_config_file", type=str, default="") + parser.add_argument("--navmesh", type=str, default="") + + parser.add_argument("--generate_depth", type=int, default=1) + parser.add_argument("--exist_ok", type=int, default=0) + + kwargs = dict(resolution=(256, 256), hfov=60, views_count=2, size=1000) + + args = parser.parse_args() + generate_depth = bool(args.generate_depth) + exist_ok = bool(args.exist_ok) + + if args.list_commands: + # Listing scenes available... + scenes_data = list_scenes_available(base_output_dir=args.output_dir) + + for scene_data in scenes_data: + print( + create_commandline( + scene_data, generate_depth=generate_depth, exist_ok=exist_ok + ) + ) + else: + if args.scene == "" or args.output_dir == "": + print("Missing scene or output dir argument!") + print(parser.format_help()) + else: + generate_multiview_images_for_scene( + scene=args.scene, + scene_dataset_config_file=args.scene_dataset_config_file, + navmesh=args.navmesh, + output_dir=args.output_dir, + exist_ok=exist_ok, + generate_depth=generate_depth, + **kwargs, + ) diff --git a/third_party/dust3r/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py b/third_party/dust3r/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..fd24a9df9ccaefbbd5e7d5996989de1c9d09dc34 --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py @@ -0,0 +1,504 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import json +import os + +import cv2 +import habitat_sim +import numpy as np +import quaternion +from sklearn.neighbors import NearestNeighbors + +# OpenCV to habitat camera convention transformation +R_OPENCV2HABITAT = np.stack( + (habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0 +) +R_HABITAT2OPENCV = R_OPENCV2HABITAT.T +DEG2RAD = np.pi / 180 + + +def compute_camera_intrinsics(height, width, hfov): + f = width / 2 / np.tan(hfov / 2 * np.pi / 180) + cu, cv = width / 2, height / 2 + return f, cu, cv + + +def compute_camera_pose_opencv_convention(camera_position, camera_orientation): + R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT + t_cam2world = np.asarray(camera_position) + return R_cam2world, t_cam2world + + +def compute_pointmap(depthmap, hfov): + """Compute a HxWx3 pointmap in camera frame from a HxW depth map.""" + height, width = depthmap.shape + f, cu, cv = compute_camera_intrinsics(height, width, hfov) + # Cast depth map to point + z_cam = depthmap + u, v = np.meshgrid(range(width), range(height)) + x_cam = (u - cu) / f * z_cam + y_cam = (v - cv) / f * z_cam + X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1) + return X_cam + + +def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation): + """Return a 3D point cloud corresponding to valid pixels of the depth map""" + R_cam2world, t_cam2world = compute_camera_pose_opencv_convention( + camera_position, camera_rotation + ) + + X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov) + valid_mask = X_cam[:, :, 2] != 0.0 + + X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()] + X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3) + return X_world + + +def compute_pointcloud_overlaps_scikit( + pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False +): + """ + Compute 'overlapping' metrics based on a distance threshold between two point clouds. + """ + nbrs = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(pointcloud2) + distances, indices = nbrs.kneighbors(pointcloud1) + intersection1 = np.count_nonzero(distances.flatten() < distance_threshold) + + data = {"intersection1": intersection1, "size1": len(pointcloud1)} + if compute_symmetric: + nbrs = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(pointcloud1) + distances, indices = nbrs.kneighbors(pointcloud2) + intersection2 = np.count_nonzero(distances.flatten() < distance_threshold) + data["intersection2"] = intersection2 + data["size2"] = len(pointcloud2) + + return data + + +def _append_camera_parameters(observation, hfov, camera_location, camera_rotation): + """ + Add camera parameters to the observation dictionnary produced by Habitat-Sim + In-place modifications. + """ + R_cam2world, t_cam2world = compute_camera_pose_opencv_convention( + camera_location, camera_rotation + ) + height, width = observation["depth"].shape + f, cu, cv = compute_camera_intrinsics(height, width, hfov) + K = np.asarray([[f, 0, cu], [0, f, cv], [0, 0, 1.0]]) + observation["camera_intrinsics"] = K + observation["t_cam2world"] = t_cam2world + observation["R_cam2world"] = R_cam2world + + +def look_at(eye, center, up, return_cam2world=True): + """ + Return camera pose looking at a given center point. + Analogous of gluLookAt function, using OpenCV camera convention. + """ + z = center - eye + z /= np.linalg.norm(z, axis=-1, keepdims=True) + y = -up + y = y - np.sum(y * z, axis=-1, keepdims=True) * z + y /= np.linalg.norm(y, axis=-1, keepdims=True) + x = np.cross(y, z, axis=-1) + + if return_cam2world: + R = np.stack((x, y, z), axis=-1) + t = eye + else: + # World to camera transformation + # Transposed matrix + R = np.stack((x, y, z), axis=-2) + t = -np.einsum("...ij, ...j", R, eye) + return R, t + + +def look_at_for_habitat(eye, center, up, return_cam2world=True): + R, t = look_at(eye, center, up) + orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T) + return orientation, t + + +def generate_orientation_noise(pan_range, tilt_range, roll_range): + return ( + quaternion.from_rotation_vector( + np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP + ) + * quaternion.from_rotation_vector( + np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT + ) + * quaternion.from_rotation_vector( + np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT + ) + ) + + +class NoNaviguableSpaceError(RuntimeError): + def __init__(self, *args): + super().__init__(*args) + + +class MultiviewHabitatSimGenerator: + def __init__( + self, + scene, + navmesh, + scene_dataset_config_file, + resolution=(240, 320), + views_count=2, + hfov=60, + gpu_id=0, + size=10000, + minimum_covisibility=0.5, + transform=None, + ): + self.scene = scene + self.navmesh = navmesh + self.scene_dataset_config_file = scene_dataset_config_file + self.resolution = resolution + self.views_count = views_count + assert self.views_count >= 1 + self.hfov = hfov + self.gpu_id = gpu_id + self.size = size + self.transform = transform + + # Noise added to camera orientation + self.pan_range = (-3, 3) + self.tilt_range = (-10, 10) + self.roll_range = (-5, 5) + + # Height range to sample cameras + self.height_range = (1.2, 1.8) + + # Random steps between the camera views + self.random_steps_count = 5 + self.random_step_variance = 2.0 + + # Minimum fraction of the scene which should be valid (well defined depth) + self.minimum_valid_fraction = 0.7 + + # Distance threshold to see to select pairs + self.distance_threshold = 0.05 + # Minimum IoU of a view point cloud with respect to the reference view to be kept. + self.minimum_covisibility = minimum_covisibility + + # Maximum number of retries. + self.max_attempts_count = 100 + + self.seed = None + self._lazy_initialization() + + def _lazy_initialization(self): + # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly + if self.seed == None: + # Re-seed numpy generator + np.random.seed() + self.seed = np.random.randint(2**32 - 1) + sim_cfg = habitat_sim.SimulatorConfiguration() + sim_cfg.scene_id = self.scene + if ( + self.scene_dataset_config_file is not None + and self.scene_dataset_config_file != "" + ): + sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file + sim_cfg.random_seed = self.seed + sim_cfg.load_semantic_mesh = False + sim_cfg.gpu_device_id = self.gpu_id + + depth_sensor_spec = habitat_sim.CameraSensorSpec() + depth_sensor_spec.uuid = "depth" + depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH + depth_sensor_spec.resolution = self.resolution + depth_sensor_spec.hfov = self.hfov + depth_sensor_spec.position = [0.0, 0.0, 0] + depth_sensor_spec.orientation + + rgb_sensor_spec = habitat_sim.CameraSensorSpec() + rgb_sensor_spec.uuid = "color" + rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR + rgb_sensor_spec.resolution = self.resolution + rgb_sensor_spec.hfov = self.hfov + rgb_sensor_spec.position = [0.0, 0.0, 0] + agent_cfg = habitat_sim.agent.AgentConfiguration( + sensor_specifications=[rgb_sensor_spec, depth_sensor_spec] + ) + + cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg]) + self.sim = habitat_sim.Simulator(cfg) + if self.navmesh is not None and self.navmesh != "": + # Use pre-computed navmesh when available (usually better than those generated automatically) + self.sim.pathfinder.load_nav_mesh(self.navmesh) + + if not self.sim.pathfinder.is_loaded: + # Try to compute a navmesh + navmesh_settings = habitat_sim.NavMeshSettings() + navmesh_settings.set_defaults() + self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True) + + # Ensure that the navmesh is not empty + if not self.sim.pathfinder.is_loaded: + raise NoNaviguableSpaceError( + f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})" + ) + + self.agent = self.sim.initialize_agent(agent_id=0) + + def close(self): + self.sim.close() + + def __del__(self): + self.sim.close() + + def __len__(self): + return self.size + + def sample_random_viewpoint(self): + """Sample a random viewpoint using the navmesh""" + nav_point = self.sim.pathfinder.get_random_navigable_point() + + # Sample a random viewpoint height + viewpoint_height = np.random.uniform(*self.height_range) + viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP + viewpoint_orientation = quaternion.from_rotation_vector( + np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP + ) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range) + return viewpoint_position, viewpoint_orientation, nav_point + + def sample_other_random_viewpoint(self, observed_point, nav_point): + """Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point.""" + other_nav_point = nav_point + + walk_directions = self.random_step_variance * np.asarray([1, 0, 1]) + for i in range(self.random_steps_count): + temp = self.sim.pathfinder.snap_point( + other_nav_point + walk_directions * np.random.normal(size=3) + ) + # Snapping may return nan when it fails + if not np.isnan(temp[0]): + other_nav_point = temp + + other_viewpoint_height = np.random.uniform(*self.height_range) + other_viewpoint_position = ( + other_nav_point + other_viewpoint_height * habitat_sim.geo.UP + ) + + # Set viewing direction towards the central point + rotation, position = look_at_for_habitat( + eye=other_viewpoint_position, + center=observed_point, + up=habitat_sim.geo.UP, + return_cam2world=True, + ) + rotation = rotation * generate_orientation_noise( + self.pan_range, self.tilt_range, self.roll_range + ) + return position, rotation, other_nav_point + + def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud): + """Check if a viewpoint is valid and overlaps significantly with a reference one.""" + # Observation + pixels_count = self.resolution[0] * self.resolution[1] + valid_fraction = len(other_pointcloud) / pixels_count + assert valid_fraction <= 1.0 and valid_fraction >= 0.0 + overlap = compute_pointcloud_overlaps_scikit( + ref_pointcloud, + other_pointcloud, + self.distance_threshold, + compute_symmetric=True, + ) + covisibility = min( + overlap["intersection1"] / pixels_count, + overlap["intersection2"] / pixels_count, + ) + is_valid = (valid_fraction >= self.minimum_valid_fraction) and ( + covisibility >= self.minimum_covisibility + ) + return is_valid, valid_fraction, covisibility + + def is_other_viewpoint_overlapping( + self, ref_pointcloud, observation, position, rotation + ): + """Check if a viewpoint is valid and overlaps significantly with a reference one.""" + # Observation + other_pointcloud = compute_pointcloud( + observation["depth"], self.hfov, position, rotation + ) + return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud) + + def render_viewpoint(self, viewpoint_position, viewpoint_orientation): + agent_state = habitat_sim.AgentState() + agent_state.position = viewpoint_position + agent_state.rotation = viewpoint_orientation + self.agent.set_state(agent_state) + viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0) + _append_camera_parameters( + viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation + ) + return viewpoint_observations + + def __getitem__(self, useless_idx): + ref_position, ref_orientation, nav_point = self.sample_random_viewpoint() + ref_observations = self.render_viewpoint(ref_position, ref_orientation) + # Extract point cloud + ref_pointcloud = compute_pointcloud( + depthmap=ref_observations["depth"], + hfov=self.hfov, + camera_position=ref_position, + camera_rotation=ref_orientation, + ) + + pixels_count = self.resolution[0] * self.resolution[1] + ref_valid_fraction = len(ref_pointcloud) / pixels_count + assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0 + if ref_valid_fraction < self.minimum_valid_fraction: + # This should produce a recursion error at some point when something is very wrong. + return self[0] + # Pick an reference observed point in the point cloud + observed_point = np.mean(ref_pointcloud, axis=0) + + # Add the first image as reference + viewpoints_observations = [ref_observations] + viewpoints_covisibility = [ref_valid_fraction] + viewpoints_positions = [ref_position] + viewpoints_orientations = [quaternion.as_float_array(ref_orientation)] + viewpoints_clouds = [ref_pointcloud] + viewpoints_valid_fractions = [ref_valid_fraction] + + for _ in range(self.views_count - 1): + # Generate an other viewpoint using some dummy random walk + successful_sampling = False + for sampling_attempt in range(self.max_attempts_count): + position, rotation, _ = self.sample_other_random_viewpoint( + observed_point, nav_point + ) + # Observation + other_viewpoint_observations = self.render_viewpoint(position, rotation) + other_pointcloud = compute_pointcloud( + other_viewpoint_observations["depth"], self.hfov, position, rotation + ) + + ( + is_valid, + valid_fraction, + covisibility, + ) = self.is_other_pointcloud_overlapping( + ref_pointcloud, other_pointcloud + ) + if is_valid: + successful_sampling = True + break + if not successful_sampling: + print("WARNING: Maximum number of attempts reached.") + # Dirty hack, try using a novel original viewpoint + return self[0] + viewpoints_observations.append(other_viewpoint_observations) + viewpoints_covisibility.append(covisibility) + viewpoints_positions.append(position) + viewpoints_orientations.append( + quaternion.as_float_array(rotation) + ) # WXYZ convention for the quaternion encoding. + viewpoints_clouds.append(other_pointcloud) + viewpoints_valid_fractions.append(valid_fraction) + + # Estimate relations between all pairs of images + pairwise_visibility_ratios = np.ones( + (len(viewpoints_observations), len(viewpoints_observations)) + ) + for i in range(len(viewpoints_observations)): + pairwise_visibility_ratios[i, i] = viewpoints_valid_fractions[i] + for j in range(i + 1, len(viewpoints_observations)): + overlap = compute_pointcloud_overlaps_scikit( + viewpoints_clouds[i], + viewpoints_clouds[j], + self.distance_threshold, + compute_symmetric=True, + ) + pairwise_visibility_ratios[i, j] = ( + overlap["intersection1"] / pixels_count + ) + pairwise_visibility_ratios[j, i] = ( + overlap["intersection2"] / pixels_count + ) + + # IoU is relative to the image 0 + data = { + "observations": viewpoints_observations, + "positions": np.asarray(viewpoints_positions), + "orientations": np.asarray(viewpoints_orientations), + "covisibility_ratios": np.asarray(viewpoints_covisibility), + "valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float), + "pairwise_visibility_ratios": np.asarray( + pairwise_visibility_ratios, dtype=float + ), + } + + if self.transform is not None: + data = self.transform(data) + return data + + def generate_random_spiral_trajectory( + self, + images_count=100, + max_radius=0.5, + half_turns=5, + use_constant_orientation=False, + ): + """ + Return a list of images corresponding to a spiral trajectory from a random starting point. + Useful to generate nice visualisations. + Use an even number of half turns to get a nice "C1-continuous" loop effect + """ + ref_position, ref_orientation, navpoint = self.sample_random_viewpoint() + ref_observations = self.render_viewpoint(ref_position, ref_orientation) + ref_pointcloud = compute_pointcloud( + depthmap=ref_observations["depth"], + hfov=self.hfov, + camera_position=ref_position, + camera_rotation=ref_orientation, + ) + pixels_count = self.resolution[0] * self.resolution[1] + if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction: + # Dirty hack: ensure that the valid part of the image is significant + return self.generate_random_spiral_trajectory( + images_count, max_radius, half_turns, use_constant_orientation + ) + + # Pick an observed point in the point cloud + observed_point = np.mean(ref_pointcloud, axis=0) + ref_R, ref_t = compute_camera_pose_opencv_convention( + ref_position, ref_orientation + ) + + images = [] + is_valid = [] + # Spiral trajectory, use_constant orientation + for i, alpha in enumerate(np.linspace(0, 1, images_count)): + r = max_radius * np.abs( + np.sin(alpha * np.pi) + ) # Increase then decrease the radius + theta = alpha * half_turns * np.pi + x = r * np.cos(theta) + y = r * np.sin(theta) + z = 0.0 + position = ( + ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3, 1)).flatten() + ) + if use_constant_orientation: + orientation = ref_orientation + else: + # trajectory looking at a mean point in front of the ref observation + orientation, position = look_at_for_habitat( + eye=position, center=observed_point, up=habitat_sim.geo.UP + ) + observations = self.render_viewpoint(position, orientation) + images.append(observations["color"][..., :3]) + _is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping( + ref_pointcloud, observations, position, orientation + ) + is_valid.append(_is_valid) + return images, np.all(is_valid) diff --git a/third_party/dust3r/croco/datasets/habitat_sim/pack_metadata_files.py b/third_party/dust3r/croco/datasets/habitat_sim/pack_metadata_files.py new file mode 100644 index 0000000000000000000000000000000000000000..92f1b367747417fd4625a5a4f975f10527247076 --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/pack_metadata_files.py @@ -0,0 +1,81 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +""" +Utility script to pack metadata files of the dataset in order to be able to re-generate it elsewhere. +""" +import argparse +import collections +import glob +import json +import os +import shutil + +from datasets.habitat_sim.paths import * +from tqdm import tqdm + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("input_dir") + parser.add_argument("output_dir") + args = parser.parse_args() + + input_dirname = args.input_dir + output_dirname = args.output_dir + + input_metadata_filenames = glob.iglob( + f"{input_dirname}/**/metadata.json", recursive=True + ) + + images_count = collections.defaultdict(lambda: 0) + + os.makedirs(output_dirname) + for input_filename in tqdm(input_metadata_filenames): + # Ignore empty files + with open(input_filename, "r") as f: + original_metadata = json.load(f) + if ( + "multiviews" not in original_metadata + or len(original_metadata["multiviews"]) == 0 + ): + print("No views in", input_filename) + continue + + relpath = os.path.relpath(input_filename, input_dirname) + print(relpath) + + # Copy metadata, while replacing scene paths by generic keys depending on the dataset, for portability. + # Data paths are sorted by decreasing length to avoid potential bugs due to paths starting by the same string pattern. + scenes_dataset_paths = dict( + sorted(SCENES_DATASET.items(), key=lambda x: len(x[1]), reverse=True) + ) + metadata = dict() + for key, value in original_metadata.items(): + if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": + known_path = False + for dataset, dataset_path in scenes_dataset_paths.items(): + if value.startswith(dataset_path): + value = os.path.join( + dataset, os.path.relpath(value, dataset_path) + ) + known_path = True + break + if not known_path: + raise KeyError("Unknown path:" + value) + metadata[key] = value + + # Compile some general statistics while packing data + scene_split = metadata["scene"].split("/") + upper_level = ( + "/".join(scene_split[:2]) if scene_split[0] == "hm3d" else scene_split[0] + ) + images_count[upper_level] += len(metadata["multiviews"]) + + output_filename = os.path.join(output_dirname, relpath) + os.makedirs(os.path.dirname(output_filename), exist_ok=True) + with open(output_filename, "w") as f: + json.dump(metadata, f) + + # Print statistics + print("Images count:") + for upper_level, count in images_count.items(): + print(f"- {upper_level}: {count}") diff --git a/third_party/dust3r/croco/datasets/habitat_sim/paths.py b/third_party/dust3r/croco/datasets/habitat_sim/paths.py new file mode 100644 index 0000000000000000000000000000000000000000..aad8e2257c41bac69245e66cd956736f3a848edc --- /dev/null +++ b/third_party/dust3r/croco/datasets/habitat_sim/paths.py @@ -0,0 +1,179 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +""" +Paths to Habitat-Sim scenes +""" + +import collections +import json +import os + +from tqdm import tqdm + +# Hardcoded path to the different scene datasets +SCENES_DATASET = { + "hm3d": "./data/habitat-sim-data/scene_datasets/hm3d/", + "gibson": "./data/habitat-sim-data/scene_datasets/gibson/", + "habitat-test-scenes": "./data/habitat-sim/scene_datasets/habitat-test-scenes/", + "replica_cad_baked_lighting": "./data/habitat-sim/scene_datasets/replica_cad_baked_lighting/", + "replica_cad": "./data/habitat-sim/scene_datasets/replica_cad/", + "replica": "./data/habitat-sim/scene_datasets/ReplicaDataset/", + "scannet": "./data/habitat-sim/scene_datasets/scannet/", +} + +SceneData = collections.namedtuple( + "SceneData", ["scene_dataset_config_file", "scene", "navmesh", "output_dir"] +) + + +def list_replicacad_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad"]): + scene_dataset_config_file = os.path.join( + base_path, "replicaCAD.scene_dataset_config.json" + ) + scenes = [f"apt_{i}" for i in range(6)] + ["empty_stage"] + navmeshes = [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + [ + "empty_stage.navmesh" + ] + scenes_data = [] + for idx in range(len(scenes)): + output_dir = os.path.join(base_output_dir, "ReplicaCAD", scenes[idx]) + # Add scene + data = SceneData( + scene_dataset_config_file=scene_dataset_config_file, + scene=scenes[idx] + ".scene_instance.json", + navmesh=os.path.join(base_path, navmeshes[idx]), + output_dir=output_dir, + ) + scenes_data.append(data) + return scenes_data + + +def list_replica_cad_baked_lighting_scenes( + base_output_dir, base_path=SCENES_DATASET["replica_cad_baked_lighting"] +): + scene_dataset_config_file = os.path.join( + base_path, "replicaCAD_baked.scene_dataset_config.json" + ) + scenes = sum( + [[f"Baked_sc{i}_staging_{j:02}" for i in range(5)] for j in range(21)], [] + ) + navmeshes = "" # [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"] + scenes_data = [] + for idx in range(len(scenes)): + output_dir = os.path.join( + base_output_dir, "replica_cad_baked_lighting", scenes[idx] + ) + data = SceneData( + scene_dataset_config_file=scene_dataset_config_file, + scene=scenes[idx], + navmesh="", + output_dir=output_dir, + ) + scenes_data.append(data) + return scenes_data + + +def list_replica_scenes(base_output_dir, base_path): + scenes_data = [] + for scene_id in os.listdir(base_path): + scene = os.path.join(base_path, scene_id, "mesh.ply") + navmesh = os.path.join( + base_path, scene_id, "habitat/mesh_preseg_semantic.navmesh" + ) # Not sure if I should use it + scene_dataset_config_file = "" + output_dir = os.path.join(base_output_dir, scene_id) + # Add scene only if it does not exist already, or if exist_ok + data = SceneData( + scene_dataset_config_file=scene_dataset_config_file, + scene=scene, + navmesh=navmesh, + output_dir=output_dir, + ) + scenes_data.append(data) + return scenes_data + + +def list_scenes(base_output_dir, base_path): + """ + Generic method iterating through a base_path folder to find scenes. + """ + scenes_data = [] + for root, dirs, files in os.walk(base_path, followlinks=True): + folder_scenes_data = [] + for file in files: + name, ext = os.path.splitext(file) + if ext == ".glb": + scene = os.path.join(root, name + ".glb") + navmesh = os.path.join(root, name + ".navmesh") + if not os.path.exists(navmesh): + navmesh = "" + relpath = os.path.relpath(root, base_path) + output_dir = os.path.abspath( + os.path.join(base_output_dir, relpath, name) + ) + data = SceneData( + scene_dataset_config_file="", + scene=scene, + navmesh=navmesh, + output_dir=output_dir, + ) + folder_scenes_data.append(data) + + # Specific check for HM3D: + # When two meshesxxxx.basis.glb and xxxx.glb are present, use the 'basis' version. + basis_scenes = [ + data.scene[: -len(".basis.glb")] + for data in folder_scenes_data + if data.scene.endswith(".basis.glb") + ] + if len(basis_scenes) != 0: + folder_scenes_data = [ + data + for data in folder_scenes_data + if not (data.scene[: -len(".glb")] in basis_scenes) + ] + + scenes_data.extend(folder_scenes_data) + return scenes_data + + +def list_scenes_available(base_output_dir, scenes_dataset_paths=SCENES_DATASET): + scenes_data = [] + + # HM3D + for split in ("minival", "train", "val", "examples"): + scenes_data += list_scenes( + base_output_dir=os.path.join(base_output_dir, f"hm3d/{split}/"), + base_path=f"{scenes_dataset_paths['hm3d']}/{split}", + ) + + # Gibson + scenes_data += list_scenes( + base_output_dir=os.path.join(base_output_dir, "gibson"), + base_path=scenes_dataset_paths["gibson"], + ) + + # Habitat test scenes (just a few) + scenes_data += list_scenes( + base_output_dir=os.path.join(base_output_dir, "habitat-test-scenes"), + base_path=scenes_dataset_paths["habitat-test-scenes"], + ) + + # ReplicaCAD (baked lightning) + scenes_data += list_replica_cad_baked_lighting_scenes( + base_output_dir=base_output_dir + ) + + # ScanNet + scenes_data += list_scenes( + base_output_dir=os.path.join(base_output_dir, "scannet"), + base_path=scenes_dataset_paths["scannet"], + ) + + # Replica + list_replica_scenes( + base_output_dir=os.path.join(base_output_dir, "replica"), + base_path=scenes_dataset_paths["replica"], + ) + return scenes_data diff --git a/third_party/dust3r/croco/datasets/pairs_dataset.py b/third_party/dust3r/croco/datasets/pairs_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..892a37a71b2296e486d83930e5dac2b690f83c7b --- /dev/null +++ b/third_party/dust3r/croco/datasets/pairs_dataset.py @@ -0,0 +1,161 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import os + +from datasets.transforms import get_pair_transforms +from PIL import Image +from torch.utils.data import Dataset + + +def load_image(impath): + return Image.open(impath) + + +def load_pairs_from_cache_file(fname, root=""): + assert os.path.isfile( + fname + ), "cannot parse pairs from {:s}, file does not exist".format(fname) + with open(fname, "r") as fid: + lines = fid.read().strip().splitlines() + pairs = [ + (os.path.join(root, l.split()[0]), os.path.join(root, l.split()[1])) + for l in lines + ] + return pairs + + +def load_pairs_from_list_file(fname, root=""): + assert os.path.isfile( + fname + ), "cannot parse pairs from {:s}, file does not exist".format(fname) + with open(fname, "r") as fid: + lines = fid.read().strip().splitlines() + pairs = [ + (os.path.join(root, l + "_1.jpg"), os.path.join(root, l + "_2.jpg")) + for l in lines + if not l.startswith("#") + ] + return pairs + + +def write_cache_file(fname, pairs, root=""): + if len(root) > 0: + if not root.endswith("/"): + root += "/" + assert os.path.isdir(root) + s = "" + for im1, im2 in pairs: + if len(root) > 0: + assert im1.startswith(root), im1 + assert im2.startswith(root), im2 + s += "{:s} {:s}\n".format(im1[len(root) :], im2[len(root) :]) + with open(fname, "w") as fid: + fid.write(s[:-1]) + + +def parse_and_cache_all_pairs(dname, data_dir="./data/"): + if dname == "habitat_release": + dirname = os.path.join(data_dir, "habitat_release") + assert os.path.isdir(dirname), ( + "cannot find folder for habitat_release pairs: " + dirname + ) + cache_file = os.path.join(dirname, "pairs.txt") + assert not os.path.isfile(cache_file), ( + "cache file already exists: " + cache_file + ) + + print("Parsing pairs for dataset: " + dname) + pairs = [] + for root, dirs, files in os.walk(dirname): + if "val" in root: + continue + dirs.sort() + pairs += [ + ( + os.path.join(root, f), + os.path.join(root, f[: -len("_1.jpeg")] + "_2.jpeg"), + ) + for f in sorted(files) + if f.endswith("_1.jpeg") + ] + print("Found {:,} pairs".format(len(pairs))) + print("Writing cache to: " + cache_file) + write_cache_file(cache_file, pairs, root=dirname) + + else: + raise NotImplementedError("Unknown dataset: " + dname) + + +def dnames_to_image_pairs(dnames, data_dir="./data/"): + """ + dnames: list of datasets with image pairs, separated by + + """ + all_pairs = [] + for dname in dnames.split("+"): + if dname == "habitat_release": + dirname = os.path.join(data_dir, "habitat_release") + assert os.path.isdir(dirname), ( + "cannot find folder for habitat_release pairs: " + dirname + ) + cache_file = os.path.join(dirname, "pairs.txt") + assert os.path.isfile(cache_file), ( + "cannot find cache file for habitat_release pairs, please first create the cache file, see instructions. " + + cache_file + ) + pairs = load_pairs_from_cache_file(cache_file, root=dirname) + elif dname in ["ARKitScenes", "MegaDepth", "3DStreetView", "IndoorVL"]: + dirname = os.path.join(data_dir, dname + "_crops") + assert os.path.isdir( + dirname + ), "cannot find folder for {:s} pairs: {:s}".format(dname, dirname) + list_file = os.path.join(dirname, "listing.txt") + assert os.path.isfile( + list_file + ), "cannot find list file for {:s} pairs, see instructions. {:s}".format( + dname, list_file + ) + pairs = load_pairs_from_list_file(list_file, root=dirname) + print(" {:s}: {:,} pairs".format(dname, len(pairs))) + all_pairs += pairs + if "+" in dnames: + print(" Total: {:,} pairs".format(len(all_pairs))) + return all_pairs + + +class PairsDataset(Dataset): + def __init__( + self, dnames, trfs="", totensor=True, normalize=True, data_dir="./data/" + ): + super().__init__() + self.image_pairs = dnames_to_image_pairs(dnames, data_dir=data_dir) + self.transforms = get_pair_transforms( + transform_str=trfs, totensor=totensor, normalize=normalize + ) + + def __len__(self): + return len(self.image_pairs) + + def __getitem__(self, index): + im1path, im2path = self.image_pairs[index] + im1 = load_image(im1path) + im2 = load_image(im2path) + if self.transforms is not None: + im1, im2 = self.transforms(im1, im2) + return im1, im2 + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser( + prog="Computing and caching list of pairs for a given dataset" + ) + parser.add_argument( + "--data_dir", default="./data/", type=str, help="path where data are stored" + ) + parser.add_argument( + "--dataset", default="habitat_release", type=str, help="name of the dataset" + ) + args = parser.parse_args() + parse_and_cache_all_pairs(dname=args.dataset, data_dir=args.data_dir) diff --git a/third_party/dust3r/croco/datasets/transforms.py b/third_party/dust3r/croco/datasets/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..30d8adccbdb5bdd083bab88211494c1682f88352 --- /dev/null +++ b/third_party/dust3r/croco/datasets/transforms.py @@ -0,0 +1,138 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch +import torchvision.transforms +import torchvision.transforms.functional as F + +# "Pair": apply a transform on a pair +# "Both": apply the exact same transform to both images + + +class ComposePair(torchvision.transforms.Compose): + def __call__(self, img1, img2): + for t in self.transforms: + img1, img2 = t(img1, img2) + return img1, img2 + + +class NormalizeBoth(torchvision.transforms.Normalize): + def forward(self, img1, img2): + img1 = super().forward(img1) + img2 = super().forward(img2) + return img1, img2 + + +class ToTensorBoth(torchvision.transforms.ToTensor): + def __call__(self, img1, img2): + img1 = super().__call__(img1) + img2 = super().__call__(img2) + return img1, img2 + + +class RandomCropPair(torchvision.transforms.RandomCrop): + # the crop will be intentionally different for the two images with this class + def forward(self, img1, img2): + img1 = super().forward(img1) + img2 = super().forward(img2) + return img1, img2 + + +class ColorJitterPair(torchvision.transforms.ColorJitter): + # can be symmetric (same for both images) or assymetric (different jitter params for each image) depending on assymetric_prob + def __init__(self, assymetric_prob, **kwargs): + super().__init__(**kwargs) + self.assymetric_prob = assymetric_prob + + def jitter_one( + self, + img, + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ): + for fn_id in fn_idx: + if fn_id == 0 and brightness_factor is not None: + img = F.adjust_brightness(img, brightness_factor) + elif fn_id == 1 and contrast_factor is not None: + img = F.adjust_contrast(img, contrast_factor) + elif fn_id == 2 and saturation_factor is not None: + img = F.adjust_saturation(img, saturation_factor) + elif fn_id == 3 and hue_factor is not None: + img = F.adjust_hue(img, hue_factor) + return img + + def forward(self, img1, img2): + ( + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ) = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) + img1 = self.jitter_one( + img1, + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ) + if torch.rand(1) < self.assymetric_prob: # assymetric: + ( + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ) = self.get_params( + self.brightness, self.contrast, self.saturation, self.hue + ) + img2 = self.jitter_one( + img2, + fn_idx, + brightness_factor, + contrast_factor, + saturation_factor, + hue_factor, + ) + return img1, img2 + + +def get_pair_transforms(transform_str, totensor=True, normalize=True): + # transform_str is eg crop224+color + trfs = [] + for s in transform_str.split("+"): + if s.startswith("crop"): + size = int(s[len("crop") :]) + trfs.append(RandomCropPair(size)) + elif s == "acolor": + trfs.append( + ColorJitterPair( + assymetric_prob=1.0, + brightness=(0.6, 1.4), + contrast=(0.6, 1.4), + saturation=(0.6, 1.4), + hue=0.0, + ) + ) + elif s == "": # if transform_str was "" + pass + else: + raise NotImplementedError("Unknown augmentation: " + s) + + if totensor: + trfs.append(ToTensorBoth()) + if normalize: + trfs.append( + NormalizeBoth(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + ) + + if len(trfs) == 0: + return None + elif len(trfs) == 1: + return trfs + else: + return ComposePair(trfs) diff --git a/third_party/dust3r/croco/demo.py b/third_party/dust3r/croco/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..8064477fb3a81e1861e77c31b5b1ec94e0ca53d2 --- /dev/null +++ b/third_party/dust3r/croco/demo.py @@ -0,0 +1,78 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch +import torchvision.transforms +from models.croco import CroCoNet +from PIL import Image +from torchvision.transforms import Compose, Normalize, ToTensor + + +def main(): + device = torch.device( + "cuda:0" + if torch.cuda.is_available() and torch.cuda.device_count() > 0 + else "cpu" + ) + + # load 224x224 images and transform them to tensor + imagenet_mean = [0.485, 0.456, 0.406] + imagenet_mean_tensor = ( + torch.tensor(imagenet_mean).view(1, 3, 1, 1).to(device, non_blocking=True) + ) + imagenet_std = [0.229, 0.224, 0.225] + imagenet_std_tensor = ( + torch.tensor(imagenet_std).view(1, 3, 1, 1).to(device, non_blocking=True) + ) + trfs = Compose([ToTensor(), Normalize(mean=imagenet_mean, std=imagenet_std)]) + image1 = ( + trfs(Image.open("assets/Chateau1.png").convert("RGB")) + .to(device, non_blocking=True) + .unsqueeze(0) + ) + image2 = ( + trfs(Image.open("assets/Chateau2.png").convert("RGB")) + .to(device, non_blocking=True) + .unsqueeze(0) + ) + + # load model + ckpt = torch.load("pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth", "cpu") + model = CroCoNet(**ckpt.get("croco_kwargs", {})).to(device) + model.eval() + msg = model.load_state_dict(ckpt["model"], strict=True) + + # forward + with torch.inference_mode(): + out, mask, target = model(image1, image2) + + # the output is normalized, thus use the mean/std of the actual image to go back to RGB space + patchified = model.patchify(image1) + mean = patchified.mean(dim=-1, keepdim=True) + var = patchified.var(dim=-1, keepdim=True) + decoded_image = model.unpatchify(out * (var + 1.0e-6) ** 0.5 + mean) + # undo imagenet normalization, prepare masked image + decoded_image = decoded_image * imagenet_std_tensor + imagenet_mean_tensor + input_image = image1 * imagenet_std_tensor + imagenet_mean_tensor + ref_image = image2 * imagenet_std_tensor + imagenet_mean_tensor + image_masks = model.unpatchify( + model.patchify(torch.ones_like(ref_image)) * mask[:, :, None] + ) + masked_input_image = (1 - image_masks) * input_image + + # make visualization + visualization = torch.cat( + (ref_image, masked_input_image, decoded_image, input_image), dim=3 + ) # 4*(B, 3, H, W) -> B, 3, H, W*4 + B, C, H, W = visualization.shape + visualization = visualization.permute(1, 0, 2, 3).reshape(C, B * H, W) + visualization = torchvision.transforms.functional.to_pil_image( + torch.clamp(visualization, 0, 1) + ) + fname = "demo_output.png" + visualization.save(fname) + print("Visualization save in " + fname) + + +if __name__ == "__main__": + main() diff --git a/third_party/dust3r/croco/interactive_demo.ipynb b/third_party/dust3r/croco/interactive_demo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6cfc960af5baac9a69029c29a16eea4e24123a71 --- /dev/null +++ b/third_party/dust3r/croco/interactive_demo.ipynb @@ -0,0 +1,271 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interactive demo of Cross-view Completion." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n", + "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import numpy as np\n", + "from models.croco import CroCoNet\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "import matplotlib.pyplot as plt\n", + "import quaternion\n", + "import models.masking" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load CroCo model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')\n", + "model = CroCoNet( **ckpt.get('croco_kwargs',{}))\n", + "msg = model.load_state_dict(ckpt['model'], strict=True)\n", + "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n", + "device = torch.device('cuda:0' if use_gpu else 'cpu')\n", + "model = model.eval()\n", + "model = model.to(device=device)\n", + "print(msg)\n", + "\n", + "def process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches=False):\n", + " \"\"\"\n", + " Perform Cross-View completion using two input images, specified using Numpy arrays.\n", + " \"\"\"\n", + " # Replace the mask generator\n", + " model.mask_generator = models.masking.RandomMask(model.patch_embed.num_patches, masking_ratio)\n", + "\n", + " # ImageNet-1k color normalization\n", + " imagenet_mean = torch.as_tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1).to(device)\n", + " imagenet_std = torch.as_tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1).to(device)\n", + "\n", + " normalize_input_colors = True\n", + " is_output_normalized = True\n", + " with torch.no_grad():\n", + " # Cast data to torch\n", + " target_image = (torch.as_tensor(target_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n", + " ref_image = (torch.as_tensor(ref_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n", + "\n", + " if normalize_input_colors:\n", + " ref_image = (ref_image - imagenet_mean) / imagenet_std\n", + " target_image = (target_image - imagenet_mean) / imagenet_std\n", + "\n", + " out, mask, _ = model(target_image, ref_image)\n", + " # # get target\n", + " if not is_output_normalized:\n", + " predicted_image = model.unpatchify(out)\n", + " else:\n", + " # The output only contains higher order information,\n", + " # we retrieve mean and standard deviation from the actual target image\n", + " patchified = model.patchify(target_image)\n", + " mean = patchified.mean(dim=-1, keepdim=True)\n", + " var = patchified.var(dim=-1, keepdim=True)\n", + " pred_renorm = out * (var + 1.e-6)**.5 + mean\n", + " predicted_image = model.unpatchify(pred_renorm)\n", + "\n", + " image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])\n", + " masked_target_image = (1 - image_masks) * target_image\n", + " \n", + " if not reconstruct_unmasked_patches:\n", + " # Replace unmasked patches by their actual values\n", + " predicted_image = predicted_image * image_masks + masked_target_image\n", + "\n", + " # Unapply color normalization\n", + " if normalize_input_colors:\n", + " predicted_image = predicted_image * imagenet_std + imagenet_mean\n", + " masked_target_image = masked_target_image * imagenet_std + imagenet_mean\n", + " \n", + " # Cast to Numpy\n", + " masked_target_image = np.asarray(torch.clamp(masked_target_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n", + " predicted_image = np.asarray(torch.clamp(predicted_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n", + " return masked_target_image, predicted_image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the Habitat simulator to render images from arbitrary viewpoints (requires habitat_sim to be installed)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"MAGNUM_LOG\"]=\"quiet\"\n", + "os.environ[\"HABITAT_SIM_LOG\"]=\"quiet\"\n", + "import habitat_sim\n", + "\n", + "scene = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.glb\"\n", + "navmesh = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.navmesh\"\n", + "\n", + "sim_cfg = habitat_sim.SimulatorConfiguration()\n", + "if use_gpu: sim_cfg.gpu_device_id = 0\n", + "sim_cfg.scene_id = scene\n", + "sim_cfg.load_semantic_mesh = False\n", + "rgb_sensor_spec = habitat_sim.CameraSensorSpec()\n", + "rgb_sensor_spec.uuid = \"color\"\n", + "rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR\n", + "rgb_sensor_spec.resolution = (224,224)\n", + "rgb_sensor_spec.hfov = 56.56\n", + "rgb_sensor_spec.position = [0.0, 0.0, 0.0]\n", + "rgb_sensor_spec.orientation = [0, 0, 0]\n", + "agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec])\n", + "\n", + "\n", + "cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])\n", + "sim = habitat_sim.Simulator(cfg)\n", + "if navmesh is not None:\n", + " sim.pathfinder.load_nav_mesh(navmesh)\n", + "agent = sim.initialize_agent(agent_id=0)\n", + "\n", + "def sample_random_viewpoint():\n", + " \"\"\" Sample a random viewpoint using the navmesh \"\"\"\n", + " nav_point = sim.pathfinder.get_random_navigable_point()\n", + " # Sample a random viewpoint height\n", + " viewpoint_height = np.random.uniform(1.0, 1.6)\n", + " viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP\n", + " viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(-np.pi, np.pi) * habitat_sim.geo.UP)\n", + " return viewpoint_position, viewpoint_orientation\n", + "\n", + "def render_viewpoint(position, orientation):\n", + " agent_state = habitat_sim.AgentState()\n", + " agent_state.position = position\n", + " agent_state.rotation = orientation\n", + " agent.set_state(agent_state)\n", + " viewpoint_observations = sim.get_sensor_observations(agent_ids=0)\n", + " image = viewpoint_observations['color'][:,:,:3]\n", + " image = np.asarray(np.clip(1.5 * np.asarray(image, dtype=float), 0, 255), dtype=np.uint8)\n", + " return image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sample a random reference view" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ref_position, ref_orientation = sample_random_viewpoint()\n", + "ref_image = render_viewpoint(ref_position, ref_orientation)\n", + "plt.clf()\n", + "fig, axes = plt.subplots(1,1, squeeze=False, num=1)\n", + "axes[0,0].imshow(ref_image)\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interactive cross-view completion using CroCo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "reconstruct_unmasked_patches = False\n", + "\n", + "def show_demo(masking_ratio, x, y, z, panorama, elevation):\n", + " R = quaternion.as_rotation_matrix(ref_orientation)\n", + " target_position = ref_position + x * R[:,0] + y * R[:,1] + z * R[:,2]\n", + " target_orientation = (ref_orientation\n", + " * quaternion.from_rotation_vector(-elevation * np.pi/180 * habitat_sim.geo.LEFT) \n", + " * quaternion.from_rotation_vector(-panorama * np.pi/180 * habitat_sim.geo.UP))\n", + " \n", + " ref_image = render_viewpoint(ref_position, ref_orientation)\n", + " target_image = render_viewpoint(target_position, target_orientation)\n", + "\n", + " masked_target_image, predicted_image = process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches)\n", + "\n", + " fig, axes = plt.subplots(1,4, squeeze=True, dpi=300)\n", + " axes[0].imshow(ref_image)\n", + " axes[0].set_xlabel(\"Reference\")\n", + " axes[1].imshow(masked_target_image)\n", + " axes[1].set_xlabel(\"Masked target\")\n", + " axes[2].imshow(predicted_image)\n", + " axes[2].set_xlabel(\"Reconstruction\") \n", + " axes[3].imshow(target_image)\n", + " axes[3].set_xlabel(\"Target\")\n", + " for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "interact(show_demo,\n", + " masking_ratio=widgets.FloatSlider(description='masking', value=0.9, min=0.0, max=1.0),\n", + " x=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " y=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " z=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n", + " panorama=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5),\n", + " elevation=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5));" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.13" + }, + "vscode": { + "interpreter": { + "hash": "f9237820cd248d7e07cb4fb9f0e4508a85d642f19d831560c0a4b61f3e907e67" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/third_party/dust3r/croco/models/blocks.py b/third_party/dust3r/croco/models/blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..f7e6a4157a5db71585d0d86718f1e5f4487828ad --- /dev/null +++ b/third_party/dust3r/croco/models/blocks.py @@ -0,0 +1,349 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# Main encoder/decoder blocks +# -------------------------------------------------------- +# References: +# timm +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py + + +import collections.abc +from itertools import repeat + +import torch +import torch.nn as nn + + +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return x + return tuple(repeat(x, n)) + + return parse + + +to_2tuple = _ntuple(2) + + +def drop_path( + x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True +): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * ( + x.ndim - 1 + ) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + def extra_repr(self): + return f"drop_prob={round(self.drop_prob,3):0.3f}" + + +class Mlp(nn.Module): + """MLP as used in Vision Transformer, MLP-Mixer and related networks""" + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + bias=True, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + bias = to_2tuple(bias) + drop_probs = to_2tuple(drop) + + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) + self.act = act_layer() + self.drop1 = nn.Dropout(drop_probs[0]) + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) + self.drop2 = nn.Dropout(drop_probs[1]) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop1(x) + x = self.fc2(x) + x = self.drop2(x) + return x + + +class Attention(nn.Module): + def __init__( + self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0 + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.rope = rope + + def forward(self, x, xpos): + B, N, C = x.shape + + qkv = ( + self.qkv(x) + .reshape(B, N, 3, self.num_heads, C // self.num_heads) + .transpose(1, 3) + ) + q, k, v = [qkv[:, :, i] for i in range(3)] + # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple) + + if self.rope is not None: + q = self.rope(q, xpos) + k = self.rope(k, xpos) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + def __init__( + self, + dim, + num_heads, + mlp_ratio=4.0, + qkv_bias=False, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + rope=None, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + rope=rope, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=drop, + ) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + ) + + def forward(self, x, xpos): + x = x + self.drop_path(self.attn(self.norm1(x), xpos)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class CrossAttention(nn.Module): + def __init__( + self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0 + ): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.projq = nn.Linear(dim, dim, bias=qkv_bias) + self.projk = nn.Linear(dim, dim, bias=qkv_bias) + self.projv = nn.Linear(dim, dim, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.rope = rope + + def forward(self, query, key, value, qpos, kpos): + B, Nq, C = query.shape + Nk = key.shape[1] + Nv = value.shape[1] + + q = ( + self.projq(query) + .reshape(B, Nq, self.num_heads, C // self.num_heads) + .permute(0, 2, 1, 3) + ) + k = ( + self.projk(key) + .reshape(B, Nk, self.num_heads, C // self.num_heads) + .permute(0, 2, 1, 3) + ) + v = ( + self.projv(value) + .reshape(B, Nv, self.num_heads, C // self.num_heads) + .permute(0, 2, 1, 3) + ) + + if self.rope is not None: + q = self.rope(q, qpos) + k = self.rope(k, kpos) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, Nq, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class DecoderBlock(nn.Module): + def __init__( + self, + dim, + num_heads, + mlp_ratio=4.0, + qkv_bias=False, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + norm_mem=True, + rope=None, + ): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + rope=rope, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.cross_attn = CrossAttention( + dim, + rope=rope, + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + self.norm3 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + ) + self.norm_y = norm_layer(dim) if norm_mem else nn.Identity() + + def forward(self, x, y, xpos, ypos): + x = x + self.drop_path(self.attn(self.norm1(x), xpos)) + y_ = self.norm_y(y) + x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos)) + x = x + self.drop_path(self.mlp(self.norm3(x))) + return x, y + + +# patch embedding +class PositionGetter(object): + """return positions of patches""" + + def __init__(self): + self.cache_positions = {} + + def __call__(self, b, h, w, device): + if not (h, w) in self.cache_positions: + x = torch.arange(w, device=device) + y = torch.arange(h, device=device) + self.cache_positions[h, w] = torch.cartesian_prod(y, x) # (h, w, 2) + pos = self.cache_positions[h, w].view(1, h * w, 2).expand(b, -1, 2).clone() + return pos + + +class PatchEmbed(nn.Module): + """just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed""" + + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + norm_layer=None, + flatten=True, + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.flatten = flatten + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=patch_size, stride=patch_size + ) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + self.position_getter = PositionGetter() + + def forward(self, x): + B, C, H, W = x.shape + torch._assert( + H == self.img_size[0], + f"Input image height ({H}) doesn't match model ({self.img_size[0]}).", + ) + torch._assert( + W == self.img_size[1], + f"Input image width ({W}) doesn't match model ({self.img_size[1]}).", + ) + x = self.proj(x) + pos = self.position_getter(B, x.size(2), x.size(3), x.device) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # BCHW -> BNC + x = self.norm(x) + return x, pos + + def _init_weights(self): + w = self.proj.weight.data + torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) diff --git a/third_party/dust3r/croco/models/criterion.py b/third_party/dust3r/croco/models/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..dcd7a26af15585161c85df23a895691b3f38e91e --- /dev/null +++ b/third_party/dust3r/croco/models/criterion.py @@ -0,0 +1,36 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Criterion to train CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# -------------------------------------------------------- + +import torch + + +class MaskedMSE(torch.nn.Module): + def __init__(self, norm_pix_loss=False, masked=True): + """ + norm_pix_loss: normalize each patch by their pixel mean and variance + masked: compute loss over the masked patches only + """ + super().__init__() + self.norm_pix_loss = norm_pix_loss + self.masked = masked + + def forward(self, pred, mask, target): + if self.norm_pix_loss: + mean = target.mean(dim=-1, keepdim=True) + var = target.var(dim=-1, keepdim=True) + target = (target - mean) / (var + 1.0e-6) ** 0.5 + + loss = (pred - target) ** 2 + loss = loss.mean(dim=-1) # [N, L], mean loss per patch + if self.masked: + loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches + else: + loss = loss.mean() # mean loss + return loss diff --git a/third_party/dust3r/croco/models/croco.py b/third_party/dust3r/croco/models/croco.py new file mode 100644 index 0000000000000000000000000000000000000000..2de6d96f2ad9daa790580df598701d692f48a71e --- /dev/null +++ b/third_party/dust3r/croco/models/croco.py @@ -0,0 +1,297 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# CroCo model during pretraining +# -------------------------------------------------------- + + +import torch +import torch.nn as nn + +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 +from functools import partial + +from models.blocks import Block, DecoderBlock, PatchEmbed +from models.masking import RandomMask +from models.pos_embed import RoPE2D, get_2d_sincos_pos_embed + + +class CroCoNet(nn.Module): + def __init__( + self, + img_size=224, # input image size + patch_size=16, # patch_size + mask_ratio=0.9, # ratios of masked tokens + enc_embed_dim=768, # encoder feature dimension + enc_depth=12, # encoder depth + enc_num_heads=12, # encoder number of heads in the transformer block + dec_embed_dim=512, # decoder feature dimension + dec_depth=8, # decoder depth + dec_num_heads=16, # decoder number of heads in the transformer block + mlp_ratio=4, + norm_layer=partial(nn.LayerNorm, eps=1e-6), + norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder + pos_embed="cosine", # positional embedding (either cosine or RoPE100) + ): + super(CroCoNet, self).__init__() + + # patch embeddings (with initialization done as in MAE) + self._set_patch_embed(img_size, patch_size, enc_embed_dim) + + # mask generations + self._set_mask_generator(self.patch_embed.num_patches, mask_ratio) + + self.pos_embed = pos_embed + if pos_embed == "cosine": + # positional embedding of the encoder + enc_pos_embed = get_2d_sincos_pos_embed( + enc_embed_dim, int(self.patch_embed.num_patches**0.5), n_cls_token=0 + ) + self.register_buffer( + "enc_pos_embed", torch.from_numpy(enc_pos_embed).float() + ) + # positional embedding of the decoder + dec_pos_embed = get_2d_sincos_pos_embed( + dec_embed_dim, int(self.patch_embed.num_patches**0.5), n_cls_token=0 + ) + self.register_buffer( + "dec_pos_embed", torch.from_numpy(dec_pos_embed).float() + ) + # pos embedding in each block + self.rope = None # nothing for cosine + elif pos_embed.startswith("RoPE"): # eg RoPE100 + self.enc_pos_embed = None # nothing to add in the encoder with RoPE + self.dec_pos_embed = None # nothing to add in the decoder with RoPE + if RoPE2D is None: + raise ImportError( + "Cannot find cuRoPE2D, please install it following the README instructions" + ) + freq = float(pos_embed[len("RoPE") :]) + self.rope = RoPE2D(freq=freq) + else: + raise NotImplementedError("Unknown pos_embed " + pos_embed) + + # transformer for the encoder + self.enc_depth = enc_depth + self.enc_embed_dim = enc_embed_dim + self.enc_blocks = nn.ModuleList( + [ + Block( + enc_embed_dim, + enc_num_heads, + mlp_ratio, + qkv_bias=True, + norm_layer=norm_layer, + rope=self.rope, + ) + for i in range(enc_depth) + ] + ) + self.enc_norm = norm_layer(enc_embed_dim) + + # masked tokens + self._set_mask_token(dec_embed_dim) + + # decoder + self._set_decoder( + enc_embed_dim, + dec_embed_dim, + dec_num_heads, + dec_depth, + mlp_ratio, + norm_layer, + norm_im2_in_dec, + ) + + # prediction head + self._set_prediction_head(dec_embed_dim, patch_size) + + # initializer weights + self.initialize_weights() + + def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): + self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim) + + def _set_mask_generator(self, num_patches, mask_ratio): + self.mask_generator = RandomMask(num_patches, mask_ratio) + + def _set_mask_token(self, dec_embed_dim): + self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim)) + + def _set_decoder( + self, + enc_embed_dim, + dec_embed_dim, + dec_num_heads, + dec_depth, + mlp_ratio, + norm_layer, + norm_im2_in_dec, + ): + self.dec_depth = dec_depth + self.dec_embed_dim = dec_embed_dim + # transfer from encoder to decoder + self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True) + # transformer for the decoder + self.dec_blocks = nn.ModuleList( + [ + DecoderBlock( + dec_embed_dim, + dec_num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=True, + norm_layer=norm_layer, + norm_mem=norm_im2_in_dec, + rope=self.rope, + ) + for i in range(dec_depth) + ] + ) + # final norm layer + self.dec_norm = norm_layer(dec_embed_dim) + + def _set_prediction_head(self, dec_embed_dim, patch_size): + self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True) + + def initialize_weights(self): + # patch embed + self.patch_embed._init_weights() + # mask tokens + if self.mask_token is not None: + torch.nn.init.normal_(self.mask_token, std=0.02) + # linears and layer norms + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + # we use xavier_uniform following official JAX ViT: + torch.nn.init.xavier_uniform_(m.weight) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def _encode_image(self, image, do_mask=False, return_all_blocks=False): + """ + image has B x 3 x img_size x img_size + do_mask: whether to perform masking or not + return_all_blocks: if True, return the features at the end of every block + instead of just the features from the last block (eg for some prediction heads) + """ + # embed the image into patches (x has size B x Npatches x C) + # and get position if each return patch (pos has size B x Npatches x 2) + x, pos = self.patch_embed(image) + # add positional embedding without cls token + if self.enc_pos_embed is not None: + x = x + self.enc_pos_embed[None, ...] + # apply masking + B, N, C = x.size() + if do_mask: + masks = self.mask_generator(x) + x = x[~masks].view(B, -1, C) + posvis = pos[~masks].view(B, -1, 2) + else: + B, N, C = x.size() + masks = torch.zeros((B, N), dtype=bool) + posvis = pos + # now apply the transformer encoder and normalization + if return_all_blocks: + out = [] + for blk in self.enc_blocks: + x = blk(x, posvis) + out.append(x) + out[-1] = self.enc_norm(out[-1]) + return out, pos, masks + else: + for blk in self.enc_blocks: + x = blk(x, posvis) + x = self.enc_norm(x) + return x, pos, masks + + def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False): + """ + return_all_blocks: if True, return the features at the end of every block + instead of just the features from the last block (eg for some prediction heads) + + masks1 can be None => assume image1 fully visible + """ + # encoder to decoder layer + visf1 = self.decoder_embed(feat1) + f2 = self.decoder_embed(feat2) + # append masked tokens to the sequence + B, Nenc, C = visf1.size() + if masks1 is None: # downstreams + f1_ = visf1 + else: # pretraining + Ntotal = masks1.size(1) + f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype) + f1_[~masks1] = visf1.view(B * Nenc, C) + # add positional embedding + if self.dec_pos_embed is not None: + f1_ = f1_ + self.dec_pos_embed + f2 = f2 + self.dec_pos_embed + # apply Transformer blocks + out = f1_ + out2 = f2 + if return_all_blocks: + _out, out = out, [] + for blk in self.dec_blocks: + _out, out2 = blk(_out, out2, pos1, pos2) + out.append(_out) + out[-1] = self.dec_norm(out[-1]) + else: + for blk in self.dec_blocks: + out, out2 = blk(out, out2, pos1, pos2) + out = self.dec_norm(out) + return out + + def patchify(self, imgs): + """ + imgs: (B, 3, H, W) + x: (B, L, patch_size**2 *3) + """ + p = self.patch_embed.patch_size[0] + assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0 + + h = w = imgs.shape[2] // p + x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p)) + x = torch.einsum("nchpwq->nhwpqc", x) + x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3)) + + return x + + def unpatchify(self, x, channels=3): + """ + x: (N, L, patch_size**2 *channels) + imgs: (N, 3, H, W) + """ + patch_size = self.patch_embed.patch_size[0] + h = w = int(x.shape[1] ** 0.5) + assert h * w == x.shape[1] + x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels)) + x = torch.einsum("nhwpqc->nchpwq", x) + imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size)) + return imgs + + def forward(self, img1, img2): + """ + img1: tensor of size B x 3 x img_size x img_size + img2: tensor of size B x 3 x img_size x img_size + + out will be B x N x (3*patch_size*patch_size) + masks are also returned as B x N just in case + """ + # encoder of the masked first image + feat1, pos1, mask1 = self._encode_image(img1, do_mask=True) + # encoder of the second image + feat2, pos2, _ = self._encode_image(img2, do_mask=False) + # decoder + decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2) + # prediction head + out = self.prediction_head(decfeat) + # get target + target = self.patchify(img1) + return out, mask1, target diff --git a/third_party/dust3r/croco/models/croco_downstream.py b/third_party/dust3r/croco/models/croco_downstream.py new file mode 100644 index 0000000000000000000000000000000000000000..39d263a09668ce89888f6667bd5fe7a9d3739e58 --- /dev/null +++ b/third_party/dust3r/croco/models/croco_downstream.py @@ -0,0 +1,139 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# CroCo model for downstream tasks +# -------------------------------------------------------- + +import torch + +from .croco import CroCoNet + + +def croco_args_from_ckpt(ckpt): + if "croco_kwargs" in ckpt: # CroCo v2 released models + return ckpt["croco_kwargs"] + elif "args" in ckpt and hasattr( + ckpt["args"], "model" + ): # pretrained using the official code release + s = ckpt[ + "args" + ].model # eg "CroCoNet(enc_embed_dim=1024, enc_num_heads=16, enc_depth=24)" + assert s.startswith("CroCoNet(") + return eval( + "dict" + s[len("CroCoNet") :] + ) # transform it into the string of a dictionary and evaluate it + else: # CroCo v1 released models + return dict() + + +class CroCoDownstreamMonocularEncoder(CroCoNet): + def __init__(self, head, **kwargs): + """Build network for monocular downstream task, only using the encoder. + It takes an extra argument head, that is called with the features + and a dictionary img_info containing 'width' and 'height' keys + The head is setup with the croconet arguments in this init function + NOTE: It works by *calling super().__init__() but with redefined setters + + """ + super(CroCoDownstreamMonocularEncoder, self).__init__(**kwargs) + head.setup(self) + self.head = head + + def _set_mask_generator(self, *args, **kwargs): + """No mask generator""" + return + + def _set_mask_token(self, *args, **kwargs): + """No mask token""" + self.mask_token = None + return + + def _set_decoder(self, *args, **kwargs): + """No decoder""" + return + + def _set_prediction_head(self, *args, **kwargs): + """No 'prediction head' for downstream tasks.""" + return + + def forward(self, img): + """ + img if of size batch_size x 3 x h x w + """ + B, C, H, W = img.size() + img_info = {"height": H, "width": W} + need_all_layers = ( + hasattr(self.head, "return_all_blocks") and self.head.return_all_blocks + ) + out, _, _ = self._encode_image( + img, do_mask=False, return_all_blocks=need_all_layers + ) + return self.head(out, img_info) + + +class CroCoDownstreamBinocular(CroCoNet): + def __init__(self, head, **kwargs): + """Build network for binocular downstream task + It takes an extra argument head, that is called with the features + and a dictionary img_info containing 'width' and 'height' keys + The head is setup with the croconet arguments in this init function + """ + super(CroCoDownstreamBinocular, self).__init__(**kwargs) + head.setup(self) + self.head = head + + def _set_mask_generator(self, *args, **kwargs): + """No mask generator""" + return + + def _set_mask_token(self, *args, **kwargs): + """No mask token""" + self.mask_token = None + return + + def _set_prediction_head(self, *args, **kwargs): + """No prediction head for downstream tasks, define your own head""" + return + + def encode_image_pairs(self, img1, img2, return_all_blocks=False): + """run encoder for a pair of images + it is actually ~5% faster to concatenate the images along the batch dimension + than to encode them separately + """ + ## the two commented lines below is the naive version with separate encoding + # out, pos, _ = self._encode_image(img1, do_mask=False, return_all_blocks=return_all_blocks) + # out2, pos2, _ = self._encode_image(img2, do_mask=False, return_all_blocks=False) + ## and now the faster version + out, pos, _ = self._encode_image( + torch.cat((img1, img2), dim=0), + do_mask=False, + return_all_blocks=return_all_blocks, + ) + if return_all_blocks: + out, out2 = list(map(list, zip(*[o.chunk(2, dim=0) for o in out]))) + out2 = out2[-1] + else: + out, out2 = out.chunk(2, dim=0) + pos, pos2 = pos.chunk(2, dim=0) + return out, out2, pos, pos2 + + def forward(self, img1, img2): + B, C, H, W = img1.size() + img_info = {"height": H, "width": W} + return_all_blocks = ( + hasattr(self.head, "return_all_blocks") and self.head.return_all_blocks + ) + out, out2, pos, pos2 = self.encode_image_pairs( + img1, img2, return_all_blocks=return_all_blocks + ) + if return_all_blocks: + decout = self._decoder( + out[-1], pos, None, out2, pos2, return_all_blocks=return_all_blocks + ) + decout = out + decout + else: + decout = self._decoder( + out, pos, None, out2, pos2, return_all_blocks=return_all_blocks + ) + return self.head(decout, img_info) diff --git a/third_party/dust3r/croco/models/curope/__init__.py b/third_party/dust3r/croco/models/curope/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..25e3d48a162760260826080f6366838e83e26878 --- /dev/null +++ b/third_party/dust3r/croco/models/curope/__init__.py @@ -0,0 +1,4 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from .curope2d import cuRoPE2D diff --git a/third_party/dust3r/croco/models/curope/curope.cpp b/third_party/dust3r/croco/models/curope/curope.cpp new file mode 100644 index 0000000000000000000000000000000000000000..8fe9058e05aa1bf3f37b0d970edc7312bc68455b --- /dev/null +++ b/third_party/dust3r/croco/models/curope/curope.cpp @@ -0,0 +1,69 @@ +/* + Copyright (C) 2022-present Naver Corporation. All rights reserved. + Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +*/ + +#include + +// forward declaration +void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ); + +void rope_2d_cpu( torch::Tensor tokens, const torch::Tensor positions, const float base, const float fwd ) +{ + const int B = tokens.size(0); + const int N = tokens.size(1); + const int H = tokens.size(2); + const int D = tokens.size(3) / 4; + + auto tok = tokens.accessor(); + auto pos = positions.accessor(); + + for (int b = 0; b < B; b++) { + for (int x = 0; x < 2; x++) { // y and then x (2d) + for (int n = 0; n < N; n++) { + + // grab the token position + const int p = pos[b][n][x]; + + for (int h = 0; h < H; h++) { + for (int d = 0; d < D; d++) { + // grab the two values + float u = tok[b][n][h][d+0+x*2*D]; + float v = tok[b][n][h][d+D+x*2*D]; + + // grab the cos,sin + const float inv_freq = fwd * p / powf(base, d/float(D)); + float c = cosf(inv_freq); + float s = sinf(inv_freq); + + // write the result + tok[b][n][h][d+0+x*2*D] = u*c - v*s; + tok[b][n][h][d+D+x*2*D] = v*c + u*s; + } + } + } + } + } +} + +void rope_2d( torch::Tensor tokens, // B,N,H,D + const torch::Tensor positions, // B,N,2 + const float base, + const float fwd ) +{ + TORCH_CHECK(tokens.dim() == 4, "tokens must have 4 dimensions"); + TORCH_CHECK(positions.dim() == 3, "positions must have 3 dimensions"); + TORCH_CHECK(tokens.size(0) == positions.size(0), "batch size differs between tokens & positions"); + TORCH_CHECK(tokens.size(1) == positions.size(1), "seq_length differs between tokens & positions"); + TORCH_CHECK(positions.size(2) == 2, "positions.shape[2] must be equal to 2"); + TORCH_CHECK(tokens.is_cuda() == positions.is_cuda(), "tokens and positions are not on the same device" ); + + if (tokens.is_cuda()) + rope_2d_cuda( tokens, positions, base, fwd ); + else + rope_2d_cpu( tokens, positions, base, fwd ); +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("rope_2d", &rope_2d, "RoPE 2d forward/backward"); +} diff --git a/third_party/dust3r/croco/models/curope/curope2d.py b/third_party/dust3r/croco/models/curope/curope2d.py new file mode 100644 index 0000000000000000000000000000000000000000..b7272b8f03977ab41204afda489df5dd920dad79 --- /dev/null +++ b/third_party/dust3r/croco/models/curope/curope2d.py @@ -0,0 +1,39 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +import torch + +try: + import curope as _kernels # run `python setup.py install` +except ModuleNotFoundError: + from . import curope as _kernels # run `python setup.py build_ext --inplace` + + +class cuRoPE2D_func(torch.autograd.Function): + @staticmethod + def forward(ctx, tokens, positions, base, F0=1): + ctx.save_for_backward(positions) + ctx.saved_base = base + ctx.saved_F0 = F0 + # tokens = tokens.clone() # uncomment this if inplace doesn't work + _kernels.rope_2d(tokens, positions, base, F0) + ctx.mark_dirty(tokens) + return tokens + + @staticmethod + def backward(ctx, grad_res): + positions, base, F0 = ctx.saved_tensors[0], ctx.saved_base, ctx.saved_F0 + _kernels.rope_2d(grad_res, positions, base, -F0) + ctx.mark_dirty(grad_res) + return grad_res, None, None, None + + +class cuRoPE2D(torch.nn.Module): + def __init__(self, freq=100.0, F0=1.0): + super().__init__() + self.base = freq + self.F0 = F0 + + def forward(self, tokens, positions): + cuRoPE2D_func.apply(tokens.transpose(1, 2), positions, self.base, self.F0) + return tokens diff --git a/third_party/dust3r/croco/models/curope/kernels.cu b/third_party/dust3r/croco/models/curope/kernels.cu new file mode 100644 index 0000000000000000000000000000000000000000..7156cd1bb935cb1f0be45e58add53f9c21505c20 --- /dev/null +++ b/third_party/dust3r/croco/models/curope/kernels.cu @@ -0,0 +1,108 @@ +/* + Copyright (C) 2022-present Naver Corporation. All rights reserved. + Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +*/ + +#include +#include +#include +#include + +#define CHECK_CUDA(tensor) {\ + TORCH_CHECK((tensor).is_cuda(), #tensor " is not in cuda memory"); \ + TORCH_CHECK((tensor).is_contiguous(), #tensor " is not contiguous"); } +void CHECK_KERNEL() {auto error = cudaGetLastError(); TORCH_CHECK( error == cudaSuccess, cudaGetErrorString(error));} + + +template < typename scalar_t > +__global__ void rope_2d_cuda_kernel( + //scalar_t* __restrict__ tokens, + torch::PackedTensorAccessor32 tokens, + const int64_t* __restrict__ pos, + const float base, + const float fwd ) + // const int N, const int H, const int D ) +{ + // tokens shape = (B, N, H, D) + const int N = tokens.size(1); + const int H = tokens.size(2); + const int D = tokens.size(3); + + // each block update a single token, for all heads + // each thread takes care of a single output + extern __shared__ float shared[]; + float* shared_inv_freq = shared + D; + + const int b = blockIdx.x / N; + const int n = blockIdx.x % N; + + const int Q = D / 4; + // one token = [0..Q : Q..2Q : 2Q..3Q : 3Q..D] + // u_Y v_Y u_X v_X + + // shared memory: first, compute inv_freq + if (threadIdx.x < Q) + shared_inv_freq[threadIdx.x] = fwd / powf(base, threadIdx.x/float(Q)); + __syncthreads(); + + // start of X or Y part + const int X = threadIdx.x < D/2 ? 0 : 1; + const int m = (X*D/2) + (threadIdx.x % Q); // index of u_Y or u_X + + // grab the cos,sin appropriate for me + const float freq = pos[blockIdx.x*2+X] * shared_inv_freq[threadIdx.x % Q]; + const float cos = cosf(freq); + const float sin = sinf(freq); + /* + float* shared_cos_sin = shared + D + D/4; + if ((threadIdx.x % (D/2)) < Q) + shared_cos_sin[m+0] = cosf(freq); + else + shared_cos_sin[m+Q] = sinf(freq); + __syncthreads(); + const float cos = shared_cos_sin[m+0]; + const float sin = shared_cos_sin[m+Q]; + */ + + for (int h = 0; h < H; h++) + { + // then, load all the token for this head in shared memory + shared[threadIdx.x] = tokens[b][n][h][threadIdx.x]; + __syncthreads(); + + const float u = shared[m]; + const float v = shared[m+Q]; + + // write output + if ((threadIdx.x % (D/2)) < Q) + tokens[b][n][h][threadIdx.x] = u*cos - v*sin; + else + tokens[b][n][h][threadIdx.x] = v*cos + u*sin; + } +} + +void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd ) +{ + const int B = tokens.size(0); // batch size + const int N = tokens.size(1); // sequence length + const int H = tokens.size(2); // number of heads + const int D = tokens.size(3); // dimension per head + + TORCH_CHECK(tokens.stride(3) == 1 && tokens.stride(2) == D, "tokens are not contiguous"); + TORCH_CHECK(pos.is_contiguous(), "positions are not contiguous"); + TORCH_CHECK(pos.size(0) == B && pos.size(1) == N && pos.size(2) == 2, "bad pos.shape"); + TORCH_CHECK(D % 4 == 0, "token dim must be multiple of 4"); + + // one block for each layer, one thread per local-max + const int THREADS_PER_BLOCK = D; + const int N_BLOCKS = B * N; // each block takes care of H*D values + const int SHARED_MEM = sizeof(float) * (D + D/4); + + AT_DISPATCH_FLOATING_TYPES_AND_HALF(tokens.type(), "rope_2d_cuda", ([&] { + rope_2d_cuda_kernel <<>> ( + //tokens.data_ptr(), + tokens.packed_accessor32(), + pos.data_ptr(), + base, fwd); //, N, H, D ); + })); +} diff --git a/third_party/dust3r/croco/models/curope/setup.py b/third_party/dust3r/croco/models/curope/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..02ddb0912370a67a49fd2bb91164cf2f1da8648e --- /dev/null +++ b/third_party/dust3r/croco/models/curope/setup.py @@ -0,0 +1,34 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +from setuptools import setup +from torch import cuda +from torch.utils.cpp_extension import BuildExtension, CUDAExtension + +# compile for all possible CUDA architectures +all_cuda_archs = cuda.get_gencode_flags().replace("compute=", "arch=").split() +# alternatively, you can list cuda archs that you want, eg: +# all_cuda_archs = [ +# '-gencode', 'arch=compute_70,code=sm_70', +# '-gencode', 'arch=compute_75,code=sm_75', +# '-gencode', 'arch=compute_80,code=sm_80', +# '-gencode', 'arch=compute_86,code=sm_86' +# ] + +setup( + name="curope", + ext_modules=[ + CUDAExtension( + name="curope", + sources=[ + "curope.cpp", + "kernels.cu", + ], + extra_compile_args=dict( + nvcc=["-O3", "--ptxas-options=-v", "--use_fast_math"] + all_cuda_archs, + cxx=["-O3"], + ), + ) + ], + cmdclass={"build_ext": BuildExtension}, +) diff --git a/third_party/dust3r/croco/models/dpt_block.py b/third_party/dust3r/croco/models/dpt_block.py new file mode 100644 index 0000000000000000000000000000000000000000..72541f0d716f7135d807d58d222d6b4b67472c5e --- /dev/null +++ b/third_party/dust3r/croco/models/dpt_block.py @@ -0,0 +1,514 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# DPT head for ViTs +# -------------------------------------------------------- +# References: +# https://github.com/isl-org/DPT +# https://github.com/EPFL-VILAB/MultiMAE/blob/main/multimae/output_adapters.py + +from typing import Dict, Iterable, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange, repeat + + +def pair(t): + return t if isinstance(t, tuple) else (t, t) + + +def make_scratch(in_shape, out_shape, groups=1, expand=False): + scratch = nn.Module() + + out_shape1 = out_shape + out_shape2 = out_shape + out_shape3 = out_shape + out_shape4 = out_shape + if expand == True: + out_shape1 = out_shape + out_shape2 = out_shape * 2 + out_shape3 = out_shape * 4 + out_shape4 = out_shape * 8 + + scratch.layer1_rn = nn.Conv2d( + in_shape[0], + out_shape1, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer2_rn = nn.Conv2d( + in_shape[1], + out_shape2, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer3_rn = nn.Conv2d( + in_shape[2], + out_shape3, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + scratch.layer4_rn = nn.Conv2d( + in_shape[3], + out_shape4, + kernel_size=3, + stride=1, + padding=1, + bias=False, + groups=groups, + ) + + scratch.layer_rn = nn.ModuleList( + [ + scratch.layer1_rn, + scratch.layer2_rn, + scratch.layer3_rn, + scratch.layer4_rn, + ] + ) + + return scratch + + +class ResidualConvUnit_custom(nn.Module): + """Residual convolution module.""" + + def __init__(self, features, activation, bn): + """Init. + Args: + features (int): number of features + """ + super().__init__() + + self.bn = bn + + self.groups = 1 + + self.conv1 = nn.Conv2d( + features, + features, + kernel_size=3, + stride=1, + padding=1, + bias=not self.bn, + groups=self.groups, + ) + + self.conv2 = nn.Conv2d( + features, + features, + kernel_size=3, + stride=1, + padding=1, + bias=not self.bn, + groups=self.groups, + ) + + if self.bn == True: + self.bn1 = nn.BatchNorm2d(features) + self.bn2 = nn.BatchNorm2d(features) + + self.activation = activation + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: output + """ + + out = self.activation(x) + out = self.conv1(out) + if self.bn == True: + out = self.bn1(out) + + out = self.activation(out) + out = self.conv2(out) + if self.bn == True: + out = self.bn2(out) + + if self.groups > 1: + out = self.conv_merge(out) + + return self.skip_add.add(out, x) + + +class FeatureFusionBlock_custom(nn.Module): + """Feature fusion block.""" + + def __init__( + self, + features, + activation, + deconv=False, + bn=False, + expand=False, + align_corners=True, + width_ratio=1, + ): + """Init. + Args: + features (int): number of features + """ + super(FeatureFusionBlock_custom, self).__init__() + self.width_ratio = width_ratio + + self.deconv = deconv + self.align_corners = align_corners + + self.groups = 1 + + self.expand = expand + out_features = features + if self.expand == True: + out_features = features // 2 + + self.out_conv = nn.Conv2d( + features, + out_features, + kernel_size=1, + stride=1, + padding=0, + bias=True, + groups=1, + ) + + self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) + self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, *xs): + """Forward pass. + Returns: + tensor: output + """ + output = xs[0] + + if len(xs) == 2: + res = self.resConfUnit1(xs[1]) + if self.width_ratio != 1: + res = F.interpolate( + res, size=(output.shape[2], output.shape[3]), mode="bilinear" + ) + + output = self.skip_add.add(output, res) + # output += res + + output = self.resConfUnit2(output) + + if self.width_ratio != 1: + # and output.shape[3] < self.width_ratio * output.shape[2] + # size=(image.shape[]) + if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio: + shape = 3 * output.shape[3] + else: + shape = int(self.width_ratio * 2 * output.shape[2]) + output = F.interpolate( + output, size=(2 * output.shape[2], shape), mode="bilinear" + ) + else: + output = nn.functional.interpolate( + output, + scale_factor=2, + mode="bilinear", + align_corners=self.align_corners, + ) + output = self.out_conv(output) + return output + + +def make_fusion_block(features, use_bn, width_ratio=1): + return FeatureFusionBlock_custom( + features, + nn.ReLU(False), + deconv=False, + bn=use_bn, + expand=False, + align_corners=True, + width_ratio=width_ratio, + ) + + +class Interpolate(nn.Module): + """Interpolation module.""" + + def __init__(self, scale_factor, mode, align_corners=False): + """Init. + Args: + scale_factor (float): scaling + mode (str): interpolation mode + """ + super(Interpolate, self).__init__() + + self.interp = nn.functional.interpolate + self.scale_factor = scale_factor + self.mode = mode + self.align_corners = align_corners + + def forward(self, x): + """Forward pass. + Args: + x (tensor): input + Returns: + tensor: interpolated data + """ + + x = self.interp( + x, + scale_factor=self.scale_factor, + mode=self.mode, + align_corners=self.align_corners, + ) + + return x + + +class DPTOutputAdapter(nn.Module): + """DPT output adapter. + + :param num_cahnnels: Number of output channels + :param stride_level: tride level compared to the full-sized image. + E.g. 4 for 1/4th the size of the image. + :param patch_size_full: Int or tuple of the patch size over the full image size. + Patch size for smaller inputs will be computed accordingly. + :param hooks: Index of intermediate layers + :param layer_dims: Dimension of intermediate layers + :param feature_dim: Feature dimension + :param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression + :param use_bn: If set to True, activates batch norm + :param dim_tokens_enc: Dimension of tokens coming from encoder + """ + + def __init__( + self, + num_channels: int = 1, + stride_level: int = 1, + patch_size: Union[int, Tuple[int, int]] = 16, + main_tasks: Iterable[str] = ("rgb",), + hooks: List[int] = [2, 5, 8, 11], + layer_dims: List[int] = [96, 192, 384, 768], + feature_dim: int = 256, + last_dim: int = 32, + use_bn: bool = False, + dim_tokens_enc: Optional[int] = None, + head_type: str = "regression", + output_width_ratio=1, + **kwargs + ): + super().__init__() + self.num_channels = num_channels + self.stride_level = stride_level + self.patch_size = pair(patch_size) + self.main_tasks = main_tasks + self.hooks = hooks + self.layer_dims = layer_dims + self.feature_dim = feature_dim + self.dim_tokens_enc = ( + dim_tokens_enc * len(self.main_tasks) + if dim_tokens_enc is not None + else None + ) + self.head_type = head_type + + # Actual patch height and width, taking into account stride of input + self.P_H = max(1, self.patch_size[0] // stride_level) + self.P_W = max(1, self.patch_size[1] // stride_level) + + self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False) + + self.scratch.refinenet1 = make_fusion_block( + feature_dim, use_bn, output_width_ratio + ) + self.scratch.refinenet2 = make_fusion_block( + feature_dim, use_bn, output_width_ratio + ) + self.scratch.refinenet3 = make_fusion_block( + feature_dim, use_bn, output_width_ratio + ) + self.scratch.refinenet4 = make_fusion_block( + feature_dim, use_bn, output_width_ratio + ) + + if self.head_type == "regression": + # The "DPTDepthModel" head + self.head = nn.Sequential( + nn.Conv2d( + feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1 + ), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + nn.Conv2d( + feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1 + ), + nn.ReLU(True), + nn.Conv2d( + last_dim, self.num_channels, kernel_size=1, stride=1, padding=0 + ), + ) + elif self.head_type == "semseg": + # The "DPTSegmentationModel" head + self.head = nn.Sequential( + nn.Conv2d( + feature_dim, feature_dim, kernel_size=3, padding=1, bias=False + ), + nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(), + nn.ReLU(True), + nn.Dropout(0.1, False), + nn.Conv2d(feature_dim, self.num_channels, kernel_size=1), + Interpolate(scale_factor=2, mode="bilinear", align_corners=True), + ) + else: + raise ValueError('DPT head_type must be "regression" or "semseg".') + + if self.dim_tokens_enc is not None: + self.init(dim_tokens_enc=dim_tokens_enc) + + def init(self, dim_tokens_enc=768): + """ + Initialize parts of decoder that are dependent on dimension of encoder tokens. + Should be called when setting up MultiMAE. + + :param dim_tokens_enc: Dimension of tokens coming from encoder + """ + # print(dim_tokens_enc) + + # Set up activation postprocessing layers + if isinstance(dim_tokens_enc, int): + dim_tokens_enc = 4 * [dim_tokens_enc] + + self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc] + + self.act_1_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[0], + out_channels=self.layer_dims[0], + kernel_size=1, + stride=1, + padding=0, + ), + nn.ConvTranspose2d( + in_channels=self.layer_dims[0], + out_channels=self.layer_dims[0], + kernel_size=4, + stride=4, + padding=0, + bias=True, + dilation=1, + groups=1, + ), + ) + + self.act_2_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[1], + out_channels=self.layer_dims[1], + kernel_size=1, + stride=1, + padding=0, + ), + nn.ConvTranspose2d( + in_channels=self.layer_dims[1], + out_channels=self.layer_dims[1], + kernel_size=2, + stride=2, + padding=0, + bias=True, + dilation=1, + groups=1, + ), + ) + + self.act_3_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[2], + out_channels=self.layer_dims[2], + kernel_size=1, + stride=1, + padding=0, + ) + ) + + self.act_4_postprocess = nn.Sequential( + nn.Conv2d( + in_channels=self.dim_tokens_enc[3], + out_channels=self.layer_dims[3], + kernel_size=1, + stride=1, + padding=0, + ), + nn.Conv2d( + in_channels=self.layer_dims[3], + out_channels=self.layer_dims[3], + kernel_size=3, + stride=2, + padding=1, + ), + ) + + self.act_postprocess = nn.ModuleList( + [ + self.act_1_postprocess, + self.act_2_postprocess, + self.act_3_postprocess, + self.act_4_postprocess, + ] + ) + + def adapt_tokens(self, encoder_tokens): + # Adapt tokens + x = [] + x.append(encoder_tokens[:, :]) + x = torch.cat(x, dim=-1) + return x + + def forward(self, encoder_tokens: List[torch.Tensor], image_size): + # input_info: Dict): + assert ( + self.dim_tokens_enc is not None + ), "Need to call init(dim_tokens_enc) function first" + H, W = image_size + + # Number of patches in height and width + N_H = H // (self.stride_level * self.P_H) + N_W = W // (self.stride_level * self.P_W) + + # Hook decoder onto 4 layers from specified ViT layers + layers = [encoder_tokens[hook] for hook in self.hooks] + + # Extract only task-relevant tokens and ignore global tokens. + layers = [self.adapt_tokens(l) for l in layers] + + # Reshape tokens to spatial representation + layers = [ + rearrange(l, "b (nh nw) c -> b c nh nw", nh=N_H, nw=N_W) for l in layers + ] + + layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] + # Project layers to chosen feature dim + layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] + + # Fuse layers using refinement stages + path_4 = self.scratch.refinenet4(layers[3]) + path_3 = self.scratch.refinenet3(path_4, layers[2]) + path_2 = self.scratch.refinenet2(path_3, layers[1]) + path_1 = self.scratch.refinenet1(path_2, layers[0]) + + # Output head + out = self.head(path_1) + + return out diff --git a/third_party/dust3r/croco/models/head_downstream.py b/third_party/dust3r/croco/models/head_downstream.py new file mode 100644 index 0000000000000000000000000000000000000000..27ac74095240822a69b01967386855946a3781c7 --- /dev/null +++ b/third_party/dust3r/croco/models/head_downstream.py @@ -0,0 +1,82 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Heads for downstream tasks +# -------------------------------------------------------- + +""" +A head is a module where the __init__ defines only the head hyperparameters. +A method setup(croconet) takes a CroCoNet and set all layers according to the head and croconet attributes. +The forward takes the features as well as a dictionary img_info containing the keys 'width' and 'height' +""" + +import torch +import torch.nn as nn + +from .dpt_block import DPTOutputAdapter + + +class PixelwiseTaskWithDPT(nn.Module): + """DPT module for CroCo. + by default, hooks_idx will be equal to: + * for encoder-only: 4 equally spread layers + * for encoder+decoder: last encoder + 3 equally spread layers of the decoder + """ + + def __init__( + self, + *, + hooks_idx=None, + layer_dims=[96, 192, 384, 768], + output_width_ratio=1, + num_channels=1, + postprocess=None, + **kwargs, + ): + super(PixelwiseTaskWithDPT, self).__init__() + self.return_all_blocks = True # backbone needs to return all layers + self.postprocess = postprocess + self.output_width_ratio = output_width_ratio + self.num_channels = num_channels + self.hooks_idx = hooks_idx + self.layer_dims = layer_dims + + def setup(self, croconet): + dpt_args = { + "output_width_ratio": self.output_width_ratio, + "num_channels": self.num_channels, + } + if self.hooks_idx is None: + if hasattr(croconet, "dec_blocks"): # encoder + decoder + step = {8: 3, 12: 4, 24: 8}[croconet.dec_depth] + hooks_idx = [ + croconet.dec_depth + croconet.enc_depth - 1 - i * step + for i in range(3, -1, -1) + ] + else: # encoder only + step = croconet.enc_depth // 4 + hooks_idx = [ + croconet.enc_depth - 1 - i * step for i in range(3, -1, -1) + ] + self.hooks_idx = hooks_idx + print( + f" PixelwiseTaskWithDPT: automatically setting hook_idxs={self.hooks_idx}" + ) + dpt_args["hooks"] = self.hooks_idx + dpt_args["layer_dims"] = self.layer_dims + self.dpt = DPTOutputAdapter(**dpt_args) + dim_tokens = [ + croconet.enc_embed_dim + if hook < croconet.enc_depth + else croconet.dec_embed_dim + for hook in self.hooks_idx + ] + dpt_init_args = {"dim_tokens_enc": dim_tokens} + self.dpt.init(**dpt_init_args) + + def forward(self, x, img_info): + out = self.dpt(x, image_size=(img_info["height"], img_info["width"])) + if self.postprocess: + out = self.postprocess(out) + return out diff --git a/third_party/dust3r/croco/models/masking.py b/third_party/dust3r/croco/models/masking.py new file mode 100644 index 0000000000000000000000000000000000000000..ae18f927ae82e4075c2246ce722007c69a4da344 --- /dev/null +++ b/third_party/dust3r/croco/models/masking.py @@ -0,0 +1,26 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# Masking utils +# -------------------------------------------------------- + +import torch +import torch.nn as nn + + +class RandomMask(nn.Module): + """ + random masking + """ + + def __init__(self, num_patches, mask_ratio): + super().__init__() + self.num_patches = num_patches + self.num_mask = int(mask_ratio * self.num_patches) + + def __call__(self, x): + noise = torch.rand(x.size(0), self.num_patches, device=x.device) + argsort = torch.argsort(noise, dim=1) + return argsort < self.num_mask diff --git a/third_party/dust3r/croco/models/pos_embed.py b/third_party/dust3r/croco/models/pos_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..a6d7e19babdd4e0b69156c32a2b7dafbd6f0cbe8 --- /dev/null +++ b/third_party/dust3r/croco/models/pos_embed.py @@ -0,0 +1,177 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + + +# -------------------------------------------------------- +# Position embedding utils +# -------------------------------------------------------- + + +import numpy as np +import torch + + +# -------------------------------------------------------- +# 2D sine-cosine position embedding +# References: +# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py +# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py +# MoCo v3: https://github.com/facebookresearch/moco-v3 +# -------------------------------------------------------- +def get_2d_sincos_pos_embed(embed_dim, grid_size, n_cls_token=0): + """ + grid_size: int of the grid height and width + return: + pos_embed: [grid_size*grid_size, embed_dim] or [n_cls_token+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) + """ + grid_h = np.arange(grid_size, dtype=np.float32) + grid_w = np.arange(grid_size, dtype=np.float32) + grid = np.meshgrid(grid_w, grid_h) # here w goes first + grid = np.stack(grid, axis=0) + + grid = grid.reshape([2, 1, grid_size, grid_size]) + pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) + if n_cls_token > 0: + pos_embed = np.concatenate( + [np.zeros([n_cls_token, embed_dim]), pos_embed], axis=0 + ) + return pos_embed + + +def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): + assert embed_dim % 2 == 0 + + # use half of dimensions to encode grid_h + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) + + emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position + pos: a list of positions to be encoded: size (M,) + out: (M, D) + """ + assert embed_dim % 2 == 0 + omega = np.arange(embed_dim // 2, dtype=float) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000**omega # (D/2,) + + pos = pos.reshape(-1) # (M,) + out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) + return emb + + +# -------------------------------------------------------- +# Interpolate position embeddings for high-resolution +# References: +# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py +# DeiT: https://github.com/facebookresearch/deit +# -------------------------------------------------------- +def interpolate_pos_embed(model, checkpoint_model): + if "pos_embed" in checkpoint_model: + pos_embed_checkpoint = checkpoint_model["pos_embed"] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.patch_embed.num_patches + num_extra_tokens = model.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches**0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print( + "Position interpolate from %dx%d to %dx%d" + % (orig_size, orig_size, new_size, new_size) + ) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape( + -1, orig_size, orig_size, embedding_size + ).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, + size=(new_size, new_size), + mode="bicubic", + align_corners=False, + ) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + checkpoint_model["pos_embed"] = new_pos_embed + + +# ---------------------------------------------------------- +# RoPE2D: RoPE implementation in 2D +# ---------------------------------------------------------- + +try: + from models.curope import cuRoPE2D + + RoPE2D = cuRoPE2D +except ImportError: + print( + "Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead" + ) + + class RoPE2D(torch.nn.Module): + def __init__(self, freq=100.0, F0=1.0): + super().__init__() + self.base = freq + self.F0 = F0 + self.cache = {} + + def get_cos_sin(self, D, seq_len, device, dtype): + if (D, seq_len, device, dtype) not in self.cache: + inv_freq = 1.0 / ( + self.base ** (torch.arange(0, D, 2).float().to(device) / D) + ) + t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) + freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) + freqs = torch.cat((freqs, freqs), dim=-1) + cos = freqs.cos() # (Seq, Dim) + sin = freqs.sin() + self.cache[D, seq_len, device, dtype] = (cos, sin) + return self.cache[D, seq_len, device, dtype] + + @staticmethod + def rotate_half(x): + x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + def apply_rope1d(self, tokens, pos1d, cos, sin): + assert pos1d.ndim == 2 + cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] + sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] + return (tokens * cos) + (self.rotate_half(tokens) * sin) + + def forward(self, tokens, positions): + """ + input: + * tokens: batch_size x nheads x ntokens x dim + * positions: batch_size x ntokens x 2 (y and x position of each token) + output: + * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) + """ + assert ( + tokens.size(3) % 2 == 0 + ), "number of dimensions should be a multiple of two" + D = tokens.size(3) // 2 + assert positions.ndim == 3 and positions.shape[-1] == 2 # Batch, Seq, 2 + cos, sin = self.get_cos_sin( + D, int(positions.max()) + 1, tokens.device, tokens.dtype + ) + # split features into two along the feature dimension, and apply rope1d on each half + y, x = tokens.chunk(2, dim=-1) + y = self.apply_rope1d(y, positions[:, :, 0], cos, sin) + x = self.apply_rope1d(x, positions[:, :, 1], cos, sin) + tokens = torch.cat((y, x), dim=-1) + return tokens diff --git a/third_party/dust3r/croco/pretrain.py b/third_party/dust3r/croco/pretrain.py new file mode 100644 index 0000000000000000000000000000000000000000..111f72148bdbdc1f00be89c169745e2df1792c94 --- /dev/null +++ b/third_party/dust3r/croco/pretrain.py @@ -0,0 +1,389 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Pre-training CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import math +import os +import sys +import time +from pathlib import Path +from typing import Iterable + +import numpy as np +import torch +import torch.backends.cudnn as cudnn +import torch.distributed as dist +import torchvision.datasets as datasets +import torchvision.transforms as transforms +import utils.misc as misc +from datasets.pairs_dataset import PairsDataset +from models.criterion import MaskedMSE +from models.croco import CroCoNet +from torch.utils.tensorboard import SummaryWriter +from utils.misc import NativeScalerWithGradNormCount as NativeScaler + + +def get_args_parser(): + parser = argparse.ArgumentParser("CroCo pre-training", add_help=False) + # model and criterion + parser.add_argument( + "--model", + default="CroCoNet()", + type=str, + help="string containing the model to build", + ) + parser.add_argument( + "--norm_pix_loss", + default=1, + choices=[0, 1], + help="apply per-patch mean/std normalization before applying the loss", + ) + # dataset + parser.add_argument( + "--dataset", default="habitat_release", type=str, help="training set" + ) + parser.add_argument( + "--transforms", default="crop224+acolor", type=str, help="transforms to apply" + ) # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful + # training + parser.add_argument("--seed", default=0, type=int, help="Random seed") + parser.add_argument( + "--batch_size", + default=64, + type=int, + help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus", + ) + parser.add_argument( + "--epochs", + default=800, + type=int, + help="Maximum number of epochs for the scheduler", + ) + parser.add_argument( + "--max_epoch", default=400, type=int, help="Stop training at this epoch" + ) + parser.add_argument( + "--accum_iter", + default=1, + type=int, + help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)", + ) + parser.add_argument( + "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" + ) + parser.add_argument( + "--lr", + type=float, + default=None, + metavar="LR", + help="learning rate (absolute lr)", + ) + parser.add_argument( + "--blr", + type=float, + default=1.5e-4, + metavar="LR", + help="base learning rate: absolute_lr = base_lr * total_batch_size / 256", + ) + parser.add_argument( + "--min_lr", + type=float, + default=0.0, + metavar="LR", + help="lower lr bound for cyclic schedulers that hit 0", + ) + parser.add_argument( + "--warmup_epochs", type=int, default=40, metavar="N", help="epochs to warmup LR" + ) + parser.add_argument( + "--amp", + type=int, + default=1, + choices=[0, 1], + help="Use Automatic Mixed Precision for pretraining", + ) + # others + parser.add_argument("--num_workers", default=8, type=int) + parser.add_argument( + "--world_size", default=1, type=int, help="number of distributed processes" + ) + parser.add_argument("--local_rank", default=-1, type=int) + parser.add_argument( + "--dist_url", default="env://", help="url used to set up distributed training" + ) + parser.add_argument( + "--save_freq", + default=1, + type=int, + help="frequence (number of epochs) to save checkpoint in checkpoint-last.pth", + ) + parser.add_argument( + "--keep_freq", + default=20, + type=int, + help="frequence (number of epochs) to save checkpoint in checkpoint-%d.pth", + ) + parser.add_argument( + "--print_freq", + default=20, + type=int, + help="frequence (number of iterations) to print infos while training", + ) + # paths + parser.add_argument( + "--output_dir", + default="./output/", + type=str, + help="path where to save the output", + ) + parser.add_argument( + "--data_dir", default="./data/", type=str, help="path where data are stored" + ) + return parser + + +def main(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + world_size = misc.get_world_size() + + print("output_dir: " + args.output_dir) + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + + # auto resume + last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth") + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(", ", ",\n")) + + device = "cuda" if torch.cuda.is_available() else "cpu" + device = torch.device(device) + + # fix the seed + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = True + + ## training dataset and loader + print( + "Building dataset for {:s} with transforms {:s}".format( + args.dataset, args.transforms + ) + ) + dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir) + if world_size > 1: + sampler_train = torch.utils.data.DistributedSampler( + dataset, num_replicas=world_size, rank=global_rank, shuffle=True + ) + print("Sampler_train = %s" % str(sampler_train)) + else: + sampler_train = torch.utils.data.RandomSampler(dataset) + data_loader_train = torch.utils.data.DataLoader( + dataset, + sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=True, + drop_last=True, + ) + + ## model + print("Loading model: {:s}".format(args.model)) + model = eval(args.model) + print( + "Loading criterion: MaskedMSE(norm_pix_loss={:s})".format( + str(bool(args.norm_pix_loss)) + ) + ) + criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss)) + + model.to(device) + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True + ) + model_without_ddp = model.module + + param_groups = misc.get_parameter_groups( + model_without_ddp, args.weight_decay + ) # following timm: set wd as 0 for bias and norm layers + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + misc.load_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + ) + + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir) + else: + log_writer = None + + print(f"Start training until {args.max_epoch} epochs") + start_time = time.time() + for epoch in range(args.start_epoch, args.max_epoch): + if world_size > 1: + data_loader_train.sampler.set_epoch(epoch) + + train_stats = train_one_epoch( + model, + criterion, + data_loader_train, + optimizer, + device, + epoch, + loss_scaler, + log_writer=log_writer, + args=args, + ) + + if args.output_dir and epoch % args.save_freq == 0: + misc.save_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + epoch=epoch, + fname="last", + ) + + if ( + args.output_dir + and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch) + and (epoch > 0 or args.max_epoch == 1) + ): + misc.save_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + epoch=epoch, + ) + + log_stats = { + **{f"train_{k}": v for k, v in train_stats.items()}, + "epoch": epoch, + } + + if args.output_dir and misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + with open( + os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" + ) as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print("Training time {}".format(total_time_str)) + + +def train_one_epoch( + model: torch.nn.Module, + criterion: torch.nn.Module, + data_loader: Iterable, + optimizer: torch.optim.Optimizer, + device: torch.device, + epoch: int, + loss_scaler, + log_writer=None, + args=None, +): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")) + header = "Epoch: [{}]".format(epoch) + accum_iter = args.accum_iter + + optimizer.zero_grad() + + if log_writer is not None: + print("log_dir: {}".format(log_writer.log_dir)) + + for data_iter_step, (image1, image2) in enumerate( + metric_logger.log_every(data_loader, args.print_freq, header) + ): + # we use a per iteration lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate( + optimizer, data_iter_step / len(data_loader) + epoch, args + ) + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + with torch.cuda.amp.autocast(enabled=bool(args.amp)): + out, mask, target = model(image1, image2) + loss = criterion(out, mask, target) + + loss_value = loss.item() + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler( + loss, + optimizer, + parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0, + ) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + loss_value_reduce = misc.all_reduce_mean(loss_value) + if ( + log_writer is not None + and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0 + ): + # x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes + epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) + log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x) + log_writer.add_scalar("lr", lr, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +if __name__ == "__main__": + args = get_args_parser() + args = args.parse_args() + main(args) diff --git a/third_party/dust3r/croco/stereoflow/README.MD b/third_party/dust3r/croco/stereoflow/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..81595380fadd274b523e0cf77921b1b65cbedb34 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/README.MD @@ -0,0 +1,318 @@ +## CroCo-Stereo and CroCo-Flow + +This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. +All commands should be launched from the root directory. + +### Simple inference example + +We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`. +Before running it, please download the trained models with: +``` +bash stereoflow/download_model.sh crocostereo.pth +bash stereoflow/download_model.sh crocoflow.pth +``` + +### Prepare data for training or evaluation + +Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`). +Please find below on the file structure should look for each dataset: +

+FlyingChairs + +``` +./data/stereoflow/FlyingChairs/ +└───chairs_split.txt +└───data/ + └─── ... +``` +
+ +
+MPI-Sintel + +``` +./data/stereoflow/MPI-Sintel/ +└───training/ +│ └───clean/ +│ └───final/ +│ └───flow/ +└───test/ + └───clean/ + └───final/ +``` +
+ +
+SceneFlow (including FlyingThings) + +``` +./data/stereoflow/SceneFlow/ +└───Driving/ +│ └───disparity/ +│ └───frames_cleanpass/ +│ └───frames_finalpass/ +└───FlyingThings/ +│ └───disparity/ +│ └───frames_cleanpass/ +│ └───frames_finalpass/ +│ └───optical_flow/ +└───Monkaa/ + └───disparity/ + └───frames_cleanpass/ + └───frames_finalpass/ +``` +
+ +
+TartanAir + +``` +./data/stereoflow/TartanAir/ +└───abandonedfactory/ +│ └───.../ +└───abandonedfactory_night/ +│ └───.../ +└───.../ +``` +
+ +
+Booster + +``` +./data/stereoflow/booster_gt/ +└───train/ + └───balanced/ + └───Bathroom/ + └───Bedroom/ + └───... +``` +
+ +
+CREStereo + +``` +./data/stereoflow/crenet_stereo_trainset/ +└───stereo_trainset/ + └───crestereo/ + └───hole/ + └───reflective/ + └───shapenet/ + └───tree/ +``` +
+ +
+ETH3D Two-view Low-res + +``` +./data/stereoflow/eth3d_lowres/ +└───test/ +│ └───lakeside_1l/ +│ └───... +└───train/ +│ └───delivery_area_1l/ +│ └───... +└───train_gt/ + └───delivery_area_1l/ + └───... +``` +
+ +
+KITTI 2012 + +``` +./data/stereoflow/kitti-stereo-2012/ +└───testing/ +│ └───colored_0/ +│ └───colored_1/ +└───training/ + └───colored_0/ + └───colored_1/ + └───disp_occ/ + └───flow_occ/ +``` +
+ +
+KITTI 2015 + +``` +./data/stereoflow/kitti-stereo-2015/ +└───testing/ +│ └───image_2/ +│ └───image_3/ +└───training/ + └───image_2/ + └───image_3/ + └───disp_occ_0/ + └───flow_occ/ +``` +
+ +
+Middlebury + +``` +./data/stereoflow/middlebury +└───2005/ +│ └───train/ +│ └───Art/ +│ └───... +└───2006/ +│ └───Aloe/ +│ └───Baby1/ +│ └───... +└───2014/ +│ └───Adirondack-imperfect/ +│ └───Adirondack-perfect/ +│ └───... +└───2021/ +│ └───data/ +│ └───artroom1/ +│ └───artroom2/ +│ └───... +└───MiddEval3_F/ + └───test/ + │ └───Australia/ + │ └───... + └───train/ + └───Adirondack/ + └───... +``` +
+ +
+Spring + +``` +./data/stereoflow/spring/ +└───test/ +│ └───0003/ +│ └───... +└───train/ + └───0001/ + └───... +``` +
+ + +### CroCo-Stereo + +##### Main model + +The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark. + +``` +# Download the model +bash stereoflow/download_model.sh crocostereo.pth +# Middlebury v3 submission +python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9 +# Training command that was used, using checkpoint-last.pth +python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ +# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus: +torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ +``` + +For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets. + +``` +# Download the model +bash stereoflow/download_model.sh crocostereo_subtrain.pth +# Evaluation on validation sets +python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9 +# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus +python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/ +``` + +##### Other models + +
+ Model for ETH3D + The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss. + + # Download the model + bash stereoflow/download_model.sh crocostereo_eth3d.pth + # ETH3D submission + python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9 + # Training command that was used + python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/ + +
+ +
+ Main model finetuned on Kitti + + # Download the model + bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth + # Kitti submission + python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9 + # Training that was used + python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5 +
+ +
+ Main model finetuned on Spring + + # Download the model + bash stereoflow/download_model.sh crocostereo_finetune_spring.pth + # Spring submission + python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 + # Training command that was used + python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/ +
+ +
+ Smaller models + To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the --pretrained argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth. +
+ + +### CroCo-Flow + +##### Main model + +The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. +It was used for our submission to the MPI-Sintel benchmark. + +``` +# Download the model +bash stereoflow/download_model.sh crocoflow.pth +# Evaluation +python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9 +# Sintel submission +python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9 +# Training command that was used, with checkpoint-best.pth +python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/ +``` + +##### Other models + +
+ Main model finetuned on Kitti + + # Download the model + bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth + # Kitti submission + python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99 + # Training that was used, with checkpoint-last.pth + python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/ +
+ +
+ Main model finetuned on Spring + + # Download the model + bash stereoflow/download_model.sh crocoflow_finetune_spring.pth + # Spring submission + python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 + # Training command that was used, with checkpoint-last.pth + python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/ +
+ +
+ Smaller models + To train CroCo-Flow with smaller CroCo pretrained models, simply replace the --pretrained argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth. +
diff --git a/third_party/dust3r/croco/stereoflow/augmentor.py b/third_party/dust3r/croco/stereoflow/augmentor.py new file mode 100644 index 0000000000000000000000000000000000000000..c418525739bf61f6395c087dcbbb57302ea7c0c0 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/augmentor.py @@ -0,0 +1,388 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Data augmentation for training stereo and flow +# -------------------------------------------------------- + +# References +# https://github.com/autonomousvision/unimatch/blob/master/dataloader/stereo/transforms.py +# https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/transforms.py + + +import random + +import cv2 +import numpy as np +from PIL import Image + +cv2.setNumThreads(0) +cv2.ocl.setUseOpenCL(False) + +import torch +import torchvision.transforms.functional as FF +from torchvision.transforms import ColorJitter + + +class StereoAugmentor(object): + def __init__( + self, + crop_size, + scale_prob=0.5, + scale_xonly=True, + lhth=800.0, + lminscale=0.0, + lmaxscale=1.0, + hminscale=-0.2, + hmaxscale=0.4, + scale_interp_nearest=True, + rightjitterprob=0.5, + v_flip_prob=0.5, + color_aug_asym=True, + color_choice_prob=0.5, + ): + self.crop_size = crop_size + self.scale_prob = scale_prob + self.scale_xonly = scale_xonly + self.lhth = lhth + self.lminscale = lminscale + self.lmaxscale = lmaxscale + self.hminscale = hminscale + self.hmaxscale = hmaxscale + self.scale_interp_nearest = scale_interp_nearest + self.rightjitterprob = rightjitterprob + self.v_flip_prob = v_flip_prob + self.color_aug_asym = color_aug_asym + self.color_choice_prob = color_choice_prob + + def _random_scale(self, img1, img2, disp): + ch, cw = self.crop_size + h, w = img1.shape[:2] + if self.scale_prob > 0.0 and np.random.rand() < self.scale_prob: + min_scale, max_scale = ( + (self.lminscale, self.lmaxscale) + if min(h, w) < self.lhth + else (self.hminscale, self.hmaxscale) + ) + scale_x = 2.0 ** np.random.uniform(min_scale, max_scale) + scale_x = np.clip(scale_x, (cw + 8) / float(w), None) + scale_y = 1.0 + if not self.scale_xonly: + scale_y = scale_x + scale_y = np.clip(scale_y, (ch + 8) / float(h), None) + img1 = cv2.resize( + img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR + ) + img2 = cv2.resize( + img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR + ) + disp = ( + cv2.resize( + disp, + None, + fx=scale_x, + fy=scale_y, + interpolation=cv2.INTER_LINEAR + if not self.scale_interp_nearest + else cv2.INTER_NEAREST, + ) + * scale_x + ) + else: # check if we need to resize to be able to crop + h, w = img1.shape[:2] + clip_scale = (cw + 8) / float(w) + if clip_scale > 1.0: + scale_x = clip_scale + scale_y = scale_x if not self.scale_xonly else 1.0 + img1 = cv2.resize( + img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR + ) + img2 = cv2.resize( + img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR + ) + disp = ( + cv2.resize( + disp, + None, + fx=scale_x, + fy=scale_y, + interpolation=cv2.INTER_LINEAR + if not self.scale_interp_nearest + else cv2.INTER_NEAREST, + ) + * scale_x + ) + return img1, img2, disp + + def _random_crop(self, img1, img2, disp): + h, w = img1.shape[:2] + ch, cw = self.crop_size + assert ch <= h and cw <= w, (img1.shape, h, w, ch, cw) + offset_x = np.random.randint(w - cw + 1) + offset_y = np.random.randint(h - ch + 1) + img1 = img1[offset_y : offset_y + ch, offset_x : offset_x + cw] + img2 = img2[offset_y : offset_y + ch, offset_x : offset_x + cw] + disp = disp[offset_y : offset_y + ch, offset_x : offset_x + cw] + return img1, img2, disp + + def _random_vflip(self, img1, img2, disp): + # vertical flip + if self.v_flip_prob > 0 and np.random.rand() < self.v_flip_prob: + img1 = np.copy(np.flipud(img1)) + img2 = np.copy(np.flipud(img2)) + disp = np.copy(np.flipud(disp)) + return img1, img2, disp + + def _random_rotate_shift_right(self, img2): + if self.rightjitterprob > 0.0 and np.random.rand() < self.rightjitterprob: + angle, pixel = 0.1, 2 + px = np.random.uniform(-pixel, pixel) + ag = np.random.uniform(-angle, angle) + image_center = ( + np.random.uniform(0, img2.shape[0]), + np.random.uniform(0, img2.shape[1]), + ) + rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0) + img2 = cv2.warpAffine( + img2, rot_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR + ) + trans_mat = np.float32([[1, 0, 0], [0, 1, px]]) + img2 = cv2.warpAffine( + img2, trans_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR + ) + return img2 + + def _random_color_contrast(self, img1, img2): + if np.random.random() < 0.5: + contrast_factor = np.random.uniform(0.8, 1.2) + img1 = FF.adjust_contrast(img1, contrast_factor) + if self.color_aug_asym and np.random.random() < 0.5: + contrast_factor = np.random.uniform(0.8, 1.2) + img2 = FF.adjust_contrast(img2, contrast_factor) + return img1, img2 + + def _random_color_gamma(self, img1, img2): + if np.random.random() < 0.5: + gamma = np.random.uniform(0.7, 1.5) + img1 = FF.adjust_gamma(img1, gamma) + if self.color_aug_asym and np.random.random() < 0.5: + gamma = np.random.uniform(0.7, 1.5) + img2 = FF.adjust_gamma(img2, gamma) + return img1, img2 + + def _random_color_brightness(self, img1, img2): + if np.random.random() < 0.5: + brightness = np.random.uniform(0.5, 2.0) + img1 = FF.adjust_brightness(img1, brightness) + if self.color_aug_asym and np.random.random() < 0.5: + brightness = np.random.uniform(0.5, 2.0) + img2 = FF.adjust_brightness(img2, brightness) + return img1, img2 + + def _random_color_hue(self, img1, img2): + if np.random.random() < 0.5: + hue = np.random.uniform(-0.1, 0.1) + img1 = FF.adjust_hue(img1, hue) + if self.color_aug_asym and np.random.random() < 0.5: + hue = np.random.uniform(-0.1, 0.1) + img2 = FF.adjust_hue(img2, hue) + return img1, img2 + + def _random_color_saturation(self, img1, img2): + if np.random.random() < 0.5: + saturation = np.random.uniform(0.8, 1.2) + img1 = FF.adjust_saturation(img1, saturation) + if self.color_aug_asym and np.random.random() < 0.5: + saturation = np.random.uniform(-0.8, 1.2) + img2 = FF.adjust_saturation(img2, saturation) + return img1, img2 + + def _random_color(self, img1, img2): + trfs = [ + self._random_color_contrast, + self._random_color_gamma, + self._random_color_brightness, + self._random_color_hue, + self._random_color_saturation, + ] + img1 = Image.fromarray(img1.astype("uint8")) + img2 = Image.fromarray(img2.astype("uint8")) + if np.random.random() < self.color_choice_prob: + # A single transform + t = random.choice(trfs) + img1, img2 = t(img1, img2) + else: + # Combination of trfs + # Random order + random.shuffle(trfs) + for t in trfs: + img1, img2 = t(img1, img2) + img1 = np.array(img1).astype(np.float32) + img2 = np.array(img2).astype(np.float32) + return img1, img2 + + def __call__(self, img1, img2, disp, dataset_name): + img1, img2, disp = self._random_scale(img1, img2, disp) + img1, img2, disp = self._random_crop(img1, img2, disp) + img1, img2, disp = self._random_vflip(img1, img2, disp) + img2 = self._random_rotate_shift_right(img2) + img1, img2 = self._random_color(img1, img2) + return img1, img2, disp + + +class FlowAugmentor: + def __init__( + self, + crop_size, + min_scale=-0.2, + max_scale=0.5, + spatial_aug_prob=0.8, + stretch_prob=0.8, + max_stretch=0.2, + h_flip_prob=0.5, + v_flip_prob=0.1, + asymmetric_color_aug_prob=0.2, + ): + # spatial augmentation params + self.crop_size = crop_size + self.min_scale = min_scale + self.max_scale = max_scale + self.spatial_aug_prob = spatial_aug_prob + self.stretch_prob = stretch_prob + self.max_stretch = max_stretch + + # flip augmentation params + self.h_flip_prob = h_flip_prob + self.v_flip_prob = v_flip_prob + + # photometric augmentation params + self.photo_aug = ColorJitter( + brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5 / 3.14 + ) + + self.asymmetric_color_aug_prob = asymmetric_color_aug_prob + + def color_transform(self, img1, img2): + """Photometric augmentation""" + + # asymmetric + if np.random.rand() < self.asymmetric_color_aug_prob: + img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) + img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) + + # symmetric + else: + image_stack = np.concatenate([img1, img2], axis=0) + image_stack = np.array( + self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8 + ) + img1, img2 = np.split(image_stack, 2, axis=0) + + return img1, img2 + + def _resize_flow(self, flow, scale_x, scale_y, factor=1.0): + if np.all(np.isfinite(flow)): + flow = cv2.resize( + flow, + None, + fx=scale_x / factor, + fy=scale_y / factor, + interpolation=cv2.INTER_LINEAR, + ) + flow = flow * [scale_x, scale_y] + else: # sparse version + fx, fy = scale_x, scale_y + ht, wd = flow.shape[:2] + coords = np.meshgrid(np.arange(wd), np.arange(ht)) + coords = np.stack(coords, axis=-1) + + coords = coords.reshape(-1, 2).astype(np.float32) + flow = flow.reshape(-1, 2).astype(np.float32) + valid = np.isfinite(flow[:, 0]) + + coords0 = coords[valid] + flow0 = flow[valid] + + ht1 = int(round(ht * fy / factor)) + wd1 = int(round(wd * fx / factor)) + + rescale = np.expand_dims(np.array([fx, fy]), axis=0) + coords1 = coords0 * rescale / factor + flow1 = flow0 * rescale + + xx = np.round(coords1[:, 0]).astype(np.int32) + yy = np.round(coords1[:, 1]).astype(np.int32) + + v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) + xx = xx[v] + yy = yy[v] + flow1 = flow1[v] + + flow = np.inf * np.ones( + [ht1, wd1, 2], dtype=np.float32 + ) # invalid value every where, before we fill it with the correct ones + flow[yy, xx] = flow1 + return flow + + def spatial_transform(self, img1, img2, flow, dname): + if np.random.rand() < self.spatial_aug_prob: + # randomly sample scale + ht, wd = img1.shape[:2] + clip_min_scale = np.maximum( + (self.crop_size[0] + 8) / float(ht), (self.crop_size[1] + 8) / float(wd) + ) + min_scale, max_scale = self.min_scale, self.max_scale + scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) + scale_x = scale + scale_y = scale + if np.random.rand() < self.stretch_prob: + scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) + scale_x = np.clip(scale_x, clip_min_scale, None) + scale_y = np.clip(scale_y, clip_min_scale, None) + # rescale the images + img1 = cv2.resize( + img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR + ) + img2 = cv2.resize( + img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR + ) + flow = self._resize_flow( + flow, scale_x, scale_y, factor=2.0 if dname == "Spring" else 1.0 + ) + elif dname == "Spring": + flow = self._resize_flow(flow, 1.0, 1.0, factor=2.0) + + if self.h_flip_prob > 0.0 and np.random.rand() < self.h_flip_prob: # h-flip + img1 = img1[:, ::-1] + img2 = img2[:, ::-1] + flow = flow[:, ::-1] * [-1.0, 1.0] + + if self.v_flip_prob > 0.0 and np.random.rand() < self.v_flip_prob: # v-flip + img1 = img1[::-1, :] + img2 = img2[::-1, :] + flow = flow[::-1, :] * [1.0, -1.0] + + # In case no cropping + if img1.shape[0] - self.crop_size[0] > 0: + y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) + else: + y0 = 0 + if img1.shape[1] - self.crop_size[1] > 0: + x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) + else: + x0 = 0 + + img1 = img1[y0 : y0 + self.crop_size[0], x0 : x0 + self.crop_size[1]] + img2 = img2[y0 : y0 + self.crop_size[0], x0 : x0 + self.crop_size[1]] + flow = flow[y0 : y0 + self.crop_size[0], x0 : x0 + self.crop_size[1]] + + return img1, img2, flow + + def __call__(self, img1, img2, flow, dname): + img1, img2, flow = self.spatial_transform(img1, img2, flow, dname) + img1, img2 = self.color_transform(img1, img2) + img1 = np.ascontiguousarray(img1) + img2 = np.ascontiguousarray(img2) + flow = np.ascontiguousarray(flow) + return img1, img2, flow diff --git a/third_party/dust3r/croco/stereoflow/criterion.py b/third_party/dust3r/croco/stereoflow/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..4ce56f6e10a63185b325730eca151076ae7e47a2 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/criterion.py @@ -0,0 +1,346 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Losses, metrics per batch, metrics per dataset +# -------------------------------------------------------- + +import torch +import torch.nn.functional as F +from torch import nn + + +def _get_gtnorm(gt): + if gt.size(1) == 1: # stereo + return gt + # flow + return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True)) # Bx1xHxW + + +############ losses without confidence + + +class L1Loss(nn.Module): + def __init__(self, max_gtnorm=None): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = False + + def _error(self, gt, predictions): + return torch.abs(gt - predictions) + + def forward(self, predictions, gt, inspect=False): + mask = torch.isfinite(gt) + if self.max_gtnorm is not None: + mask *= _get_gtnorm(gt).expand(-1, gt.size(1), -1, -1) < self.max_gtnorm + if inspect: + return self._error(gt, predictions) + return self._error(gt[mask], predictions[mask]).mean() + + +############## losses with confience +## there are several parametrizations + + +class LaplacianLoss(nn.Module): # used for CroCo-Stereo on ETH3D, d'=exp(d) + def __init__(self, max_gtnorm=None): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:, 0, :, :] + if self.max_gtnorm is not None: + mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm + conf = conf.squeeze(1) + return ( + torch.abs(gt - predictions).sum(dim=1)[mask] / torch.exp(conf[mask]) + + conf[mask] + ).mean() # + torch.log(2) => which is a constant + + +class LaplacianLossBounded( + nn.Module +): # used for CroCo-Flow ; in the equation of the paper, we have a=1/b + def __init__(self, max_gtnorm=10000.0, a=0.25, b=4.0): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + self.a, self.b = a, b + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:, 0, :, :] + if self.max_gtnorm is not None: + mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm + conf = conf.squeeze(1) + conf = (self.b - self.a) * torch.sigmoid(conf) + self.a + return ( + torch.abs(gt - predictions).sum(dim=1)[mask] / conf[mask] + + torch.log(conf)[mask] + ).mean() # + torch.log(2) => which is a constant + + +class LaplacianLossBounded2( + nn.Module +): # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b + def __init__(self, max_gtnorm=None, a=3.0, b=3.0): + super().__init__() + self.max_gtnorm = max_gtnorm + self.with_conf = True + self.a, self.b = a, b + + def forward(self, predictions, gt, conf): + mask = torch.isfinite(gt) + mask = mask[:, 0, :, :] + if self.max_gtnorm is not None: + mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm + conf = conf.squeeze(1) + conf = 2 * self.a * (torch.sigmoid(conf / self.b) - 0.5) + return ( + torch.abs(gt - predictions).sum(dim=1)[mask] / torch.exp(conf[mask]) + + conf[mask] + ).mean() # + torch.log(2) => which is a constant + + +############## metrics per batch + + +class StereoMetrics(nn.Module): + def __init__(self, do_quantile=False): + super().__init__() + self.bad_ths = [0.5, 1, 2, 3] + self.do_quantile = do_quantile + + def forward(self, predictions, gt): + B = predictions.size(0) + metrics = {} + gtcopy = gt.clone() + mask = torch.isfinite(gtcopy) + gtcopy[ + ~mask + ] = 999999.0 # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0 + Npx = mask.view(B, -1).sum(dim=1) + L1error = (torch.abs(gtcopy - predictions) * mask).view(B, -1) + L2error = (torch.square(gtcopy - predictions) * mask).view(B, -1) + # avgerr + metrics["avgerr"] = torch.mean(L1error.sum(dim=1) / Npx) + # rmse + metrics["rmse"] = torch.sqrt(L2error.sum(dim=1) / Npx).mean(dim=0) + # err > t for t in [0.5,1,2,3] + for ths in self.bad_ths: + metrics["bad@{:.1f}".format(ths)] = ( + ((L1error > ths) * mask.view(B, -1)).sum(dim=1) / Npx + ).mean(dim=0) * 100 + return metrics + + +class FlowMetrics(nn.Module): + def __init__(self): + super().__init__() + self.bad_ths = [1, 3, 5] + + def forward(self, predictions, gt): + B = predictions.size(0) + metrics = {} + mask = torch.isfinite(gt[:, 0, :, :]) # both x and y would be infinite + Npx = mask.view(B, -1).sum(dim=1) + gtcopy = ( + gt.clone() + ) # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored + gtcopy[:, 0, :, :][~mask] = 999999.0 + gtcopy[:, 1, :, :][~mask] = 999999.0 + L1error = (torch.abs(gtcopy - predictions).sum(dim=1) * mask).view(B, -1) + L2error = ( + torch.sqrt(torch.sum(torch.square(gtcopy - predictions), dim=1)) * mask + ).view(B, -1) + metrics["L1err"] = torch.mean(L1error.sum(dim=1) / Npx) + metrics["EPE"] = torch.mean(L2error.sum(dim=1) / Npx) + for ths in self.bad_ths: + metrics["bad@{:.1f}".format(ths)] = ( + ((L2error > ths) * mask.view(B, -1)).sum(dim=1) / Npx + ).mean(dim=0) * 100 + return metrics + + +############## metrics per dataset +## we update the average and maintain the number of pixels while adding data batch per batch +## at the beggining, call reset() +## after each batch, call add_batch(...) +## at the end: call get_results() + + +class StereoDatasetMetrics(nn.Module): + def __init__(self): + super().__init__() + self.bad_ths = [0.5, 1, 2, 3] + + def reset(self): + self.agg_N = 0 # number of pixels so far + self.agg_L1err = torch.tensor(0.0) # L1 error so far + self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels + self._metrics = None + + def add_batch(self, predictions, gt): + assert predictions.size(1) == 1, predictions.size() + assert gt.size(1) == 1, gt.size() + if ( + gt.size(2) == predictions.size(2) * 2 + and gt.size(3) == predictions.size(3) * 2 + ): # special case for Spring ... + L1err = torch.minimum( + torch.minimum( + torch.minimum( + torch.sum(torch.abs(gt[:, :, 0::2, 0::2] - predictions), dim=1), + torch.sum(torch.abs(gt[:, :, 1::2, 0::2] - predictions), dim=1), + ), + torch.sum(torch.abs(gt[:, :, 0::2, 1::2] - predictions), dim=1), + ), + torch.sum(torch.abs(gt[:, :, 1::2, 1::2] - predictions), dim=1), + ) + valid = torch.isfinite(L1err) + else: + valid = torch.isfinite(gt[:, 0, :, :]) # both x and y would be infinite + L1err = torch.sum(torch.abs(gt - predictions), dim=1) + N = valid.sum() + Nnew = self.agg_N + N + self.agg_L1err = ( + float(self.agg_N) / Nnew * self.agg_L1err + + L1err[valid].mean().cpu() * float(N) / Nnew + ) + self.agg_N = Nnew + for i, th in enumerate(self.bad_ths): + self.agg_Nbad[i] += (L1err[valid] > th).sum().cpu() + + def _compute_metrics(self): + if self._metrics is not None: + return + out = {} + out["L1err"] = self.agg_L1err.item() + for i, th in enumerate(self.bad_ths): + out["bad@{:.1f}".format(th)] = ( + float(self.agg_Nbad[i]) / self.agg_N + ).item() * 100.0 + self._metrics = out + + def get_results(self): + self._compute_metrics() # to avoid recompute them multiple times + return self._metrics + + +class FlowDatasetMetrics(nn.Module): + def __init__(self): + super().__init__() + self.bad_ths = [0.5, 1, 3, 5] + self.speed_ths = [(0, 10), (10, 40), (40, torch.inf)] + + def reset(self): + self.agg_N = 0 # number of pixels so far + self.agg_L1err = torch.tensor(0.0) # L1 error so far + self.agg_L2err = torch.tensor(0.0) # L2 (=EPE) error so far + self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels + self.agg_EPEspeed = [ + torch.tensor(0.0) for _ in self.speed_ths + ] # EPE per speed bin so far + self.agg_Nspeed = [0 for _ in self.speed_ths] # N pixels per speed bin so far + self._metrics = None + self.pairname_results = {} + + def add_batch(self, predictions, gt): + assert predictions.size(1) == 2, predictions.size() + assert gt.size(1) == 2, gt.size() + if ( + gt.size(2) == predictions.size(2) * 2 + and gt.size(3) == predictions.size(3) * 2 + ): # special case for Spring ... + L1err = torch.minimum( + torch.minimum( + torch.minimum( + torch.sum(torch.abs(gt[:, :, 0::2, 0::2] - predictions), dim=1), + torch.sum(torch.abs(gt[:, :, 1::2, 0::2] - predictions), dim=1), + ), + torch.sum(torch.abs(gt[:, :, 0::2, 1::2] - predictions), dim=1), + ), + torch.sum(torch.abs(gt[:, :, 1::2, 1::2] - predictions), dim=1), + ) + L2err = torch.minimum( + torch.minimum( + torch.minimum( + torch.sqrt( + torch.sum( + torch.square(gt[:, :, 0::2, 0::2] - predictions), dim=1 + ) + ), + torch.sqrt( + torch.sum( + torch.square(gt[:, :, 1::2, 0::2] - predictions), dim=1 + ) + ), + ), + torch.sqrt( + torch.sum( + torch.square(gt[:, :, 0::2, 1::2] - predictions), dim=1 + ) + ), + ), + torch.sqrt( + torch.sum(torch.square(gt[:, :, 1::2, 1::2] - predictions), dim=1) + ), + ) + valid = torch.isfinite(L1err) + gtspeed = ( + torch.sqrt(torch.sum(torch.square(gt[:, :, 0::2, 0::2]), dim=1)) + + torch.sqrt(torch.sum(torch.square(gt[:, :, 0::2, 1::2]), dim=1)) + + torch.sqrt(torch.sum(torch.square(gt[:, :, 1::2, 0::2]), dim=1)) + + torch.sqrt(torch.sum(torch.square(gt[:, :, 1::2, 1::2]), dim=1)) + ) / 4.0 # let's just average them + else: + valid = torch.isfinite(gt[:, 0, :, :]) # both x and y would be infinite + L1err = torch.sum(torch.abs(gt - predictions), dim=1) + L2err = torch.sqrt(torch.sum(torch.square(gt - predictions), dim=1)) + gtspeed = torch.sqrt(torch.sum(torch.square(gt), dim=1)) + N = valid.sum() + Nnew = self.agg_N + N + self.agg_L1err = ( + float(self.agg_N) / Nnew * self.agg_L1err + + L1err[valid].mean().cpu() * float(N) / Nnew + ) + self.agg_L2err = ( + float(self.agg_N) / Nnew * self.agg_L2err + + L2err[valid].mean().cpu() * float(N) / Nnew + ) + self.agg_N = Nnew + for i, th in enumerate(self.bad_ths): + self.agg_Nbad[i] += (L2err[valid] > th).sum().cpu() + for i, (th1, th2) in enumerate(self.speed_ths): + vv = (gtspeed[valid] >= th1) * (gtspeed[valid] < th2) + iNspeed = vv.sum() + if iNspeed == 0: + continue + iNnew = self.agg_Nspeed[i] + iNspeed + self.agg_EPEspeed[i] = ( + float(self.agg_Nspeed[i]) / iNnew * self.agg_EPEspeed[i] + + float(iNspeed) / iNnew * L2err[valid][vv].mean().cpu() + ) + self.agg_Nspeed[i] = iNnew + + def _compute_metrics(self): + if self._metrics is not None: + return + out = {} + out["L1err"] = self.agg_L1err.item() + out["EPE"] = self.agg_L2err.item() + for i, th in enumerate(self.bad_ths): + out["bad@{:.1f}".format(th)] = ( + float(self.agg_Nbad[i]) / self.agg_N + ).item() * 100.0 + for i, (th1, th2) in enumerate(self.speed_ths): + out[ + "s{:d}{:s}".format(th1, "-" + str(th2) if th2 < torch.inf else "+") + ] = self.agg_EPEspeed[i].item() + self._metrics = out + + def get_results(self): + self._compute_metrics() # to avoid recompute them multiple times + return self._metrics diff --git a/third_party/dust3r/croco/stereoflow/datasets_flow.py b/third_party/dust3r/croco/stereoflow/datasets_flow.py new file mode 100644 index 0000000000000000000000000000000000000000..322a745059f7d226f7ba9e60de8bcd7f18c794a4 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/datasets_flow.py @@ -0,0 +1,929 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Dataset structure for flow +# -------------------------------------------------------- + +import json +import os +import os.path as osp +import pickle +import struct +from copy import deepcopy + +import h5py +import numpy as np +import torch +from PIL import Image +from torch.utils import data + +from .augmentor import FlowAugmentor +from .datasets_stereo import _read_img, _read_pfm, dataset_to_root, img_to_tensor + +dataset_to_root = deepcopy(dataset_to_root) + +dataset_to_root.update( + **{ + "TartanAir": "./data/stereoflow/TartanAir", + "FlyingChairs": "./data/stereoflow/FlyingChairs/", + "FlyingThings": osp.join(dataset_to_root["SceneFlow"], "FlyingThings") + "/", + "MPISintel": "./data/stereoflow//MPI-Sintel/" + "/", + } +) +cache_dir = "./data/stereoflow/datasets_flow_cache/" + + +def flow_to_tensor(disp): + return torch.from_numpy(disp).float().permute(2, 0, 1) + + +class FlowDataset(data.Dataset): + def __init__(self, split, augmentor=False, crop_size=None, totensor=True): + self.split = split + if not augmentor: + assert crop_size is None + if crop_size is not None: + assert augmentor + self.crop_size = crop_size + self.augmentor_str = augmentor + self.augmentor = FlowAugmentor(crop_size) if augmentor else None + self.totensor = totensor + self.rmul = 1 # keep track of rmul + self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time) + self._prepare_data() + self._load_or_build_cache() + + def prepare_data(self): + """ + to be defined for each dataset + """ + raise NotImplementedError + + def __len__(self): + return len( + self.pairnames + ) # each pairname is typically of the form (str, int1, int2) + + def __getitem__(self, index): + pairname = self.pairnames[index] + + # get filenames + img1name = self.pairname_to_img1name(pairname) + img2name = self.pairname_to_img2name(pairname) + flowname = ( + self.pairname_to_flowname(pairname) + if self.pairname_to_flowname is not None + else None + ) + + # load images and disparities + img1 = _read_img(img1name) + img2 = _read_img(img2name) + flow = self.load_flow(flowname) if flowname is not None else None + + # apply augmentations + if self.augmentor is not None: + img1, img2, flow = self.augmentor(img1, img2, flow, self.name) + + if self.totensor: + img1 = img_to_tensor(img1) + img2 = img_to_tensor(img2) + if flow is not None: + flow = flow_to_tensor(flow) + else: + flow = torch.tensor( + [] + ) # to allow dataloader batching with default collate_gn + pairname = str( + pairname + ) # transform potential tuple to str to be able to batch it + + return img1, img2, flow, pairname + + def __rmul__(self, v): + self.rmul *= v + self.pairnames = v * self.pairnames + return self + + def __str__(self): + return f"{self.__class__.__name__}_{self.split}" + + def __repr__(self): + s = f"{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})" + if self.rmul == 1: + s += f"\n\tnum pairs: {len(self.pairnames)}" + else: + s += f"\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})" + return s + + def _set_root(self): + self.root = dataset_to_root[self.name] + assert os.path.isdir( + self.root + ), f"could not find root directory for dataset {self.name}: {self.root}" + + def _load_or_build_cache(self): + cache_file = osp.join(cache_dir, self.name + ".pkl") + if osp.isfile(cache_file): + with open(cache_file, "rb") as fid: + self.pairnames = pickle.load(fid)[self.split] + else: + tosave = self._build_cache() + os.makedirs(cache_dir, exist_ok=True) + with open(cache_file, "wb") as fid: + pickle.dump(tosave, fid) + self.pairnames = tosave[self.split] + + +class TartanAirDataset(FlowDataset): + def _prepare_data(self): + self.name = "TartanAir" + self._set_root() + assert self.split in ["train"] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, pairname[0], "image_left/{:06d}_left.png".format(pairname[1]) + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, pairname[0], "image_left/{:06d}_left.png".format(pairname[2]) + ) + self.pairname_to_flowname = lambda pairname: osp.join( + self.root, + pairname[0], + "flow/{:06d}_{:06d}_flow.npy".format(pairname[1], pairname[2]), + ) + self.pairname_to_str = lambda pairname: os.path.join( + pairname[0][pairname[0].find("/") + 1 :], + "{:06d}_{:06d}".format(pairname[1], pairname[2]), + ) + self.load_flow = _read_numpy_flow + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + pairs = [ + (osp.join(s, s, difficulty, Pxxx), int(a[:6]), int(a[:6]) + 1) + for s in seqs + for difficulty in ["Easy", "Hard"] + for Pxxx in sorted(os.listdir(osp.join(self.root, s, s, difficulty))) + for a in sorted( + os.listdir(osp.join(self.root, s, s, difficulty, Pxxx, "image_left/")) + )[:-1] + ] + assert len(pairs) == 306268, "incorrect parsing of pairs in TartanAir" + tosave = {"train": pairs} + return tosave + + +class FlyingChairsDataset(FlowDataset): + def _prepare_data(self): + self.name = "FlyingChairs" + self._set_root() + assert self.split in ["train", "val"] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, "data", pairname + "_img1.ppm" + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, "data", pairname + "_img2.ppm" + ) + self.pairname_to_flowname = lambda pairname: osp.join( + self.root, "data", pairname + "_flow.flo" + ) + self.pairname_to_str = lambda pairname: pairname + self.load_flow = _read_flo_file + + def _build_cache(self): + split_file = osp.join(self.root, "chairs_split.txt") + split_list = np.loadtxt(split_file, dtype=np.int32) + trainpairs = ["{:05d}".format(i) for i in np.where(split_list == 1)[0] + 1] + valpairs = ["{:05d}".format(i) for i in np.where(split_list == 2)[0] + 1] + assert ( + len(trainpairs) == 22232 and len(valpairs) == 640 + ), "incorrect parsing of pairs in MPI-Sintel" + tosave = {"train": trainpairs, "val": valpairs} + return tosave + + +class FlyingThingsDataset(FlowDataset): + def _prepare_data(self): + self.name = "FlyingThings" + self._set_root() + assert self.split in [ + f"{set_}_{pass_}pass{camstr}" + for set_ in ["train", "test", "test1024"] + for camstr in ["", "_rightcam"] + for pass_ in ["clean", "final", "all"] + ] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, + f"frames_{pairname[3]}pass", + pairname[0].replace("into_future", "").replace("into_past", ""), + "{:04d}.png".format(pairname[1]), + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, + f"frames_{pairname[3]}pass", + pairname[0].replace("into_future", "").replace("into_past", ""), + "{:04d}.png".format(pairname[2]), + ) + self.pairname_to_flowname = lambda pairname: osp.join( + self.root, + "optical_flow", + pairname[0], + "OpticalFlowInto{f:s}_{i:04d}_{c:s}.pfm".format( + f="Future" if "future" in pairname[0] else "Past", + i=pairname[1], + c="L" if "left" in pairname[0] else "R", + ), + ) + self.pairname_to_str = lambda pairname: os.path.join( + pairname[3] + "pass", + pairname[0], + "Into{f:s}_{i:04d}_{c:s}".format( + f="Future" if "future" in pairname[0] else "Past", + i=pairname[1], + c="L" if "left" in pairname[0] else "R", + ), + ) + self.load_flow = _read_pfm_flow + + def _build_cache(self): + tosave = {} + # train and test splits for the different passes + for set_ in ["train", "test"]: + sroot = osp.join(self.root, "optical_flow", set_.upper()) + fname_to_i = lambda f: int( + f[len("OpticalFlowIntoFuture_") : -len("_L.pfm")] + ) + pp = [ + (osp.join(set_.upper(), d, s, "into_future/left"), fname_to_i(fname)) + for d in sorted(os.listdir(sroot)) + for s in sorted(os.listdir(osp.join(sroot, d))) + for fname in sorted( + os.listdir(osp.join(sroot, d, s, "into_future/left")) + )[:-1] + ] + pairs = [(a, i, i + 1) for a, i in pp] + pairs += [(a.replace("into_future", "into_past"), i + 1, i) for a, i in pp] + assert ( + len(pairs) == {"train": 40302, "test": 7866}[set_] + ), "incorrect parsing of pairs Flying Things" + for cam in ["left", "right"]: + camstr = "" if cam == "left" else f"_{cam}cam" + for pass_ in ["final", "clean"]: + tosave[f"{set_}_{pass_}pass{camstr}"] = [ + (a.replace("left", cam), i, j, pass_) for a, i, j in pairs + ] + tosave[f"{set_}_allpass{camstr}"] = ( + tosave[f"{set_}_cleanpass{camstr}"] + + tosave[f"{set_}_finalpass{camstr}"] + ) + # test1024: this is the same split as unimatch 'validation' split + # see https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/datasets.py#L229 + test1024_nsamples = 1024 + alltest_nsamples = len(tosave["test_cleanpass"]) # 7866 + stride = alltest_nsamples // test1024_nsamples + remove = alltest_nsamples % test1024_nsamples + for cam in ["left", "right"]: + camstr = "" if cam == "left" else f"_{cam}cam" + for pass_ in ["final", "clean"]: + tosave[f"test1024_{pass_}pass{camstr}"] = sorted( + tosave[f"test_{pass_}pass{camstr}"] + )[:-remove][ + ::stride + ] # warning, it was not sorted before + assert ( + len(tosave["test1024_cleanpass"]) == 1024 + ), "incorrect parsing of pairs in Flying Things" + tosave[f"test1024_allpass{camstr}"] = ( + tosave[f"test1024_cleanpass{camstr}"] + + tosave[f"test1024_finalpass{camstr}"] + ) + return tosave + + +class MPISintelDataset(FlowDataset): + def _prepare_data(self): + self.name = "MPISintel" + self._set_root() + assert self.split in [ + s + "_" + p + for s in ["train", "test", "subval", "subtrain"] + for p in ["cleanpass", "finalpass", "allpass"] + ] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, pairname[0], "frame_{:04d}.png".format(pairname[1]) + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, pairname[0], "frame_{:04d}.png".format(pairname[1] + 1) + ) + self.pairname_to_flowname = ( + lambda pairname: None + if pairname[0].startswith("test/") + else osp.join( + self.root, + pairname[0].replace("/clean/", "/flow/").replace("/final/", "/flow/"), + "frame_{:04d}.flo".format(pairname[1]), + ) + ) + self.pairname_to_str = lambda pairname: osp.join( + pairname[0], "frame_{:04d}".format(pairname[1]) + ) + self.load_flow = _read_flo_file + + def _build_cache(self): + trainseqs = sorted(os.listdir(self.root + "training/clean")) + trainpairs = [ + (osp.join("training/clean", s), i) + for s in trainseqs + for i in range(1, len(os.listdir(self.root + "training/clean/" + s))) + ] + subvalseqs = ["temple_2", "temple_3"] + subtrainseqs = [s for s in trainseqs if s not in subvalseqs] + subvalpairs = [(p, i) for p, i in trainpairs if any(s in p for s in subvalseqs)] + subtrainpairs = [ + (p, i) for p, i in trainpairs if any(s in p for s in subtrainseqs) + ] + testseqs = sorted(os.listdir(self.root + "test/clean")) + testpairs = [ + (osp.join("test/clean", s), i) + for s in testseqs + for i in range(1, len(os.listdir(self.root + "test/clean/" + s))) + ] + assert ( + len(trainpairs) == 1041 + and len(testpairs) == 552 + and len(subvalpairs) == 98 + and len(subtrainpairs) == 943 + ), "incorrect parsing of pairs in MPI-Sintel" + tosave = {} + tosave["train_cleanpass"] = trainpairs + tosave["test_cleanpass"] = testpairs + tosave["subval_cleanpass"] = subvalpairs + tosave["subtrain_cleanpass"] = subtrainpairs + for t in ["train", "test", "subval", "subtrain"]: + tosave[t + "_finalpass"] = [ + (p.replace("/clean/", "/final/"), i) + for p, i in tosave[t + "_cleanpass"] + ] + tosave[t + "_allpass"] = tosave[t + "_cleanpass"] + tosave[t + "_finalpass"] + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, _time): + assert prediction.shape[2] == 2 + outfile = os.path.join( + outdir, "submission", self.pairname_to_str(pairname) + ".flo" + ) + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writeFlowFile(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split == "test_allpass" + bundle_exe = "/nfs/data/ffs-3d/datasets/StereoFlow/MPI-Sintel/bundler/linux-x64/bundler" # eg + if os.path.isfile(bundle_exe): + cmd = f'{bundle_exe} "{outdir}/submission/test/clean/" "{outdir}/submission/test/final" "{outdir}/submission/bundled.lzma"' + print(cmd) + os.system(cmd) + print(f'Done. Submission file at: "{outdir}/submission/bundled.lzma"') + else: + print("Could not find bundler executable for submission.") + print("Please download it and run:") + print( + f' "{outdir}/submission/test/clean/" "{outdir}/submission/test/final" "{outdir}/submission/bundled.lzma"' + ) + + +class SpringDataset(FlowDataset): + def _prepare_data(self): + self.name = "Spring" + self._set_root() + assert self.split in ["train", "test", "subtrain", "subval"] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, + pairname[0], + pairname[1], + "frame_" + pairname[3], + "frame_{:s}_{:04d}.png".format(pairname[3], pairname[4]), + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, + pairname[0], + pairname[1], + "frame_" + pairname[3], + "frame_{:s}_{:04d}.png".format( + pairname[3], pairname[4] + (1 if pairname[2] == "FW" else -1) + ), + ) + self.pairname_to_flowname = ( + lambda pairname: None + if pairname[0] == "test" + else osp.join( + self.root, + pairname[0], + pairname[1], + f"flow_{pairname[2]}_{pairname[3]}", + f"flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}.flo5", + ) + ) + self.pairname_to_str = lambda pairname: osp.join( + pairname[0], + pairname[1], + f"flow_{pairname[2]}_{pairname[3]}", + f"flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}", + ) + self.load_flow = _read_hdf5_flow + + def _build_cache(self): + # train + trainseqs = sorted(os.listdir(osp.join(self.root, "train"))) + trainpairs = [] + for leftright in ["left", "right"]: + for fwbw in ["FW", "BW"]: + trainpairs += [ + ( + "train", + s, + fwbw, + leftright, + int(f[len(f"flow_{fwbw}_{leftright}_") : -len(".flo5")]), + ) + for s in trainseqs + for f in sorted( + os.listdir( + osp.join(self.root, "train", s, f"flow_{fwbw}_{leftright}") + ) + ) + ] + # test + testseqs = sorted(os.listdir(osp.join(self.root, "test"))) + testpairs = [] + for leftright in ["left", "right"]: + testpairs += [ + ( + "test", + s, + "FW", + leftright, + int(f[len(f"frame_{leftright}_") : -len(".png")]), + ) + for s in testseqs + for f in sorted( + os.listdir(osp.join(self.root, "test", s, f"frame_{leftright}")) + )[:-1] + ] + testpairs += [ + ( + "test", + s, + "BW", + leftright, + int(f[len(f"frame_{leftright}_") : -len(".png")]) + 1, + ) + for s in testseqs + for f in sorted( + os.listdir(osp.join(self.root, "test", s, f"frame_{leftright}")) + )[:-1] + ] + # subtrain / subval + subtrainpairs = [p for p in trainpairs if p[1] != "0041"] + subvalpairs = [p for p in trainpairs if p[1] == "0041"] + assert ( + len(trainpairs) == 19852 + and len(testpairs) == 3960 + and len(subtrainpairs) == 19472 + and len(subvalpairs) == 380 + ), "incorrect parsing of pairs in Spring" + tosave = { + "train": trainpairs, + "test": testpairs, + "subtrain": subtrainpairs, + "subval": subvalpairs, + } + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 3 + assert prediction.shape[2] == 2 + assert prediction.dtype == np.float32 + outfile = osp.join( + outdir, + pairname[0], + pairname[1], + f"flow_{pairname[2]}_{pairname[3]}", + f"flow_{pairname[2]}_{pairname[3]}_{pairname[4]:04d}.flo5", + ) + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writeFlo5File(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split == "test" + exe = "{self.root}/flow_subsampling" + if os.path.isfile(exe): + cmd = f'cd "{outdir}/test"; {exe} .' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/test/flow_submission.hdf5") + else: + print("Could not find flow_subsampling executable for submission.") + print("Please download it and run:") + print(f'cd "{outdir}/test"; .') + + +class Kitti12Dataset(FlowDataset): + def _prepare_data(self): + self.name = "Kitti12" + self._set_root() + assert self.split in ["train", "test"] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, pairname + "_10.png" + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, pairname + "_11.png" + ) + self.pairname_to_flowname = ( + None + if self.split == "test" + else lambda pairname: osp.join( + self.root, pairname.replace("/colored_0/", "/flow_occ/") + "_10.png" + ) + ) + self.pairname_to_str = lambda pairname: pairname.replace("/colored_0/", "/") + self.load_flow = _read_kitti_flow + + def _build_cache(self): + trainseqs = ["training/colored_0/%06d" % (i) for i in range(194)] + testseqs = ["testing/colored_0/%06d" % (i) for i in range(195)] + assert ( + len(trainseqs) == 194 and len(testseqs) == 195 + ), "incorrect parsing of pairs in Kitti12" + tosave = {"train": trainseqs, "test": testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 3 + assert prediction.shape[2] == 2 + outfile = os.path.join(outdir, pairname.split("/")[-1] + "_10.png") + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writeFlowKitti(outfile, prediction) + + def finalize_submission(self, outdir): + assert self.split == "test" + cmd = f'cd {outdir}/; zip -r "kitti12_flow_results.zip" .' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/kitti12_flow_results.zip") + + +class Kitti15Dataset(FlowDataset): + def _prepare_data(self): + self.name = "Kitti15" + self._set_root() + assert self.split in ["train", "subtrain", "subval", "test"] + self.pairname_to_img1name = lambda pairname: osp.join( + self.root, pairname + "_10.png" + ) + self.pairname_to_img2name = lambda pairname: osp.join( + self.root, pairname + "_11.png" + ) + self.pairname_to_flowname = ( + None + if self.split == "test" + else lambda pairname: osp.join( + self.root, pairname.replace("/image_2/", "/flow_occ/") + "_10.png" + ) + ) + self.pairname_to_str = lambda pairname: pairname.replace("/image_2/", "/") + self.load_flow = _read_kitti_flow + + def _build_cache(self): + trainseqs = ["training/image_2/%06d" % (i) for i in range(200)] + subtrainseqs = trainseqs[:-10] + subvalseqs = trainseqs[-10:] + testseqs = ["testing/image_2/%06d" % (i) for i in range(200)] + assert ( + len(trainseqs) == 200 + and len(subtrainseqs) == 190 + and len(subvalseqs) == 10 + and len(testseqs) == 200 + ), "incorrect parsing of pairs in Kitti15" + tosave = { + "train": trainseqs, + "subtrain": subtrainseqs, + "subval": subvalseqs, + "test": testseqs, + } + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 3 + assert prediction.shape[2] == 2 + outfile = os.path.join(outdir, "flow", pairname.split("/")[-1] + "_10.png") + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writeFlowKitti(outfile, prediction) + + def finalize_submission(self, outdir): + assert self.split == "test" + cmd = f'cd {outdir}/; zip -r "kitti15_flow_results.zip" flow' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/kitti15_flow_results.zip") + + +import cv2 + + +def _read_numpy_flow(filename): + return np.load(filename) + + +def _read_pfm_flow(filename): + f, _ = _read_pfm(filename) + assert np.all(f[:, :, 2] == 0.0) + return np.ascontiguousarray(f[:, :, :2]) + + +TAG_FLOAT = 202021.25 # tag to check the sanity of the file +TAG_STRING = "PIEH" # string containing the tag +MIN_WIDTH = 1 +MAX_WIDTH = 99999 +MIN_HEIGHT = 1 +MAX_HEIGHT = 99999 + + +def readFlowFile(filename): + """ + readFlowFile() reads a flow file into a 2-band np.array. + if does not exist, an IOError is raised. + if does not finish by '.flo' or the tag, the width, the height or the file's size is illegal, an Expcetion is raised. + ---- PARAMETERS ---- + filename: string containg the name of the file to read a flow + ---- OUTPUTS ---- + a np.array of dimension (height x width x 2) containing the flow of type 'float32' + """ + + # check filename + if not filename.endswith(".flo"): + raise Exception( + "readFlowFile({:s}): filename must finish with '.flo'".format(filename) + ) + + # open the file and read it + with open(filename, "rb") as f: + # check tag + tag = struct.unpack("f", f.read(4))[0] + if tag != TAG_FLOAT: + raise Exception("flow_utils.readFlowFile({:s}): wrong tag".format(filename)) + # read dimension + w, h = struct.unpack("ii", f.read(8)) + if w < MIN_WIDTH or w > MAX_WIDTH: + raise Exception( + "flow_utils.readFlowFile({:s}: illegal width {:d}".format(filename, w) + ) + if h < MIN_HEIGHT or h > MAX_HEIGHT: + raise Exception( + "flow_utils.readFlowFile({:s}: illegal height {:d}".format(filename, h) + ) + flow = np.fromfile(f, "float32") + if not flow.shape == (h * w * 2,): + raise Exception( + "flow_utils.readFlowFile({:s}: illegal size of the file".format( + filename + ) + ) + flow.shape = (h, w, 2) + return flow + + +def writeFlowFile(flow, filename): + """ + writeFlowFile(flow,) write flow to the file . + if does not exist, an IOError is raised. + if does not finish with '.flo' or the flow has not 2 bands, an Exception is raised. + ---- PARAMETERS ---- + flow: np.array of dimension (height x width x 2) containing the flow to write + filename: string containg the name of the file to write a flow + """ + + # check filename + if not filename.endswith(".flo"): + raise Exception( + "flow_utils.writeFlowFile(,{:s}): filename must finish with '.flo'".format( + filename + ) + ) + + if not flow.shape[2:] == (2,): + raise Exception( + "flow_utils.writeFlowFile(,{:s}): must have 2 bands".format( + filename + ) + ) + + # open the file and write it + with open(filename, "wb") as f: + # write TAG + f.write(TAG_STRING.encode("utf-8")) + # write dimension + f.write(struct.pack("ii", flow.shape[1], flow.shape[0])) + # write the flow + + flow.astype(np.float32).tofile(f) + + +_read_flo_file = readFlowFile + + +def _read_kitti_flow(filename): + flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) + flow = flow[:, :, ::-1].astype(np.float32) + valid = flow[:, :, 2] > 0 + flow = flow[:, :, :2] + flow = (flow - 2**15) / 64.0 + flow[~valid, 0] = np.inf + flow[~valid, 1] = np.inf + return flow + + +_read_hd1k_flow = _read_kitti_flow + + +def writeFlowKitti(filename, uv): + uv = 64.0 * uv + 2**15 + valid = np.ones([uv.shape[0], uv.shape[1], 1]) + uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) + cv2.imwrite(filename, uv[..., ::-1]) + + +def writeFlo5File(flow, filename): + with h5py.File(filename, "w") as f: + f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5) + + +def _read_hdf5_flow(filename): + flow = np.asarray(h5py.File(filename)["flow"]) + flow[np.isnan(flow)] = np.inf # make invalid values as +inf + return flow.astype(np.float32) + + +# flow visualization +RY = 15 +YG = 6 +GC = 4 +CB = 11 +BM = 13 +MR = 6 +UNKNOWN_THRESH = 1e9 + + +def colorTest(): + """ + flow_utils.colorTest(): display an example of image showing the color encoding scheme + """ + import matplotlib.pylab as plt + + truerange = 1 + h, w = 151, 151 + trange = truerange * 1.04 + s2 = round(h / 2) + x, y = np.meshgrid(range(w), range(h)) + u = x * trange / s2 - trange + v = y * trange / s2 - trange + img = _computeColor( + np.concatenate((u[:, :, np.newaxis], v[:, :, np.newaxis]), 2) + / trange + / np.sqrt(2) + ) + plt.imshow(img) + plt.axis("off") + plt.axhline(round(h / 2), color="k") + plt.axvline(round(w / 2), color="k") + + +def flowToColor(flow, maxflow=None, maxmaxflow=None, saturate=False): + """ + flow_utils.flowToColor(flow): return a color code flow field, normalized based on the maximum l2-norm of the flow + flow_utils.flowToColor(flow,maxflow): return a color code flow field, normalized by maxflow + ---- PARAMETERS ---- + flow: flow to display of shape (height x width x 2) + maxflow (default:None): if given, normalize the flow by its value, otherwise by the flow norm + maxmaxflow (default:None): if given, normalize the flow by the max of its value and the flow norm + ---- OUTPUT ---- + an np.array of shape (height x width x 3) of type uint8 containing a color code of the flow + """ + h, w, n = flow.shape + # check size of flow + assert n == 2, "flow_utils.flowToColor(flow): flow must have 2 bands" + # fix unknown flow + unknown_idx = np.max(np.abs(flow), 2) > UNKNOWN_THRESH + flow[unknown_idx] = 0.0 + # compute max flow if needed + if maxflow is None: + maxflow = flowMaxNorm(flow) + if maxmaxflow is not None: + maxflow = min(maxmaxflow, maxflow) + # normalize flow + eps = np.spacing(1) # minimum positive float value to avoid division by 0 + # compute the flow + img = _computeColor(flow / (maxflow + eps), saturate=saturate) + # put black pixels in unknown location + img[np.tile(unknown_idx[:, :, np.newaxis], [1, 1, 3])] = 0.0 + return img + + +def flowMaxNorm(flow): + """ + flow_utils.flowMaxNorm(flow): return the maximum of the l2-norm of the given flow + ---- PARAMETERS ---- + flow: the flow + + ---- OUTPUT ---- + a float containing the maximum of the l2-norm of the flow + """ + return np.max(np.sqrt(np.sum(np.square(flow), 2))) + + +def _computeColor(flow, saturate=True): + """ + flow_utils._computeColor(flow): compute color codes for the flow field flow + + ---- PARAMETERS ---- + flow: np.array of dimension (height x width x 2) containing the flow to display + ---- OUTPUTS ---- + an np.array of dimension (height x width x 3) containing the color conversion of the flow + """ + # set nan to 0 + nanidx = np.isnan(flow[:, :, 0]) + flow[nanidx] = 0.0 + + # colorwheel + ncols = RY + YG + GC + CB + BM + MR + nchans = 3 + colorwheel = np.zeros((ncols, nchans), "uint8") + col = 0 + # RY + colorwheel[:RY, 0] = 255 + colorwheel[:RY, 1] = [(255 * i) // RY for i in range(RY)] + col += RY + # YG + colorwheel[col : col + YG, 0] = [255 - (255 * i) // YG for i in range(YG)] + colorwheel[col : col + YG, 1] = 255 + col += YG + # GC + colorwheel[col : col + GC, 1] = 255 + colorwheel[col : col + GC, 2] = [(255 * i) // GC for i in range(GC)] + col += GC + # CB + colorwheel[col : col + CB, 1] = [255 - (255 * i) // CB for i in range(CB)] + colorwheel[col : col + CB, 2] = 255 + col += CB + # BM + colorwheel[col : col + BM, 0] = [(255 * i) // BM for i in range(BM)] + colorwheel[col : col + BM, 2] = 255 + col += BM + # MR + colorwheel[col : col + MR, 0] = 255 + colorwheel[col : col + MR, 2] = [255 - (255 * i) // MR for i in range(MR)] + + # compute utility variables + rad = np.sqrt(np.sum(np.square(flow), 2)) # magnitude + a = np.arctan2(-flow[:, :, 1], -flow[:, :, 0]) / np.pi # angle + fk = (a + 1) / 2 * (ncols - 1) # map [-1,1] to [0,ncols-1] + k0 = np.floor(fk).astype("int") + k1 = k0 + 1 + k1[k1 == ncols] = 0 + f = fk - k0 + + if not saturate: + rad = np.minimum(rad, 1) + + # compute the image + img = np.zeros((flow.shape[0], flow.shape[1], nchans), "uint8") + for i in range(nchans): + tmp = colorwheel[:, i].astype("float") + col0 = tmp[k0] / 255 + col1 = tmp[k1] / 255 + col = (1 - f) * col0 + f * col1 + idx = rad <= 1 + col[idx] = 1 - rad[idx] * (1 - col[idx]) # increase saturation with radius + col[~idx] *= 0.75 # out of range + img[:, :, i] = (255 * col * (1 - nanidx.astype("float"))).astype("uint8") + + return img + + +# flow dataset getter + + +def get_train_dataset_flow(dataset_str, augmentor=True, crop_size=None): + dataset_str = dataset_str.replace("(", "Dataset(") + if augmentor: + dataset_str = dataset_str.replace(")", ", augmentor=True)") + if crop_size is not None: + dataset_str = dataset_str.replace( + ")", ", crop_size={:s})".format(str(crop_size)) + ) + return eval(dataset_str) + + +def get_test_datasets_flow(dataset_str): + dataset_str = dataset_str.replace("(", "Dataset(") + return [eval(s) for s in dataset_str.split("+")] diff --git a/third_party/dust3r/croco/stereoflow/datasets_stereo.py b/third_party/dust3r/croco/stereoflow/datasets_stereo.py new file mode 100644 index 0000000000000000000000000000000000000000..eeb0714c6c681601b7814ae16c781d2b91a8eb17 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/datasets_stereo.py @@ -0,0 +1,978 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Dataset structure for stereo +# -------------------------------------------------------- + +import json +import os +import os.path as osp +import pickle +import sys +from glob import glob + +import cv2 +import h5py +import numpy as np +import torch +from PIL import Image +from torch.utils import data + +from .augmentor import StereoAugmentor + +dataset_to_root = { + "CREStereo": "./data/stereoflow//crenet_stereo_trainset/stereo_trainset/crestereo/", + "SceneFlow": "./data/stereoflow//SceneFlow/", + "ETH3DLowRes": "./data/stereoflow/eth3d_lowres/", + "Booster": "./data/stereoflow/booster_gt/", + "Middlebury2021": "./data/stereoflow/middlebury/2021/data/", + "Middlebury2014": "./data/stereoflow/middlebury/2014/", + "Middlebury2006": "./data/stereoflow/middlebury/2006/", + "Middlebury2005": "./data/stereoflow/middlebury/2005/train/", + "MiddleburyEval3": "./data/stereoflow/middlebury/MiddEval3/", + "Spring": "./data/stereoflow/spring/", + "Kitti15": "./data/stereoflow/kitti-stereo-2015/", + "Kitti12": "./data/stereoflow/kitti-stereo-2012/", +} +cache_dir = "./data/stereoflow/datasets_stereo_cache/" + + +in1k_mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1) +in1k_std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1) + + +def img_to_tensor(img): + img = torch.from_numpy(img).permute(2, 0, 1).float() / 255.0 + img = (img - in1k_mean) / in1k_std + return img + + +def disp_to_tensor(disp): + return torch.from_numpy(disp)[None, :, :] + + +class StereoDataset(data.Dataset): + def __init__(self, split, augmentor=False, crop_size=None, totensor=True): + self.split = split + if not augmentor: + assert crop_size is None + if crop_size: + assert augmentor + self.crop_size = crop_size + self.augmentor_str = augmentor + self.augmentor = StereoAugmentor(crop_size) if augmentor else None + self.totensor = totensor + self.rmul = 1 # keep track of rmul + self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time) + self._prepare_data() + self._load_or_build_cache() + + def prepare_data(self): + """ + to be defined for each dataset + """ + raise NotImplementedError + + def __len__(self): + return len(self.pairnames) + + def __getitem__(self, index): + pairname = self.pairnames[index] + + # get filenames + Limgname = self.pairname_to_Limgname(pairname) + Rimgname = self.pairname_to_Rimgname(pairname) + Ldispname = ( + self.pairname_to_Ldispname(pairname) + if self.pairname_to_Ldispname is not None + else None + ) + + # load images and disparities + Limg = _read_img(Limgname) + Rimg = _read_img(Rimgname) + disp = self.load_disparity(Ldispname) if Ldispname is not None else None + + # sanity check + if disp is not None: + assert np.all(disp > 0) or self.name == "Spring", ( + self.name, + pairname, + Ldispname, + ) + + # apply augmentations + if self.augmentor is not None: + Limg, Rimg, disp = self.augmentor(Limg, Rimg, disp, self.name) + + if self.totensor: + Limg = img_to_tensor(Limg) + Rimg = img_to_tensor(Rimg) + if disp is None: + disp = torch.tensor( + [] + ) # to allow dataloader batching with default collate_gn + else: + disp = disp_to_tensor(disp) + + return Limg, Rimg, disp, str(pairname) + + def __rmul__(self, v): + self.rmul *= v + self.pairnames = v * self.pairnames + return self + + def __str__(self): + return f"{self.__class__.__name__}_{self.split}" + + def __repr__(self): + s = f"{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})" + if self.rmul == 1: + s += f"\n\tnum pairs: {len(self.pairnames)}" + else: + s += f"\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})" + return s + + def _set_root(self): + self.root = dataset_to_root[self.name] + assert os.path.isdir( + self.root + ), f"could not find root directory for dataset {self.name}: {self.root}" + + def _load_or_build_cache(self): + cache_file = osp.join(cache_dir, self.name + ".pkl") + if osp.isfile(cache_file): + with open(cache_file, "rb") as fid: + self.pairnames = pickle.load(fid)[self.split] + else: + tosave = self._build_cache() + os.makedirs(cache_dir, exist_ok=True) + with open(cache_file, "wb") as fid: + pickle.dump(tosave, fid) + self.pairnames = tosave[self.split] + + +class CREStereoDataset(StereoDataset): + def _prepare_data(self): + self.name = "CREStereo" + self._set_root() + assert self.split in ["train"] + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, pairname + "_left.jpg" + ) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname + "_right.jpg" + ) + self.pairname_to_Ldispname = lambda pairname: osp.join( + self.root, pairname + "_left.disp.png" + ) + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_crestereo_disp + + def _build_cache(self): + allpairs = [ + s + "/" + f[: -len("_left.jpg")] + for s in sorted(os.listdir(self.root)) + for f in sorted(os.listdir(self.root + "/" + s)) + if f.endswith("_left.jpg") + ] + assert len(allpairs) == 200000, "incorrect parsing of pairs in CreStereo" + tosave = {"train": allpairs} + return tosave + + +class SceneFlowDataset(StereoDataset): + def _prepare_data(self): + self.name = "SceneFlow" + self._set_root() + assert self.split in [ + "train_finalpass", + "train_cleanpass", + "train_allpass", + "test_finalpass", + "test_cleanpass", + "test_allpass", + "test1of100_cleanpass", + "test1of100_finalpass", + ] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname + ).replace("/left/", "/right/") + self.pairname_to_Ldispname = ( + lambda pairname: osp.join(self.root, pairname) + .replace("/frames_finalpass/", "/disparity/") + .replace("/frames_cleanpass/", "/disparity/")[:-4] + + ".pfm" + ) + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_sceneflow_disp + + def _build_cache(self): + trainpairs = [] + # driving + pairs = sorted(glob(self.root + "Driving/frames_finalpass/*/*/*/left/*.png")) + pairs = list(map(lambda x: x[len(self.root) :], pairs)) + assert len(pairs) == 4400, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + # monkaa + pairs = sorted(glob(self.root + "Monkaa/frames_finalpass/*/left/*.png")) + pairs = list(map(lambda x: x[len(self.root) :], pairs)) + assert len(pairs) == 8664, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + # flyingthings + pairs = sorted( + glob(self.root + "FlyingThings/frames_finalpass/TRAIN/*/*/left/*.png") + ) + pairs = list(map(lambda x: x[len(self.root) :], pairs)) + assert len(pairs) == 22390, "incorrect parsing of pairs in SceneFlow" + trainpairs += pairs + assert len(trainpairs) == 35454, "incorrect parsing of pairs in SceneFlow" + testpairs = sorted( + glob(self.root + "FlyingThings/frames_finalpass/TEST/*/*/left/*.png") + ) + testpairs = list(map(lambda x: x[len(self.root) :], testpairs)) + assert len(testpairs) == 4370, "incorrect parsing of pairs in SceneFlow" + test1of100pairs = testpairs[::100] + assert len(test1of100pairs) == 44, "incorrect parsing of pairs in SceneFlow" + # all + tosave = { + "train_finalpass": trainpairs, + "train_cleanpass": list( + map( + lambda x: x.replace("frames_finalpass", "frames_cleanpass"), + trainpairs, + ) + ), + "test_finalpass": testpairs, + "test_cleanpass": list( + map( + lambda x: x.replace("frames_finalpass", "frames_cleanpass"), + testpairs, + ) + ), + "test1of100_finalpass": test1of100pairs, + "test1of100_cleanpass": list( + map( + lambda x: x.replace("frames_finalpass", "frames_cleanpass"), + test1of100pairs, + ) + ), + } + tosave["train_allpass"] = tosave["train_finalpass"] + tosave["train_cleanpass"] + tosave["test_allpass"] = tosave["test_finalpass"] + tosave["test_cleanpass"] + return tosave + + +class Md21Dataset(StereoDataset): + def _prepare_data(self): + self.name = "Middlebury2021" + self._set_root() + assert self.split in ["train", "subtrain", "subval"] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname.replace("/im0", "/im1") + ) + self.pairname_to_Ldispname = lambda pairname: osp.join( + self.root, pairname.split("/")[0], "disp0.pfm" + ) + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury_disp + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + # trainpairs += [s+'/im0.png'] # we should remove it, it is included as such in other lightings + trainpairs += [ + s + "/ambient/" + b + "/" + a + for b in sorted(os.listdir(osp.join(self.root, s, "ambient"))) + for a in sorted(os.listdir(osp.join(self.root, s, "ambient", b))) + if a.startswith("im0") + ] + assert len(trainpairs) == 355 + subtrainpairs = [ + p for p in trainpairs if any(p.startswith(s + "/") for s in seqs[:-2]) + ] + subvalpairs = [ + p for p in trainpairs if any(p.startswith(s + "/") for s in seqs[-2:]) + ] + assert ( + len(subtrainpairs) == 335 and len(subvalpairs) == 20 + ), "incorrect parsing of pairs in Middlebury 2021" + tosave = {"train": trainpairs, "subtrain": subtrainpairs, "subval": subvalpairs} + return tosave + + +class Md14Dataset(StereoDataset): + def _prepare_data(self): + self.name = "Middlebury2014" + self._set_root() + assert self.split in ["train", "subtrain", "subval"] + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, osp.dirname(pairname), "im0.png" + ) + self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Ldispname = lambda pairname: osp.join( + self.root, osp.dirname(pairname), "disp0.pfm" + ) + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury_disp + self.has_constant_resolution = False + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + trainpairs += [s + "/im1.png", s + "/im1E.png", s + "/im1L.png"] + assert len(trainpairs) == 138 + valseqs = ["Umbrella-imperfect", "Vintage-perfect"] + assert all(s in seqs for s in valseqs) + subtrainpairs = [ + p for p in trainpairs if not any(p.startswith(s + "/") for s in valseqs) + ] + subvalpairs = [ + p for p in trainpairs if any(p.startswith(s + "/") for s in valseqs) + ] + assert ( + len(subtrainpairs) == 132 and len(subvalpairs) == 6 + ), "incorrect parsing of pairs in Middlebury 2014" + tosave = {"train": trainpairs, "subtrain": subtrainpairs, "subval": subvalpairs} + return tosave + + +class Md06Dataset(StereoDataset): + def _prepare_data(self): + self.name = "Middlebury2006" + self._set_root() + assert self.split in ["train", "subtrain", "subval"] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, osp.dirname(pairname), "view5.png" + ) + self.pairname_to_Ldispname = lambda pairname: osp.join( + self.root, pairname.split("/")[0], "disp1.png" + ) + self.load_disparity = _read_middlebury20052006_disp + self.has_constant_resolution = False + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + for i in ["Illum1", "Illum2", "Illum3"]: + for e in ["Exp0", "Exp1", "Exp2"]: + trainpairs.append(osp.join(s, i, e, "view1.png")) + assert len(trainpairs) == 189 + valseqs = ["Rocks1", "Wood2"] + assert all(s in seqs for s in valseqs) + subtrainpairs = [ + p for p in trainpairs if not any(p.startswith(s + "/") for s in valseqs) + ] + subvalpairs = [ + p for p in trainpairs if any(p.startswith(s + "/") for s in valseqs) + ] + assert ( + len(subtrainpairs) == 171 and len(subvalpairs) == 18 + ), "incorrect parsing of pairs in Middlebury 2006" + tosave = {"train": trainpairs, "subtrain": subtrainpairs, "subval": subvalpairs} + return tosave + + +class Md05Dataset(StereoDataset): + def _prepare_data(self): + self.name = "Middlebury2005" + self._set_root() + assert self.split in ["train", "subtrain", "subval"] + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, osp.dirname(pairname), "view5.png" + ) + self.pairname_to_Ldispname = lambda pairname: osp.join( + self.root, pairname.split("/")[0], "disp1.png" + ) + self.pairname_to_str = lambda pairname: pairname[:-4] + self.load_disparity = _read_middlebury20052006_disp + + def _build_cache(self): + seqs = sorted(os.listdir(self.root)) + trainpairs = [] + for s in seqs: + for i in ["Illum1", "Illum2", "Illum3"]: + for e in ["Exp0", "Exp1", "Exp2"]: + trainpairs.append(osp.join(s, i, e, "view1.png")) + assert len(trainpairs) == 54, "incorrect parsing of pairs in Middlebury 2005" + valseqs = ["Reindeer"] + assert all(s in seqs for s in valseqs) + subtrainpairs = [ + p for p in trainpairs if not any(p.startswith(s + "/") for s in valseqs) + ] + subvalpairs = [ + p for p in trainpairs if any(p.startswith(s + "/") for s in valseqs) + ] + assert ( + len(subtrainpairs) == 45 and len(subvalpairs) == 9 + ), "incorrect parsing of pairs in Middlebury 2005" + tosave = {"train": trainpairs, "subtrain": subtrainpairs, "subval": subvalpairs} + return tosave + + +class MdEval3Dataset(StereoDataset): + def _prepare_data(self): + self.name = "MiddleburyEval3" + self._set_root() + assert self.split in [ + s + "_" + r + for s in ["train", "subtrain", "subval", "test", "all"] + for r in ["full", "half", "quarter"] + ] + if self.split.endswith("_full"): + self.root = self.root.replace("/MiddEval3", "/MiddEval3_F") + elif self.split.endswith("_half"): + self.root = self.root.replace("/MiddEval3", "/MiddEval3_H") + else: + assert self.split.endswith("_quarter") + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, pairname, "im0.png" + ) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname, "im1.png" + ) + self.pairname_to_Ldispname = ( + lambda pairname: None + if pairname.startswith("test") + else osp.join(self.root, pairname, "disp0GT.pfm") + ) + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_middlebury_disp + # for submission only + self.submission_methodname = "CroCo-Stereo" + self.submission_sresolution = ( + "F" + if self.split.endswith("_full") + else ("H" if self.split.endswith("_half") else "Q") + ) + + def _build_cache(self): + trainpairs = ["train/" + s for s in sorted(os.listdir(self.root + "train/"))] + testpairs = ["test/" + s for s in sorted(os.listdir(self.root + "test/"))] + subvalpairs = trainpairs[-1:] + subtrainpairs = trainpairs[:-1] + allpairs = trainpairs + testpairs + assert ( + len(trainpairs) == 15 + and len(testpairs) == 15 + and len(subvalpairs) == 1 + and len(subtrainpairs) == 14 + and len(allpairs) == 30 + ), "incorrect parsing of pairs in Middlebury Eval v3" + tosave = {} + for r in ["full", "half", "quarter"]: + tosave.update( + **{ + "train_" + r: trainpairs, + "subtrain_" + r: subtrainpairs, + "subval_" + r: subvalpairs, + "test_" + r: testpairs, + "all_" + r: allpairs, + } + ) + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 2 + assert prediction.dtype == np.float32 + outfile = os.path.join( + outdir, + pairname.split("/")[0].replace("train", "training") + + self.submission_sresolution, + pairname.split("/")[1], + "disp0" + self.submission_methodname + ".pfm", + ) + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writePFM(outfile, prediction) + timefile = os.path.join( + os.path.dirname(outfile), "time" + self.submission_methodname + ".txt" + ) + with open(timefile, "w") as fid: + fid.write(str(time)) + + def finalize_submission(self, outdir): + cmd = f'cd {outdir}/; zip -r "{self.submission_methodname}.zip" .' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/{self.submission_methodname}.zip") + + +class ETH3DLowResDataset(StereoDataset): + def _prepare_data(self): + self.name = "ETH3DLowRes" + self._set_root() + assert self.split in ["train", "test", "subtrain", "subval", "all"] + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, pairname, "im0.png" + ) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname, "im1.png" + ) + self.pairname_to_Ldispname = ( + None + if self.split == "test" + else lambda pairname: None + if pairname.startswith("test/") + else osp.join( + self.root, pairname.replace("train/", "train_gt/"), "disp0GT.pfm" + ) + ) + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_eth3d_disp + self.has_constant_resolution = False + + def _build_cache(self): + trainpairs = ["train/" + s for s in sorted(os.listdir(self.root + "train/"))] + testpairs = ["test/" + s for s in sorted(os.listdir(self.root + "test/"))] + assert ( + len(trainpairs) == 27 and len(testpairs) == 20 + ), "incorrect parsing of pairs in ETH3D Low Res" + subvalpairs = [ + "train/delivery_area_3s", + "train/electro_3l", + "train/playground_3l", + ] + assert all(p in trainpairs for p in subvalpairs) + subtrainpairs = [p for p in trainpairs if not p in subvalpairs] + assert ( + len(subvalpairs) == 3 and len(subtrainpairs) == 24 + ), "incorrect parsing of pairs in ETH3D Low Res" + tosave = { + "train": trainpairs, + "test": testpairs, + "subtrain": subtrainpairs, + "subval": subvalpairs, + "all": trainpairs + testpairs, + } + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 2 + assert prediction.dtype == np.float32 + outfile = os.path.join( + outdir, "low_res_two_view", pairname.split("/")[1] + ".pfm" + ) + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writePFM(outfile, prediction) + timefile = outfile[:-4] + ".txt" + with open(timefile, "w") as fid: + fid.write("runtime " + str(time)) + + def finalize_submission(self, outdir): + cmd = f'cd {outdir}/; zip -r "eth3d_low_res_two_view_results.zip" low_res_two_view' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/eth3d_low_res_two_view_results.zip") + + +class BoosterDataset(StereoDataset): + def _prepare_data(self): + self.name = "Booster" + self._set_root() + assert self.split in [ + "train_balanced", + "test_balanced", + "subtrain_balanced", + "subval_balanced", + ] # we use only the balanced version + self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname + ).replace("/camera_00/", "/camera_02/") + self.pairname_to_Ldispname = lambda pairname: osp.join( + self.root, osp.dirname(pairname), "../disp_00.npy" + ) # same images with different colors, same gt per sequence + self.pairname_to_str = lambda pairname: pairname[:-4].replace( + "/camera_00/", "/" + ) + self.load_disparity = _read_booster_disp + + def _build_cache(self): + trainseqs = sorted(os.listdir(self.root + "train/balanced")) + trainpairs = [ + "train/balanced/" + s + "/camera_00/" + imname + for s in trainseqs + for imname in sorted( + os.listdir(self.root + "train/balanced/" + s + "/camera_00/") + ) + ] + testpairs = [ + "test/balanced/" + s + "/camera_00/" + imname + for s in sorted(os.listdir(self.root + "test/balanced")) + for imname in sorted( + os.listdir(self.root + "test/balanced/" + s + "/camera_00/") + ) + ] + assert len(trainpairs) == 228 and len(testpairs) == 191 + subtrainpairs = [p for p in trainpairs if any(s in p for s in trainseqs[:-2])] + subvalpairs = [p for p in trainpairs if any(s in p for s in trainseqs[-2:])] + # warning: if we do validation split, we should split scenes!!! + tosave = { + "train_balanced": trainpairs, + "test_balanced": testpairs, + "subtrain_balanced": subtrainpairs, + "subval_balanced": subvalpairs, + } + return tosave + + +class SpringDataset(StereoDataset): + def _prepare_data(self): + self.name = "Spring" + self._set_root() + assert self.split in ["train", "test", "subtrain", "subval"] + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, pairname + ".png" + ) + self.pairname_to_Rimgname = ( + lambda pairname: osp.join(self.root, pairname + ".png") + .replace("frame_right", "") + .replace("frame_left", "frame_right") + .replace("", "frame_left") + ) + self.pairname_to_Ldispname = ( + lambda pairname: None + if pairname.startswith("test") + else osp.join(self.root, pairname + ".dsp5") + .replace("frame_left", "disp1_left") + .replace("frame_right", "disp1_right") + ) + self.pairname_to_str = lambda pairname: pairname + self.load_disparity = _read_hdf5_disp + + def _build_cache(self): + trainseqs = sorted(os.listdir(osp.join(self.root, "train"))) + trainpairs = [ + osp.join("train", s, "frame_left", f[:-4]) + for s in trainseqs + for f in sorted(os.listdir(osp.join(self.root, "train", s, "frame_left"))) + ] + testseqs = sorted(os.listdir(osp.join(self.root, "test"))) + testpairs = [ + osp.join("test", s, "frame_left", f[:-4]) + for s in testseqs + for f in sorted(os.listdir(osp.join(self.root, "test", s, "frame_left"))) + ] + testpairs += [p.replace("frame_left", "frame_right") for p in testpairs] + """maxnorm = {'0001': 32.88, '0002': 228.5, '0004': 298.2, '0005': 142.5, '0006': 113.6, '0007': 27.3, '0008': 554.5, '0009': 155.6, '0010': 126.1, '0011': 87.6, '0012': 303.2, '0013': 24.14, '0014': 82.56, '0015': 98.44, '0016': 156.9, '0017': 28.17, '0018': 21.03, '0020': 178.0, '0021': 58.06, '0022': 354.2, '0023': 8.79, '0024': 97.06, '0025': 55.16, '0026': 91.9, '0027': 156.6, '0030': 200.4, '0032': 58.66, '0033': 373.5, '0036': 149.4, '0037': 5.625, '0038': 37.0, '0039': 12.2, '0041': 453.5, '0043': 457.0, '0044': 379.5, '0045': 161.8, '0047': 105.44} # => let'use 0041""" + subtrainpairs = [p for p in trainpairs if p.split("/")[1] != "0041"] + subvalpairs = [p for p in trainpairs if p.split("/")[1] == "0041"] + assert ( + len(trainpairs) == 5000 + and len(testpairs) == 2000 + and len(subtrainpairs) == 4904 + and len(subvalpairs) == 96 + ), "incorrect parsing of pairs in Spring" + tosave = { + "train": trainpairs, + "test": testpairs, + "subtrain": subtrainpairs, + "subval": subvalpairs, + } + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 2 + assert prediction.dtype == np.float32 + outfile = ( + os.path.join(outdir, pairname + ".dsp5") + .replace("frame_left", "disp1_left") + .replace("frame_right", "disp1_right") + ) + os.makedirs(os.path.dirname(outfile), exist_ok=True) + writeDsp5File(prediction, outfile) + + def finalize_submission(self, outdir): + assert self.split == "test" + exe = "{self.root}/disp1_subsampling" + if os.path.isfile(exe): + cmd = f'cd "{outdir}/test"; {exe} .' + print(cmd) + os.system(cmd) + else: + print("Could not find disp1_subsampling executable for submission.") + print("Please download it and run:") + print(f'cd "{outdir}/test"; .') + + +class Kitti12Dataset(StereoDataset): + def _prepare_data(self): + self.name = "Kitti12" + self._set_root() + assert self.split in ["train", "test"] + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, pairname + "_10.png" + ) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname.replace("/colored_0/", "/colored_1/") + "_10.png" + ) + self.pairname_to_Ldispname = ( + None + if self.split == "test" + else lambda pairname: osp.join( + self.root, pairname.replace("/colored_0/", "/disp_occ/") + "_10.png" + ) + ) + self.pairname_to_str = lambda pairname: pairname.replace("/colored_0/", "/") + self.load_disparity = _read_kitti_disp + + def _build_cache(self): + trainseqs = ["training/colored_0/%06d" % (i) for i in range(194)] + testseqs = ["testing/colored_0/%06d" % (i) for i in range(195)] + assert ( + len(trainseqs) == 194 and len(testseqs) == 195 + ), "incorrect parsing of pairs in Kitti12" + tosave = {"train": trainseqs, "test": testseqs} + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 2 + assert prediction.dtype == np.float32 + outfile = os.path.join(outdir, pairname.split("/")[-1] + "_10.png") + os.makedirs(os.path.dirname(outfile), exist_ok=True) + img = (prediction * 256).astype("uint16") + Image.fromarray(img).save(outfile) + + def finalize_submission(self, outdir): + assert self.split == "test" + cmd = f'cd {outdir}/; zip -r "kitti12_results.zip" .' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/kitti12_results.zip") + + +class Kitti15Dataset(StereoDataset): + def _prepare_data(self): + self.name = "Kitti15" + self._set_root() + assert self.split in ["train", "subtrain", "subval", "test"] + self.pairname_to_Limgname = lambda pairname: osp.join( + self.root, pairname + "_10.png" + ) + self.pairname_to_Rimgname = lambda pairname: osp.join( + self.root, pairname.replace("/image_2/", "/image_3/") + "_10.png" + ) + self.pairname_to_Ldispname = ( + None + if self.split == "test" + else lambda pairname: osp.join( + self.root, pairname.replace("/image_2/", "/disp_occ_0/") + "_10.png" + ) + ) + self.pairname_to_str = lambda pairname: pairname.replace("/image_2/", "/") + self.load_disparity = _read_kitti_disp + + def _build_cache(self): + trainseqs = ["training/image_2/%06d" % (i) for i in range(200)] + subtrainseqs = trainseqs[:-5] + subvalseqs = trainseqs[-5:] + testseqs = ["testing/image_2/%06d" % (i) for i in range(200)] + assert ( + len(trainseqs) == 200 + and len(subtrainseqs) == 195 + and len(subvalseqs) == 5 + and len(testseqs) == 200 + ), "incorrect parsing of pairs in Kitti15" + tosave = { + "train": trainseqs, + "subtrain": subtrainseqs, + "subval": subvalseqs, + "test": testseqs, + } + return tosave + + def submission_save_pairname(self, pairname, prediction, outdir, time): + assert prediction.ndim == 2 + assert prediction.dtype == np.float32 + outfile = os.path.join(outdir, "disp_0", pairname.split("/")[-1] + "_10.png") + os.makedirs(os.path.dirname(outfile), exist_ok=True) + img = (prediction * 256).astype("uint16") + Image.fromarray(img).save(outfile) + + def finalize_submission(self, outdir): + assert self.split == "test" + cmd = f'cd {outdir}/; zip -r "kitti15_results.zip" disp_0' + print(cmd) + os.system(cmd) + print(f"Done. Submission file at {outdir}/kitti15_results.zip") + + +### auxiliary functions + + +def _read_img(filename): + # convert to RGB for scene flow finalpass data + img = np.asarray(Image.open(filename).convert("RGB")) + return img + + +def _read_booster_disp(filename): + disp = np.load(filename) + disp[disp == 0.0] = np.inf + return disp + + +def _read_png_disp(filename, coef=1.0): + disp = np.asarray(Image.open(filename)) + disp = disp.astype(np.float32) / coef + disp[disp == 0.0] = np.inf + return disp + + +def _read_pfm_disp(filename): + disp = np.ascontiguousarray(_read_pfm(filename)[0]) + disp[ + disp <= 0 + ] = ( + np.inf + ) # eg /nfs/data/ffs-3d/datasets/middlebury/2014/Shopvac-imperfect/disp0.pfm + return disp + + +def _read_npy_disp(filename): + return np.load(filename) + + +def _read_crestereo_disp(filename): + return _read_png_disp(filename, coef=32.0) + + +def _read_middlebury20052006_disp(filename): + return _read_png_disp(filename, coef=1.0) + + +def _read_kitti_disp(filename): + return _read_png_disp(filename, coef=256.0) + + +_read_sceneflow_disp = _read_pfm_disp +_read_eth3d_disp = _read_pfm_disp +_read_middlebury_disp = _read_pfm_disp +_read_carla_disp = _read_pfm_disp +_read_tartanair_disp = _read_npy_disp + + +def _read_hdf5_disp(filename): + disp = np.asarray(h5py.File(filename)["disparity"]) + disp[np.isnan(disp)] = np.inf # make invalid values as +inf + # disp[disp==0.0] = np.inf # make invalid values as +inf + return disp.astype(np.float32) + + +import re + + +def _read_pfm(file): + file = open(file, "rb") + + color = None + width = None + height = None + scale = None + endian = None + + header = file.readline().rstrip() + if header.decode("ascii") == "PF": + color = True + elif header.decode("ascii") == "Pf": + color = False + else: + raise Exception("Not a PFM file.") + + dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii")) + if dim_match: + width, height = list(map(int, dim_match.groups())) + else: + raise Exception("Malformed PFM header.") + + scale = float(file.readline().decode("ascii").rstrip()) + if scale < 0: # little-endian + endian = "<" + scale = -scale + else: + endian = ">" # big-endian + + data = np.fromfile(file, endian + "f") + shape = (height, width, 3) if color else (height, width) + + data = np.reshape(data, shape) + data = np.flipud(data) + return data, scale + + +def writePFM(file, image, scale=1): + file = open(file, "wb") + + color = None + + if image.dtype.name != "float32": + raise Exception("Image dtype must be float32.") + + image = np.flipud(image) + + if len(image.shape) == 3 and image.shape[2] == 3: # color image + color = True + elif ( + len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 + ): # greyscale + color = False + else: + raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") + + file.write("PF\n" if color else "Pf\n".encode()) + file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) + + endian = image.dtype.byteorder + + if endian == "<" or endian == "=" and sys.byteorder == "little": + scale = -scale + + file.write("%f\n".encode() % scale) + + image.tofile(file) + + +def writeDsp5File(disp, filename): + with h5py.File(filename, "w") as f: + f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5) + + +# disp visualization + + +def vis_disparity(disp, m=None, M=None): + if m is None: + m = disp.min() + if M is None: + M = disp.max() + disp_vis = (disp - m) / (M - m) * 255.0 + disp_vis = disp_vis.astype("uint8") + disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) + return disp_vis + + +# dataset getter + + +def get_train_dataset_stereo(dataset_str, augmentor=True, crop_size=None): + dataset_str = dataset_str.replace("(", "Dataset(") + if augmentor: + dataset_str = dataset_str.replace(")", ", augmentor=True)") + if crop_size is not None: + dataset_str = dataset_str.replace( + ")", ", crop_size={:s})".format(str(crop_size)) + ) + return eval(dataset_str) + + +def get_test_datasets_stereo(dataset_str): + dataset_str = dataset_str.replace("(", "Dataset(") + return [eval(s) for s in dataset_str.split("+")] diff --git a/third_party/dust3r/croco/stereoflow/download_model.sh b/third_party/dust3r/croco/stereoflow/download_model.sh new file mode 100644 index 0000000000000000000000000000000000000000..533119609108c5ec3c22ff79b10e9215c1ac5098 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/download_model.sh @@ -0,0 +1,12 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +model=$1 +outfile="stereoflow_models/${model}" +if [[ ! -f $outfile ]] +then + mkdir -p stereoflow_models/; + wget https://download.europe.naverlabs.com/ComputerVision/CroCo/StereoFlow_models/$1 -P stereoflow_models/; +else + echo "Model ${model} already downloaded in ${outfile}." +fi \ No newline at end of file diff --git a/third_party/dust3r/croco/stereoflow/engine.py b/third_party/dust3r/croco/stereoflow/engine.py new file mode 100644 index 0000000000000000000000000000000000000000..92172862e2b60405b06e1dccd6ea7753193f9cdc --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/engine.py @@ -0,0 +1,364 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main function for training one epoch or testing +# -------------------------------------------------------- + +import math +import sys +from typing import Iterable + +import numpy as np +import torch +import torchvision +from utils import misc as misc + + +def split_prediction_conf(predictions, with_conf=False): + if not with_conf: + return predictions, None + conf = predictions[:, -1:, :, :] + predictions = predictions[:, :-1, :, :] + return predictions, conf + + +def train_one_epoch( + model: torch.nn.Module, + criterion: torch.nn.Module, + metrics: torch.nn.Module, + data_loader: Iterable, + optimizer: torch.optim.Optimizer, + device: torch.device, + epoch: int, + loss_scaler, + log_writer=None, + print_freq=20, + args=None, +): + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")) + header = "Epoch: [{}]".format(epoch) + + accum_iter = args.accum_iter + + optimizer.zero_grad() + + details = {} + + if log_writer is not None: + print("log_dir: {}".format(log_writer.log_dir)) + + if args.img_per_epoch: + iter_per_epoch = args.img_per_epoch // args.batch_size + int( + args.img_per_epoch % args.batch_size > 0 + ) + assert ( + len(data_loader) >= iter_per_epoch + ), "Dataset is too small for so many iterations" + len_data_loader = iter_per_epoch + else: + len_data_loader, iter_per_epoch = len(data_loader), None + + for data_iter_step, (image1, image2, gt, pairname) in enumerate( + metric_logger.log_every( + data_loader, print_freq, header, max_iter=iter_per_epoch + ) + ): + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate( + optimizer, data_iter_step / len_data_loader + epoch, args + ) + + with torch.cuda.amp.autocast(enabled=bool(args.amp)): + prediction = model(image1, image2) + prediction, conf = split_prediction_conf(prediction, criterion.with_conf) + batch_metrics = metrics(prediction.detach(), gt) + loss = ( + criterion(prediction, gt) + if conf is None + else criterion(prediction, gt, conf) + ) + + loss_value = loss.item() + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value)) + sys.exit(1) + + loss /= accum_iter + loss_scaler( + loss, + optimizer, + parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0, + ) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + torch.cuda.synchronize() + + metric_logger.update(loss=loss_value) + for k, v in batch_metrics.items(): + metric_logger.update(**{k: v.item()}) + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(lr=lr) + + # if args.dsitributed: loss_value_reduce = misc.all_reduce_mean(loss_value) + time_to_log = (data_iter_step + 1) % ( + args.tboard_log_step * accum_iter + ) == 0 or data_iter_step == len_data_loader - 1 + loss_value_reduce = misc.all_reduce_mean(loss_value) + if log_writer is not None and time_to_log: + epoch_1000x = int((data_iter_step / len_data_loader + epoch) * 1000) + # We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes. + log_writer.add_scalar("train/loss", loss_value_reduce, epoch_1000x) + log_writer.add_scalar("lr", lr, epoch_1000x) + for k, v in batch_metrics.items(): + log_writer.add_scalar("train/" + k, v.item(), epoch_1000x) + + # gather the stats from all processes + # if args.distributed: metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def validate_one_epoch( + model: torch.nn.Module, + criterion: torch.nn.Module, + metrics: torch.nn.Module, + data_loaders: list[Iterable], + device: torch.device, + epoch: int, + log_writer=None, + args=None, +): + model.eval() + metric_loggers = [] + header = "Epoch: [{}]".format(epoch) + print_freq = 20 + + conf_mode = args.tile_conf_mode + crop = args.crop + + if log_writer is not None: + print("log_dir: {}".format(log_writer.log_dir)) + + results = {} + dnames = [] + image1, image2, gt, prediction = None, None, None, None + for didx, data_loader in enumerate(data_loaders): + dname = str(data_loader.dataset) + dnames.append(dname) + metric_loggers.append(misc.MetricLogger(delimiter=" ")) + for data_iter_step, (image1, image2, gt, pairname) in enumerate( + metric_loggers[didx].log_every(data_loader, print_freq, header) + ): + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = gt.to(device, non_blocking=True) + if dname.startswith("Spring"): + assert ( + gt.size(2) == image1.size(2) * 2 + and gt.size(3) == image1.size(3) * 2 + ) + gt = ( + gt[:, :, 0::2, 0::2] + + gt[:, :, 0::2, 1::2] + + gt[:, :, 1::2, 0::2] + + gt[:, :, 1::2, 1::2] + ) / 4.0 # we approximate the gt based on the 2x upsampled ones + + with torch.inference_mode(): + prediction, tiled_loss, c = tiled_pred( + model, + criterion, + image1, + image2, + gt, + conf_mode=conf_mode, + overlap=args.val_overlap, + crop=crop, + with_conf=criterion.with_conf, + ) + batch_metrics = metrics(prediction.detach(), gt) + loss = ( + criterion(prediction.detach(), gt) + if not criterion.with_conf + else criterion(prediction.detach(), gt, c) + ) + loss_value = loss.item() + metric_loggers[didx].update(loss_tiled=tiled_loss.item()) + metric_loggers[didx].update(**{f"loss": loss_value}) + for k, v in batch_metrics.items(): + metric_loggers[didx].update(**{dname + "_" + k: v.item()}) + + results = { + k: meter.global_avg for ml in metric_loggers for k, meter in ml.meters.items() + } + if len(dnames) > 1: + for k in batch_metrics.keys(): + results["AVG_" + k] = sum( + results[dname + "_" + k] for dname in dnames + ) / len(dnames) + + if log_writer is not None: + epoch_1000x = int((1 + epoch) * 1000) + for k, v in results.items(): + log_writer.add_scalar("val/" + k, v, epoch_1000x) + + print("Averaged stats:", results) + return results + + +import torch.nn.functional as F + + +def _resize_img(img, new_size): + return F.interpolate(img, size=new_size, mode="bicubic", align_corners=False) + + +def _resize_stereo_or_flow(data, new_size): + assert data.ndim == 4 + assert data.size(1) in [1, 2] + scale_x = new_size[1] / float(data.size(3)) + out = F.interpolate(data, size=new_size, mode="bicubic", align_corners=False) + out[:, 0, :, :] *= scale_x + if out.size(1) == 2: + scale_y = new_size[0] / float(data.size(2)) + out[:, 1, :, :] *= scale_y + print(scale_x, new_size, data.shape) + return out + + +@torch.no_grad() +def tiled_pred( + model, + criterion, + img1, + img2, + gt, + overlap=0.5, + bad_crop_thr=0.05, + downscale=False, + crop=512, + ret="loss", + conf_mode="conf_expsigmoid_10_5", + with_conf=False, + return_time=False, +): + # for each image, we are going to run inference on many overlapping patches + # then, all predictions will be weighted-averaged + if gt is not None: + B, C, H, W = gt.shape + else: + B, _, H, W = img1.shape + C = model.head.num_channels - int(with_conf) + win_height, win_width = crop[0], crop[1] + + # upscale to be larger than the crop + do_change_scale = H < win_height or W < win_width + if do_change_scale: + upscale_factor = max(win_width / W, win_height / W) + original_size = (H, W) + new_size = (round(H * upscale_factor), round(W * upscale_factor)) + img1 = _resize_img(img1, new_size) + img2 = _resize_img(img2, new_size) + # resize gt just for the computation of tiled losses + if gt is not None: + gt = _resize_stereo_or_flow(gt, new_size) + H, W = img1.shape[2:4] + + if conf_mode.startswith("conf_expsigmoid_"): # conf_expsigmoid_30_10 + beta, betasigmoid = map(float, conf_mode[len("conf_expsigmoid_") :].split("_")) + elif conf_mode.startswith("conf_expbeta"): # conf_expbeta3 + beta = float(conf_mode[len("conf_expbeta") :]) + else: + raise NotImplementedError(f"conf_mode {conf_mode} is not implemented") + + def crop_generator(): + for sy in _overlapping(H, win_height, overlap): + for sx in _overlapping(W, win_width, overlap): + yield sy, sx, sy, sx, True + + # keep track of weighted sum of prediction*weights and weights + accu_pred = img1.new_zeros( + (B, C, H, W) + ) # accumulate the weighted sum of predictions + accu_conf = img1.new_zeros((B, H, W)) + 1e-16 # accumulate the weights + accu_c = img1.new_zeros( + (B, H, W) + ) # accumulate the weighted sum of confidences ; not so useful except for computing some losses + + tiled_losses = [] + + if return_time: + start = torch.cuda.Event(enable_timing=True) + end = torch.cuda.Event(enable_timing=True) + start.record() + + for sy1, sx1, sy2, sx2, aligned in crop_generator(): + # compute optical flow there + pred = model(_crop(img1, sy1, sx1), _crop(img2, sy2, sx2)) + pred, predconf = split_prediction_conf(pred, with_conf=with_conf) + + if gt is not None: + gtcrop = _crop(gt, sy1, sx1) + if criterion is not None and gt is not None: + tiled_losses.append( + criterion(pred, gtcrop).item() + if predconf is None + else criterion(pred, gtcrop, predconf).item() + ) + + if conf_mode.startswith("conf_expsigmoid_"): + conf = torch.exp( + -beta * 2 * (torch.sigmoid(predconf / betasigmoid) - 0.5) + ).view(B, win_height, win_width) + elif conf_mode.startswith("conf_expbeta"): + conf = torch.exp(-beta * predconf).view(B, win_height, win_width) + else: + raise NotImplementedError + + accu_pred[..., sy1, sx1] += pred * conf[:, None, :, :] + accu_conf[..., sy1, sx1] += conf + accu_c[..., sy1, sx1] += predconf.view(B, win_height, win_width) * conf + + pred = accu_pred / accu_conf[:, None, :, :] + c = accu_c / accu_conf + assert not torch.any(torch.isnan(pred)) + + if return_time: + end.record() + torch.cuda.synchronize() + time = start.elapsed_time(end) / 1000.0 # this was in milliseconds + + if do_change_scale: + pred = _resize_stereo_or_flow(pred, original_size) + + if return_time: + return pred, torch.mean(torch.tensor(tiled_losses)), c, time + return pred, torch.mean(torch.tensor(tiled_losses)), c + + +def _overlapping(total, window, overlap=0.5): + assert total >= window and 0 <= overlap < 1, (total, window, overlap) + num_windows = 1 + int(np.ceil((total - window) / ((1 - overlap) * window))) + offsets = np.linspace(0, total - window, num_windows).round().astype(int) + yield from (slice(x, x + window) for x in offsets) + + +def _crop(img, sy, sx): + B, THREE, H, W = img.shape + if 0 <= sy.start and sy.stop <= H and 0 <= sx.start and sx.stop <= W: + return img[:, :, sy, sx] + l, r = max(0, -sx.start), max(0, sx.stop - W) + t, b = max(0, -sy.start), max(0, sy.stop - H) + img = torch.nn.functional.pad(img, (l, r, t, b), mode="constant") + return img[:, :, slice(sy.start + t, sy.stop + t), slice(sx.start + l, sx.stop + l)] diff --git a/third_party/dust3r/croco/stereoflow/test.py b/third_party/dust3r/croco/stereoflow/test.py new file mode 100644 index 0000000000000000000000000000000000000000..4abe5f9c01daff1faa4b243c66a2fed534ac324d --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/test.py @@ -0,0 +1,299 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main test function +# -------------------------------------------------------- + +import argparse +import os +import pickle + +import numpy as np +import torch +import utils.misc as misc +from models.croco_downstream import CroCoDownstreamBinocular +from models.head_downstream import PixelwiseTaskWithDPT +from PIL import Image +from stereoflow.criterion import * +from stereoflow.datasets_flow import flowToColor, get_test_datasets_flow +from stereoflow.datasets_stereo import get_test_datasets_stereo, vis_disparity +from stereoflow.engine import tiled_pred +from torch.utils.data import DataLoader +from tqdm import tqdm + + +def get_args_parser(): + parser = argparse.ArgumentParser("Test CroCo models on stereo/flow", add_help=False) + # important argument + parser.add_argument( + "--model", required=True, type=str, help="Path to the model to evaluate" + ) + parser.add_argument( + "--dataset", + required=True, + type=str, + help="test dataset (there can be multiple dataset separated by a +)", + ) + # tiling + parser.add_argument( + "--tile_conf_mode", + type=str, + default="", + help="Weights for the tiling aggregation based on confidence (empty means use the formula from the loaded checkpoint", + ) + parser.add_argument( + "--tile_overlap", type=float, default=0.7, help="overlap between tiles" + ) + # save (it will automatically go to _/_) + parser.add_argument( + "--save", + type=str, + nargs="+", + default=[], + help="what to save: \ + metrics (pickle file), \ + pred (raw prediction save as torch tensor), \ + visu (visualization in png of each prediction), \ + err10 (visualization in png of the error clamp at 10 for each prediction), \ + submission (submission file)", + ) + # other (no impact) + parser.add_argument("--num_workers", default=4, type=int) + return parser + + +def _load_model_and_criterion(model_path, do_load_metrics, device): + print("loading model from", model_path) + assert os.path.isfile(model_path) + ckpt = torch.load(model_path, "cpu") + + ckpt_args = ckpt["args"] + task = ckpt_args.task + tile_conf_mode = ckpt_args.tile_conf_mode + num_channels = {"stereo": 1, "flow": 2}[task] + with_conf = eval(ckpt_args.criterion).with_conf + if with_conf: + num_channels += 1 + print("head: PixelwiseTaskWithDPT()") + head = PixelwiseTaskWithDPT() + head.num_channels = num_channels + print("croco_args:", ckpt_args.croco_args) + model = CroCoDownstreamBinocular(head, **ckpt_args.croco_args) + msg = model.load_state_dict(ckpt["model"], strict=True) + model.eval() + model = model.to(device) + + if do_load_metrics: + if task == "stereo": + metrics = StereoDatasetMetrics().to(device) + else: + metrics = FlowDatasetMetrics().to(device) + else: + metrics = None + + return model, metrics, ckpt_args.crop, with_conf, task, tile_conf_mode + + +def _save_batch( + pred, gt, pairnames, dataset, task, save, outdir, time, submission_dir=None +): + for i in range(len(pairnames)): + pairname = ( + eval(pairnames[i]) if pairnames[i].startswith("(") else pairnames[i] + ) # unbatch pairname + fname = os.path.join(outdir, dataset.pairname_to_str(pairname)) + os.makedirs(os.path.dirname(fname), exist_ok=True) + + predi = pred[i, ...] + if gt is not None: + gti = gt[i, ...] + + if "pred" in save: + torch.save(predi.squeeze(0).cpu(), fname + "_pred.pth") + + if "visu" in save: + if task == "stereo": + disparity = predi.permute((1, 2, 0)).squeeze(2).cpu().numpy() + m, M = None + if gt is not None: + mask = torch.isfinite(gti) + m = gt[mask].min() + M = gt[mask].max() + img_disparity = vis_disparity(disparity, m=m, M=M) + Image.fromarray(img_disparity).save(fname + "_pred.png") + else: + # normalize flowToColor according to the maxnorm of gt (or prediction if not available) + flowNorm = ( + torch.sqrt( + torch.sum((gti if gt is not None else predi) ** 2, dim=0) + ) + .max() + .item() + ) + imgflow = flowToColor( + predi.permute((1, 2, 0)).cpu().numpy(), maxflow=flowNorm + ) + Image.fromarray(imgflow).save(fname + "_pred.png") + + if "err10" in save: + assert gt is not None + L2err = torch.sqrt(torch.sum((gti - predi) ** 2, dim=0)) + valid = torch.isfinite(gti[0, :, :]) + L2err[~valid] = 0.0 + L2err = torch.clamp(L2err, max=10.0) + red = (L2err * 255.0 / 10.0).to(dtype=torch.uint8)[:, :, None] + zer = torch.zeros_like(red) + imgerr = torch.cat((red, zer, zer), dim=2).cpu().numpy() + Image.fromarray(imgerr).save(fname + "_err10.png") + + if "submission" in save: + assert submission_dir is not None + predi_np = ( + predi.permute(1, 2, 0).squeeze(2).cpu().numpy() + ) # transform into HxWx2 for flow or HxW for stereo + dataset.submission_save_pairname(pairname, predi_np, submission_dir, time) + + +def main(args): + # load the pretrained model and metrics + device = ( + torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") + ) + ( + model, + metrics, + cropsize, + with_conf, + task, + tile_conf_mode, + ) = _load_model_and_criterion(args.model, "metrics" in args.save, device) + if args.tile_conf_mode == "": + args.tile_conf_mode = tile_conf_mode + + # load the datasets + datasets = ( + get_test_datasets_stereo if task == "stereo" else get_test_datasets_flow + )(args.dataset) + dataloaders = [ + DataLoader( + dataset, + batch_size=1, + shuffle=False, + num_workers=args.num_workers, + pin_memory=True, + drop_last=False, + ) + for dataset in datasets + ] + + # run + for i, dataloader in enumerate(dataloaders): + dataset = datasets[i] + dstr = args.dataset.split("+")[i] + + outdir = args.model + "_" + misc.filename(dstr) + if "metrics" in args.save and len(args.save) == 1: + fname = os.path.join( + outdir, f"conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}.pkl" + ) + if os.path.isfile(fname) and len(args.save) == 1: + print(" metrics already compute in " + fname) + with open(fname, "rb") as fid: + results = pickle.load(fid) + for k, v in results.items(): + print("{:s}: {:.3f}".format(k, v)) + continue + + if "submission" in args.save: + dirname = ( + f"submission_conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}" + ) + submission_dir = os.path.join(outdir, dirname) + else: + submission_dir = None + + print("") + print("saving {:s} in {:s}".format("+".join(args.save), outdir)) + print(repr(dataset)) + + if metrics is not None: + metrics.reset() + + for data_iter_step, (image1, image2, gt, pairnames) in enumerate( + tqdm(dataloader) + ): + do_flip = ( + task == "stereo" + and dstr.startswith("Spring") + and any("right" in p for p in pairnames) + ) # we flip the images and will flip the prediction after as we assume img1 is on the left + + image1 = image1.to(device, non_blocking=True) + image2 = image2.to(device, non_blocking=True) + gt = ( + gt.to(device, non_blocking=True) if gt.numel() > 0 else None + ) # special case for test time + if do_flip: + assert all("right" in p for p in pairnames) + image1 = image1.flip( + dims=[3] + ) # this is already the right frame, let's flip it + image2 = image2.flip(dims=[3]) + gt = gt # that is ok + + with torch.inference_mode(): + pred, _, _, time = tiled_pred( + model, + None, + image1, + image2, + None if dataset.name == "Spring" else gt, + conf_mode=args.tile_conf_mode, + overlap=args.tile_overlap, + crop=cropsize, + with_conf=with_conf, + return_time=True, + ) + + if do_flip: + pred = pred.flip(dims=[3]) + + if metrics is not None: + metrics.add_batch(pred, gt) + + if any(k in args.save for k in ["pred", "visu", "err10", "submission"]): + _save_batch( + pred, + gt, + pairnames, + dataset, + task, + args.save, + outdir, + time, + submission_dir=submission_dir, + ) + + # print + if metrics is not None: + results = metrics.get_results() + for k, v in results.items(): + print("{:s}: {:.3f}".format(k, v)) + + # save if needed + if "metrics" in args.save: + os.makedirs(os.path.dirname(fname), exist_ok=True) + with open(fname, "wb") as fid: + pickle.dump(results, fid) + print("metrics saved in", fname) + + # finalize submission if needed + if "submission" in args.save: + dataset.finalize_submission(submission_dir) + + +if __name__ == "__main__": + args = get_args_parser() + args = args.parse_args() + main(args) diff --git a/third_party/dust3r/croco/stereoflow/train.py b/third_party/dust3r/croco/stereoflow/train.py new file mode 100644 index 0000000000000000000000000000000000000000..09332fdc8efdfd7efd5314ca43586b88a2a85b11 --- /dev/null +++ b/third_party/dust3r/croco/stereoflow/train.py @@ -0,0 +1,452 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). + +# -------------------------------------------------------- +# Main training function +# -------------------------------------------------------- + +import argparse +import datetime +import json +import os +import sys +import time + +import numpy as np +import torch +import torch.backends.cudnn as cudnn +import torch.distributed as dist +import torchvision.datasets as datasets +import torchvision.transforms as transforms +import utils +import utils.misc as misc +from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt +from models.head_downstream import PixelwiseTaskWithDPT +from models.pos_embed import interpolate_pos_embed +from stereoflow.criterion import * +from stereoflow.datasets_flow import get_test_datasets_flow, get_train_dataset_flow +from stereoflow.datasets_stereo import ( + get_test_datasets_stereo, + get_train_dataset_stereo, +) +from stereoflow.engine import train_one_epoch, validate_one_epoch +from torch.utils.data import DataLoader +from torch.utils.tensorboard import SummaryWriter +from utils.misc import NativeScalerWithGradNormCount as NativeScaler + + +def get_args_parser(): + # prepare subparsers + parser = argparse.ArgumentParser( + "Finetuning CroCo models on stereo or flow", add_help=False + ) + subparsers = parser.add_subparsers( + title="Task (stereo or flow)", dest="task", required=True + ) + parser_stereo = subparsers.add_parser("stereo", help="Training stereo model") + parser_flow = subparsers.add_parser("flow", help="Training flow model") + + def add_arg( + name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs + ): + if default is not None: + assert ( + default_stereo is None and default_flow is None + ), "setting default makes default_stereo and default_flow disabled" + parser_stereo.add_argument( + name_or_flags, + default=default if default is not None else default_stereo, + **kwargs, + ) + parser_flow.add_argument( + name_or_flags, + default=default if default is not None else default_flow, + **kwargs, + ) + + # output dir + add_arg( + "--output_dir", + required=True, + type=str, + help="path where to save, if empty, automatically created", + ) + # model + add_arg( + "--crop", + type=int, + nargs="+", + default_stereo=[352, 704], + default_flow=[320, 384], + help="size of the random image crops used during training.", + ) + add_arg( + "--pretrained", + required=True, + type=str, + help="Load pretrained model (required as croco arguments come from there)", + ) + # criterion + add_arg( + "--criterion", + default_stereo="LaplacianLossBounded2()", + default_flow="LaplacianLossBounded()", + type=str, + help="string to evaluate to get criterion", + ) + add_arg("--bestmetric", default_stereo="avgerr", default_flow="EPE", type=str) + # dataset + add_arg("--dataset", type=str, required=True, help="training set") + # training + add_arg("--seed", default=0, type=int, help="seed") + add_arg( + "--batch_size", + default_stereo=6, + default_flow=8, + type=int, + help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus", + ) + add_arg("--epochs", default=32, type=int, help="number of training epochs") + add_arg( + "--img_per_epoch", + type=int, + default=None, + help="Fix the number of images seen in an epoch (None means use all training pairs)", + ) + add_arg( + "--accum_iter", + default=1, + type=int, + help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)", + ) + add_arg( + "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" + ) + add_arg( + "--lr", + type=float, + default_stereo=3e-5, + default_flow=2e-5, + metavar="LR", + help="learning rate (absolute lr)", + ) + add_arg( + "--min_lr", + type=float, + default=0.0, + metavar="LR", + help="lower lr bound for cyclic schedulers that hit 0", + ) + add_arg( + "--warmup_epochs", type=int, default=1, metavar="N", help="epochs to warmup LR" + ) + add_arg( + "--optimizer", + default="AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))", + type=str, + help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]", + ) + add_arg( + "--amp", + default=0, + type=int, + choices=[0, 1], + help="enable automatic mixed precision training", + ) + # validation + add_arg( + "--val_dataset", + type=str, + default="", + help="Validation sets, multiple separated by + (empty string means that no validation is performed)", + ) + add_arg( + "--tile_conf_mode", + type=str, + default_stereo="conf_expsigmoid_15_3", + default_flow="conf_expsigmoid_10_5", + help="Weights for tile aggregation", + ) + add_arg( + "--val_overlap", default=0.7, type=float, help="Overlap value for the tiling" + ) + # others + add_arg("--num_workers", default=8, type=int) + add_arg("--eval_every", type=int, default=1, help="Val loss evaluation frequency") + add_arg("--save_every", type=int, default=1, help="Save checkpoint frequency") + add_arg( + "--start_from", + type=str, + default=None, + help="Start training using weights from an other model (eg for finetuning)", + ) + add_arg( + "--tboard_log_step", + type=int, + default=100, + help="Log to tboard every so many steps", + ) + add_arg( + "--dist_url", default="env://", help="url used to set up distributed training" + ) + + return parser + + +def main(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + num_tasks = misc.get_world_size() + + assert os.path.isfile(args.pretrained) + print("output_dir: " + args.output_dir) + os.makedirs(args.output_dir, exist_ok=True) + + # fix the seed for reproducibility + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + cudnn.benchmark = True + + # Metrics / criterion + device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") + metrics = (StereoMetrics if args.task == "stereo" else FlowMetrics)().to(device) + criterion = eval(args.criterion).to(device) + print("Criterion: ", args.criterion) + + # Prepare model + assert os.path.isfile(args.pretrained) + ckpt = torch.load(args.pretrained, "cpu") + croco_args = croco_args_from_ckpt(ckpt) + croco_args["img_size"] = (args.crop[0], args.crop[1]) + print("Croco args: " + str(croco_args)) + args.croco_args = croco_args # saved for test time + # prepare head + num_channels = {"stereo": 1, "flow": 2}[args.task] + if criterion.with_conf: + num_channels += 1 + print(f"Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)") + head = PixelwiseTaskWithDPT() + head.num_channels = num_channels + # build model and load pretrained weights + model = CroCoDownstreamBinocular(head, **croco_args) + interpolate_pos_embed(model, ckpt["model"]) + msg = model.load_state_dict(ckpt["model"], strict=False) + print(msg) + + total_params = sum(p.numel() for p in model.parameters()) + total_params_trainable = sum( + p.numel() for p in model.parameters() if p.requires_grad + ) + print(f"Total params: {total_params}") + print(f"Total params trainable: {total_params_trainable}") + model_without_ddp = model.to(device) + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + print("lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[args.gpu], static_graph=True + ) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) + optimizer = eval(f"torch.optim.{args.optimizer}") + print(optimizer) + loss_scaler = NativeScaler() + + # automatic restart + last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth") + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + if not args.resume and args.start_from: + print(f"Starting from an other model's weights: {args.start_from}") + best_so_far = None + args.start_epoch = 0 + ckpt = torch.load(args.start_from, "cpu") + msg = model_without_ddp.load_state_dict(ckpt["model"], strict=False) + print(msg) + else: + best_so_far = misc.load_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + ) + + if best_so_far is None: + best_so_far = np.inf + + # tensorboard + log_writer = None + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter( + log_dir=args.output_dir, purge_step=args.start_epoch * 1000 + ) + + # dataset and loader + print("Building Train Data loader for dataset: ", args.dataset) + train_dataset = ( + get_train_dataset_stereo if args.task == "stereo" else get_train_dataset_flow + )(args.dataset, crop_size=args.crop) + + def _print_repr_dataset(d): + if isinstance(d, torch.utils.data.dataset.ConcatDataset): + for dd in d.datasets: + _print_repr_dataset(dd) + else: + print(repr(d)) + + _print_repr_dataset(train_dataset) + print(" total length:", len(train_dataset)) + if args.distributed: + sampler_train = torch.utils.data.DistributedSampler( + train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True + ) + else: + sampler_train = torch.utils.data.RandomSampler(train_dataset) + data_loader_train = torch.utils.data.DataLoader( + train_dataset, + sampler=sampler_train, + batch_size=args.batch_size, + num_workers=args.num_workers, + pin_memory=True, + drop_last=True, + ) + if args.val_dataset == "": + data_loaders_val = None + else: + print("Building Val Data loader for datasets: ", args.val_dataset) + val_datasets = ( + get_test_datasets_stereo + if args.task == "stereo" + else get_test_datasets_flow + )(args.val_dataset) + for val_dataset in val_datasets: + print(repr(val_dataset)) + data_loaders_val = [ + DataLoader( + val_dataset, + batch_size=1, + shuffle=False, + num_workers=args.num_workers, + pin_memory=True, + drop_last=False, + ) + for val_dataset in val_datasets + ] + bestmetric = ( + "AVG_" + if len(data_loaders_val) > 1 + else str(data_loaders_val[0].dataset) + "_" + ) + args.bestmetric + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + # Training Loop + for epoch in range(args.start_epoch, args.epochs): + if args.distributed: + data_loader_train.sampler.set_epoch(epoch) + + # Train + epoch_start = time.time() + train_stats = train_one_epoch( + model, + criterion, + metrics, + data_loader_train, + optimizer, + device, + epoch, + loss_scaler, + log_writer=log_writer, + args=args, + ) + epoch_time = time.time() - epoch_start + + if args.distributed: + dist.barrier() + + # Validation (current naive implementation runs the validation on every gpu ... not smart ...) + if ( + data_loaders_val is not None + and args.eval_every > 0 + and (epoch + 1) % args.eval_every == 0 + ): + val_epoch_start = time.time() + val_stats = validate_one_epoch( + model, + criterion, + metrics, + data_loaders_val, + device, + epoch, + log_writer=log_writer, + args=args, + ) + val_epoch_time = time.time() - val_epoch_start + + val_best = val_stats[bestmetric] + + # Save best of all + if val_best <= best_so_far: + best_so_far = val_best + misc.save_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + epoch=epoch, + best_so_far=best_so_far, + fname="best", + ) + + log_stats = { + **{f"train_{k}": v for k, v in train_stats.items()}, + "epoch": epoch, + **{f"val_{k}": v for k, v in val_stats.items()}, + } + else: + log_stats = { + **{f"train_{k}": v for k, v in train_stats.items()}, + "epoch": epoch, + } + + if args.distributed: + dist.barrier() + + # Save stuff + if args.output_dir and ( + (epoch + 1) % args.save_every == 0 or epoch + 1 == args.epochs + ): + misc.save_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + epoch=epoch, + best_so_far=best_so_far, + fname="last", + ) + + if args.output_dir: + if log_writer is not None: + log_writer.flush() + with open( + os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" + ) as f: + f.write(json.dumps(log_stats) + "\n") + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print("Training time {}".format(total_time_str)) + + +if __name__ == "__main__": + args = get_args_parser() + args = args.parse_args() + main(args) diff --git a/third_party/dust3r/croco/utils/misc.py b/third_party/dust3r/croco/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..4bfbcf6265792c6c1e2aedc0cfff2cd18450c315 --- /dev/null +++ b/third_party/dust3r/croco/utils/misc.py @@ -0,0 +1,523 @@ +# Copyright (C) 2022-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for CroCo +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- + +import builtins +import datetime +import json +import math +import os +import time +from collections import defaultdict, deque +from pathlib import Path + +import numpy as np +import torch +import torch.distributed as dist +from torch import inf + + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value, + ) + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if v is None: + continue + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError( + "'{}' object has no attribute '{}'".format(type(self).__name__, attr) + ) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append("{}: {}".format(name, str(meter))) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None, max_iter=None): + i = 0 + if not header: + header = "" + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt="{avg:.4f}") + data_time = SmoothedValue(fmt="{avg:.4f}") + len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) + space_fmt = ":" + str(len(str(len_iterable))) + "d" + log_msg = [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + ] + if torch.cuda.is_available(): + log_msg.append("max mem: {memory:.0f}") + log_msg = self.delimiter.join(log_msg) + MB = 1024.0 * 1024.0 + for it, obj in enumerate(iterable): + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len_iterable - 1: + eta_seconds = iter_time.global_avg * (len_iterable - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print( + log_msg.format( + i, + len_iterable, + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB, + ) + ) + else: + print( + log_msg.format( + i, + len_iterable, + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + ) + ) + i += 1 + end = time.time() + if max_iter and it >= max_iter: + break + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print( + "{} Total time: {} ({:.4f} s / it)".format( + header, total_time_str, total_time / len_iterable + ) + ) + + +def setup_for_distributed(is_master): + """ + This function disables printing when not in master process + """ + builtin_print = builtins.print + + def print(*args, **kwargs): + force = kwargs.pop("force", False) + force = force or (get_world_size() > 8) + if is_master or force: + now = datetime.datetime.now().time() + builtin_print("[{}] ".format(now), end="") # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def get_rank(): + if not is_dist_avail_and_initialized(): + return 0 + return dist.get_rank() + + +def is_main_process(): + return get_rank() == 0 + + +def save_on_master(*args, **kwargs): + if is_main_process(): + torch.save(*args, **kwargs) + + +def init_distributed_mode(args): + nodist = args.nodist if hasattr(args, "nodist") else False + if "RANK" in os.environ and "WORLD_SIZE" in os.environ and not nodist: + args.rank = int(os.environ["RANK"]) + args.world_size = int(os.environ["WORLD_SIZE"]) + args.gpu = int(os.environ["LOCAL_RANK"]) + else: + print("Not using distributed mode") + setup_for_distributed(is_master=True) # hack + args.distributed = False + return + + args.distributed = True + + torch.cuda.set_device(args.gpu) + args.dist_backend = "nccl" + print( + "| distributed init (rank {}): {}, gpu {}".format( + args.rank, args.dist_url, args.gpu + ), + flush=True, + ) + torch.distributed.init_process_group( + backend=args.dist_backend, + init_method=args.dist_url, + world_size=args.world_size, + rank=args.rank, + ) + torch.distributed.barrier() + setup_for_distributed(args.rank == 0) + + +class NativeScalerWithGradNormCount: + state_dict_key = "amp_scaler" + + def __init__(self, enabled=True): + self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) + + def __call__( + self, + loss, + optimizer, + clip_grad=None, + parameters=None, + create_graph=False, + update_grad=True, + ): + self._scaler.scale(loss).backward(create_graph=create_graph) + if update_grad: + if clip_grad is not None: + assert parameters is not None + self._scaler.unscale_( + optimizer + ) # unscale the gradients of optimizer's assigned params in-place + norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) + else: + self._scaler.unscale_(optimizer) + norm = get_grad_norm_(parameters) + self._scaler.step(optimizer) + self._scaler.update() + else: + norm = None + return norm + + def state_dict(self): + return self._scaler.state_dict() + + def load_state_dict(self, state_dict): + self._scaler.load_state_dict(state_dict) + + +def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = [p for p in parameters if p.grad is not None] + norm_type = float(norm_type) + if len(parameters) == 0: + return torch.tensor(0.0) + device = parameters[0].grad.device + if norm_type == inf: + total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) + else: + total_norm = torch.norm( + torch.stack( + [torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters] + ), + norm_type, + ) + return total_norm + + +def save_model( + args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None +): + output_dir = Path(args.output_dir) + if fname is None: + fname = str(epoch) + checkpoint_path = output_dir / ("checkpoint-%s.pth" % fname) + to_save = { + "model": model_without_ddp.state_dict(), + "optimizer": optimizer.state_dict(), + "scaler": loss_scaler.state_dict(), + "args": args, + "epoch": epoch, + } + if best_so_far is not None: + to_save["best_so_far"] = best_so_far + print(f">> Saving model to {checkpoint_path} ...") + save_on_master(to_save, checkpoint_path) + + +def load_model(args, model_without_ddp, optimizer, loss_scaler): + args.start_epoch = 0 + best_so_far = None + if args.resume is not None: + if args.resume.startswith("https"): + checkpoint = torch.hub.load_state_dict_from_url( + args.resume, map_location="cpu", check_hash=True + ) + else: + checkpoint = torch.load(args.resume, map_location="cpu") + print("Resume checkpoint %s" % args.resume) + model_without_ddp.load_state_dict(checkpoint["model"], strict=False) + args.start_epoch = checkpoint["epoch"] + 1 + optimizer.load_state_dict(checkpoint["optimizer"]) + if "scaler" in checkpoint: + loss_scaler.load_state_dict(checkpoint["scaler"]) + if "best_so_far" in checkpoint: + best_so_far = checkpoint["best_so_far"] + print(" & best_so_far={:g}".format(best_so_far)) + else: + print("") + print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end="") + return best_so_far + + +def all_reduce_mean(x): + world_size = get_world_size() + if world_size > 1: + x_reduce = torch.tensor(x).cuda() + dist.all_reduce(x_reduce) + x_reduce /= world_size + return x_reduce.item() + else: + return x + + +def _replace(text, src, tgt, rm=""): + """Advanced string replacement. + Given a text: + - replace all elements in src by the corresponding element in tgt + - remove all elements in rm + """ + if len(tgt) == 1: + tgt = tgt * len(src) + assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" + for s, t in zip(src, tgt): + text = text.replace(s, t) + for c in rm: + text = text.replace(c, "") + return text + + +def filename(obj): + """transform a python obj or cmd into a proper filename. + - \1 gets replaced by slash '/' + - \2 gets replaced by comma ',' + """ + if not isinstance(obj, str): + obj = repr(obj) + obj = str(obj).replace("()", "") + obj = _replace(obj, "_,(*/\1\2", "-__x%/,", rm=" )'\"") + assert all(len(s) < 256 for s in obj.split(os.sep)), ( + "filename too long (>256 characters):\n" + obj + ) + return obj + + +def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): + if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): + return 0 + elif var_name.startswith("patch_embed"): + return 0 + elif var_name.startswith("enc_blocks"): + layer_id = int(var_name.split(".")[1]) + return layer_id + 1 + elif var_name.startswith("decoder_embed") or var_name.startswith( + "enc_norm" + ): # part of the last black + return enc_depth + elif var_name.startswith("dec_blocks"): + layer_id = int(var_name.split(".")[1]) + return enc_depth + layer_id + 1 + elif var_name.startswith("dec_norm"): # part of the last block + return enc_depth + dec_depth + elif any(var_name.startswith(k) for k in ["head", "prediction_head"]): + return enc_depth + dec_depth + 1 + else: + raise NotImplementedError(var_name) + + +def get_parameter_groups( + model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[] +): + parameter_group_names = {} + parameter_group_vars = {} + enc_depth, dec_depth = None, None + # prepare layer decay values + assert layer_decay == 1.0 or 0.0 < layer_decay < 1.0 + if layer_decay < 1.0: + enc_depth = model.enc_depth + dec_depth = model.dec_depth if hasattr(model, "dec_blocks") else 0 + num_layers = enc_depth + dec_depth + layer_decay_values = list( + layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2) + ) + + for name, param in model.named_parameters(): + if not param.requires_grad: + continue # frozen weights + + # Assign weight decay values + if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: + group_name = "no_decay" + this_weight_decay = 0.0 + else: + group_name = "decay" + this_weight_decay = weight_decay + + # Assign layer ID for LR scaling + if layer_decay < 1.0: + skip_scale = False + layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth) + group_name = "layer_%d_%s" % (layer_id, group_name) + if name in no_lr_scale_list: + skip_scale = True + group_name = f"{group_name}_no_lr_scale" + else: + layer_id = 0 + skip_scale = True + + if group_name not in parameter_group_names: + if not skip_scale: + scale = layer_decay_values[layer_id] + else: + scale = 1.0 + + parameter_group_names[group_name] = { + "weight_decay": this_weight_decay, + "params": [], + "lr_scale": scale, + } + parameter_group_vars[group_name] = { + "weight_decay": this_weight_decay, + "params": [], + "lr_scale": scale, + } + + parameter_group_vars[group_name]["params"].append(param) + parameter_group_names[group_name]["params"].append(name) + print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) + return list(parameter_group_vars.values()) + + +def adjust_learning_rate(optimizer, epoch, args): + """Decay the learning rate with half-cycle cosine after warmup""" + + if epoch < args.warmup_epochs: + lr = args.lr * epoch / args.warmup_epochs + else: + lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * ( + 1.0 + + math.cos( + math.pi + * (epoch - args.warmup_epochs) + / (args.epochs - args.warmup_epochs) + ) + ) + + for param_group in optimizer.param_groups: + if "lr_scale" in param_group: + param_group["lr"] = lr * param_group["lr_scale"] + else: + param_group["lr"] = lr + + return lr diff --git a/third_party/dust3r/datasets_preprocess/habitat/README.md b/third_party/dust3r/datasets_preprocess/habitat/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3a24120c2374ebca77128be4600581ea94a5090c --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/README.md @@ -0,0 +1,66 @@ +## Steps to reproduce synthetic training data using the Habitat-Sim simulator + +### Create a conda environment +```bash +conda create -n habitat python=3.8 habitat-sim=0.2.1 headless=2.0 -c aihabitat -c conda-forge +conda active habitat +conda install pytorch -c pytorch +pip install opencv-python tqdm +``` + +or (if you get the error `For headless systems, compile with --headless for EGL support`) +``` +git clone --branch stable https://github.com/facebookresearch/habitat-sim.git +cd habitat-sim + +conda create -n habitat python=3.9 cmake=3.14.0 +conda activate habitat +pip install . -v +conda install pytorch -c pytorch +pip install opencv-python tqdm +``` + +### Download Habitat-Sim scenes +Download Habitat-Sim scenes: +- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +- We used scenes from the HM3D, habitat-test-scenes, ReplicaCad and ScanNet datasets. +- Please put the scenes in a directory `$SCENES_DIR` following the structure below: +(Note: the habitat-sim dataset installer may install an incompatible version for ReplicaCAD backed lighting. +The correct scene dataset can be dowloaded from Huggingface: `git clone git@hf.co:datasets/ai-habitat/ReplicaCAD_baked_lighting`). +``` +$SCENES_DIR/ +├──hm3d/ +├──gibson/ +├──habitat-test-scenes/ +├──ReplicaCAD_baked_lighting/ +└──scannet/ +``` + +### Download renderings metadata + +Download metadata corresponding to each scene and extract them into a directory `$METADATA_DIR` +```bash +wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/habitat_5views_v1_512x512_metadata.tar.gz +tar -xvzf habitat_5views_v1_512x512_metadata.tar.gz +``` + +### Render the scenes + +Render the scenes in an output directory `$OUTPUT_DIR` +```bash +export METADATA_DIR="/path/to/habitat/5views_v1_512x512_metadata" +export SCENES_DIR="/path/to/habitat/data/scene_datasets/" +export OUTPUT_DIR="data/habitat_processed" +cd datasets_preprocess/habitat/ +export PYTHONPATH=$(pwd) +# Print commandlines to generate images corresponding to each scene +python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR +# Launch these commandlines in parallel e.g. using GNU-Parallel as follows: +python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR | parallel -j 16 +``` + +### Make a list of scenes + +```bash +python find_scenes.py --root $OUTPUT_DIR +``` \ No newline at end of file diff --git a/third_party/dust3r/datasets_preprocess/habitat/find_scenes.py b/third_party/dust3r/datasets_preprocess/habitat/find_scenes.py new file mode 100644 index 0000000000000000000000000000000000000000..858ace227be021535d77ba8b3fa7adb0c83c2fb7 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/find_scenes.py @@ -0,0 +1,90 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Script to export the list of scenes for habitat (after having rendered them). +# Usage: +# python3 datasets_preprocess/preprocess_co3d.py --root data/habitat_processed +# -------------------------------------------------------- +import os +from collections import defaultdict + +import numpy as np +from tqdm import tqdm + + +def find_all_scenes(habitat_root, n_scenes=[100000]): + np.random.seed(777) + + try: + fpath = os.path.join(habitat_root, f"Habitat_all_scenes.txt") + list_subscenes = open(fpath).read().splitlines() + + except IOError: + if input("parsing sub-folders to find scenes? (y/n) ") != "y": + return + list_subscenes = [] + for root, dirs, files in tqdm(os.walk(habitat_root)): + for f in files: + if not f.endswith("_1_depth.exr"): + continue + scene = os.path.join( + os.path.relpath(root, habitat_root), f.replace("_1_depth.exr", "") + ) + if hash(scene) % 1000 == 0: + print("... adding", scene) + list_subscenes.append(scene) + + with open(fpath, "w") as f: + f.write("\n".join(list_subscenes)) + print(f">> wrote {fpath}") + + print(f"Loaded {len(list_subscenes)} sub-scenes") + + # separate scenes + list_scenes = defaultdict(list) + for scene in list_subscenes: + scene, id = os.path.split(scene) + list_scenes[scene].append(id) + + list_scenes = list(list_scenes.items()) + print(f"from {len(list_scenes)} scenes in total") + + np.random.shuffle(list_scenes) + train_scenes = list_scenes[len(list_scenes) // 10 :] + val_scenes = list_scenes[: len(list_scenes) // 10] + + def write_scene_list(scenes, n, fpath): + sub_scenes = [os.path.join(scene, id) for scene, ids in scenes for id in ids] + np.random.shuffle(sub_scenes) + + if len(sub_scenes) < n: + return + + with open(fpath, "w") as f: + f.write("\n".join(sub_scenes[:n])) + print(f">> wrote {fpath}") + + for n in n_scenes: + write_scene_list( + train_scenes, n, os.path.join(habitat_root, f"Habitat_{n}_scenes_train.txt") + ) + write_scene_list( + val_scenes, + n // 10, + os.path.join(habitat_root, f"Habitat_{n//10}_scenes_val.txt"), + ) + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("--root", required=True) + parser.add_argument( + "--n_scenes", nargs="+", default=[1_000, 10_000, 100_000, 1_000_000], type=int + ) + + args = parser.parse_args() + find_all_scenes(args.root, args.n_scenes) diff --git a/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/__init__.py b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/habitat_sim_envmaps_renderer.py b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/habitat_sim_envmaps_renderer.py new file mode 100644 index 0000000000000000000000000000000000000000..5d3afb0deabcd5f3467c57310e0c486715de1c2b --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/habitat_sim_envmaps_renderer.py @@ -0,0 +1,199 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Render environment maps from 3D meshes using the Habitat Sim simulator. +# -------------------------------------------------------- +import math + +import habitat_sim +import numpy as np +from habitat_renderer import projections + +# OpenCV to habitat camera convention transformation +R_OPENCV2HABITAT = np.stack( + (habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0 +) + +CUBEMAP_FACE_LABELS = ["left", "front", "right", "back", "up", "down"] +# Expressed while considering Habitat coordinates systems +CUBEMAP_FACE_ORIENTATIONS_ROTVEC = [ + [0, math.pi / 2, 0], # Left + [0, 0, 0], # Front + [0, -math.pi / 2, 0], # Right + [0, math.pi, 0], # Back + [math.pi / 2, 0, 0], # Up + [-math.pi / 2, 0, 0], +] # Down + + +class NoNaviguableSpaceError(RuntimeError): + def __init__(self, *args): + super().__init__(*args) + + +class HabitatEnvironmentMapRenderer: + def __init__( + self, + scene, + navmesh, + scene_dataset_config_file, + render_equirectangular=False, + equirectangular_resolution=(512, 1024), + render_cubemap=False, + cubemap_resolution=(512, 512), + render_depth=False, + gpu_id=0, + ): + self.scene = scene + self.navmesh = navmesh + self.scene_dataset_config_file = scene_dataset_config_file + self.gpu_id = gpu_id + + self.render_equirectangular = render_equirectangular + self.equirectangular_resolution = equirectangular_resolution + self.equirectangular_projection = projections.EquirectangularProjection( + *equirectangular_resolution + ) + # 3D unit ray associated to each pixel of the equirectangular map + equirectangular_rays = projections.get_projection_rays( + self.equirectangular_projection + ) + # Not needed, but just in case. + equirectangular_rays /= np.linalg.norm( + equirectangular_rays, axis=-1, keepdims=True + ) + # Depth map created by Habitat are produced by warping a cubemap, + # so the values do not correspond to distance to the center and need some scaling. + self.equirectangular_depth_scale_factors = 1.0 / np.max( + np.abs(equirectangular_rays), axis=-1 + ) + + self.render_cubemap = render_cubemap + self.cubemap_resolution = cubemap_resolution + + self.render_depth = render_depth + + self.seed = None + self._lazy_initialization() + + def _lazy_initialization(self): + # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly + if self.seed == None: + # Re-seed numpy generator + np.random.seed() + self.seed = np.random.randint(2**32 - 1) + sim_cfg = habitat_sim.SimulatorConfiguration() + sim_cfg.scene_id = self.scene + if ( + self.scene_dataset_config_file is not None + and self.scene_dataset_config_file != "" + ): + sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file + sim_cfg.random_seed = self.seed + sim_cfg.load_semantic_mesh = False + sim_cfg.gpu_device_id = self.gpu_id + + sensor_specifications = [] + + # Add cubemaps + if self.render_cubemap: + for face_id, orientation in enumerate(CUBEMAP_FACE_ORIENTATIONS_ROTVEC): + rgb_sensor_spec = habitat_sim.CameraSensorSpec() + rgb_sensor_spec.uuid = ( + f"color_cubemap_{CUBEMAP_FACE_LABELS[face_id]}" + ) + rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR + rgb_sensor_spec.resolution = self.cubemap_resolution + rgb_sensor_spec.hfov = 90 + rgb_sensor_spec.position = [0.0, 0.0, 0.0] + rgb_sensor_spec.orientation = orientation + sensor_specifications.append(rgb_sensor_spec) + + if self.render_depth: + depth_sensor_spec = habitat_sim.CameraSensorSpec() + depth_sensor_spec.uuid = ( + f"depth_cubemap_{CUBEMAP_FACE_LABELS[face_id]}" + ) + depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH + depth_sensor_spec.resolution = self.cubemap_resolution + depth_sensor_spec.hfov = 90 + depth_sensor_spec.position = [0.0, 0.0, 0.0] + depth_sensor_spec.orientation = orientation + sensor_specifications.append(depth_sensor_spec) + + # Add equirectangular map + if self.render_equirectangular: + rgb_sensor_spec = habitat_sim.bindings.EquirectangularSensorSpec() + rgb_sensor_spec.uuid = "color_equirectangular" + rgb_sensor_spec.resolution = self.equirectangular_resolution + rgb_sensor_spec.position = [0.0, 0.0, 0.0] + sensor_specifications.append(rgb_sensor_spec) + + if self.render_depth: + depth_sensor_spec = habitat_sim.bindings.EquirectangularSensorSpec() + depth_sensor_spec.uuid = "depth_equirectangular" + depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH + depth_sensor_spec.resolution = self.equirectangular_resolution + depth_sensor_spec.position = [0.0, 0.0, 0.0] + depth_sensor_spec.orientation + sensor_specifications.append(depth_sensor_spec) + + agent_cfg = habitat_sim.agent.AgentConfiguration( + sensor_specifications=sensor_specifications + ) + + cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg]) + self.sim = habitat_sim.Simulator(cfg) + if self.navmesh is not None and self.navmesh != "": + # Use pre-computed navmesh (the one generated automatically does some weird stuffs like going on top of the roof) + # See https://youtu.be/kunFMRJAu2U?t=1522 regarding navmeshes + self.sim.pathfinder.load_nav_mesh(self.navmesh) + + # Check that the navmesh is not empty + if not self.sim.pathfinder.is_loaded: + # Try to compute a navmesh + navmesh_settings = habitat_sim.NavMeshSettings() + navmesh_settings.set_defaults() + self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True) + + # Check that the navmesh is not empty + if not self.sim.pathfinder.is_loaded: + raise NoNaviguableSpaceError( + f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})" + ) + + self.agent = self.sim.initialize_agent(agent_id=0) + + def close(self): + if hasattr(self, "sim"): + self.sim.close() + + def __del__(self): + self.close() + + def render_viewpoint(self, viewpoint_position): + agent_state = habitat_sim.AgentState() + agent_state.position = viewpoint_position + # agent_state.rotation = viewpoint_orientation + self.agent.set_state(agent_state) + viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0) + + try: + # Depth map values have been obtained using cubemap rendering internally, + # so they do not really correspond to distance to the viewpoint in practice + # and they need some scaling + viewpoint_observations[ + "depth_equirectangular" + ] *= self.equirectangular_depth_scale_factors + except KeyError: + pass + + data = dict(observations=viewpoint_observations, position=viewpoint_position) + return data + + def up_direction(self): + return np.asarray(habitat_sim.geo.UP).tolist() + + def R_cam_to_world(self): + return R_OPENCV2HABITAT.tolist() diff --git a/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/multiview_crop_generator.py b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/multiview_crop_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..9064ba7696af23b0b0b7a97e723757ba6d84c2e5 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/multiview_crop_generator.py @@ -0,0 +1,157 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Generate pairs of crops from a dataset of environment maps. +# -------------------------------------------------------- +import os + +import numpy as np + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" # noqa +import collections + +import cv2 +from habitat_renderer import projections, projections_conversions +from habitat_renderer.habitat_sim_envmaps_renderer import HabitatEnvironmentMapRenderer + +ViewpointData = collections.namedtuple( + "ViewpointData", ["colormap", "distancemap", "pointmap", "position"] +) + + +class HabitatMultiviewCrops: + def __init__( + self, + scene, + navmesh, + scene_dataset_config_file, + equirectangular_resolution=(400, 800), + crop_resolution=(240, 320), + pixel_jittering_iterations=5, + jittering_noise_level=1.0, + ): + self.crop_resolution = crop_resolution + + self.pixel_jittering_iterations = pixel_jittering_iterations + self.jittering_noise_level = jittering_noise_level + + # Instanciate the low resolution habitat sim renderer + self.lowres_envmap_renderer = HabitatEnvironmentMapRenderer( + scene=scene, + navmesh=navmesh, + scene_dataset_config_file=scene_dataset_config_file, + equirectangular_resolution=equirectangular_resolution, + render_depth=True, + render_equirectangular=True, + ) + self.R_cam_to_world = np.asarray(self.lowres_envmap_renderer.R_cam_to_world()) + self.up_direction = np.asarray(self.lowres_envmap_renderer.up_direction()) + + # Projection applied by each environment map + ( + self.envmap_height, + self.envmap_width, + ) = self.lowres_envmap_renderer.equirectangular_resolution + base_projection = projections.EquirectangularProjection( + self.envmap_height, self.envmap_width + ) + self.envmap_projection = projections.RotatedProjection( + base_projection, self.R_cam_to_world.T + ) + # 3D Rays map associated to each envmap + self.envmap_rays = projections.get_projection_rays(self.envmap_projection) + + def compute_pointmap(self, distancemap, position): + # Point cloud associated to each ray + return self.envmap_rays * distancemap[:, :, None] + position + + def render_viewpoint_data(self, position): + data = self.lowres_envmap_renderer.render_viewpoint(np.asarray(position)) + colormap = data["observations"]["color_equirectangular"][ + ..., :3 + ] # Ignore the alpha channel + distancemap = data["observations"]["depth_equirectangular"] + pointmap = self.compute_pointmap(distancemap, position) + return ViewpointData( + colormap=colormap, + distancemap=distancemap, + pointmap=pointmap, + position=position, + ) + + def extract_cropped_camera( + self, projection, color_image, distancemap, pointmap, voxelmap=None + ): + remapper = projections_conversions.RemapProjection( + input_projection=self.envmap_projection, + output_projection=projection, + pixel_jittering_iterations=self.pixel_jittering_iterations, + jittering_noise_level=self.jittering_noise_level, + ) + cropped_color_image = remapper.convert( + color_image, + interpolation=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_WRAP, + single_map=False, + ) + cropped_distancemap = remapper.convert( + distancemap, + interpolation=cv2.INTER_NEAREST, + borderMode=cv2.BORDER_WRAP, + single_map=True, + ) + cropped_pointmap = remapper.convert( + pointmap, + interpolation=cv2.INTER_NEAREST, + borderMode=cv2.BORDER_WRAP, + single_map=True, + ) + cropped_voxelmap = ( + None + if voxelmap is None + else remapper.convert( + voxelmap, + interpolation=cv2.INTER_NEAREST, + borderMode=cv2.BORDER_WRAP, + single_map=True, + ) + ) + # Convert the distance map into a depth map + cropped_depthmap = np.asarray( + cropped_distancemap / np.linalg.norm(remapper.output_rays, axis=-1), + dtype=cropped_distancemap.dtype, + ) + + return cropped_color_image, cropped_depthmap, cropped_pointmap, cropped_voxelmap + + +def perspective_projection_to_dict(persp_projection, position): + """ + Serialization-like function.""" + camera_params = dict( + camera_intrinsics=projections.colmap_to_opencv_intrinsics( + persp_projection.base_projection.K + ).tolist(), + size=( + persp_projection.base_projection.width, + persp_projection.base_projection.height, + ), + R_cam2world=persp_projection.R_to_base_projection.T.tolist(), + t_cam2world=position, + ) + return camera_params + + +def dict_to_perspective_projection(camera_params): + K = projections.opencv_to_colmap_intrinsics( + np.asarray(camera_params["camera_intrinsics"]) + ) + size = camera_params["size"] + R_cam2world = np.asarray(camera_params["R_cam2world"]) + projection = projections.PerspectiveProjection(K, height=size[1], width=size[0]) + projection = projections.RotatedProjection( + projection, R_to_base_projection=R_cam2world.T + ) + position = camera_params["t_cam2world"] + return projection, position diff --git a/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/projections.py b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/projections.py new file mode 100644 index 0000000000000000000000000000000000000000..49b1b39fe5f84eefc53f65cb9c218a4da27e45da --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/projections.py @@ -0,0 +1,166 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Various 3D/2D projection utils, useful to sample virtual cameras. +# -------------------------------------------------------- +import numpy as np + + +class EquirectangularProjection: + """ + Convention for the central pixel of the equirectangular map similar to OpenCV perspective model: + +X from left to right + +Y from top to bottom + +Z going outside the camera + EXCEPT that the top left corner of the image is assumed to have (0,0) coordinates (OpenCV assumes (-0.5,-0.5)) + """ + + def __init__(self, height, width): + self.height = height + self.width = width + self.u_scaling = (2 * np.pi) / self.width + self.v_scaling = np.pi / self.height + + def unproject(self, u, v): + """ + Args: + u, v: 2D coordinates + Returns: + unnormalized 3D rays. + """ + longitude = self.u_scaling * u - np.pi + minus_latitude = self.v_scaling * v - np.pi / 2 + + cos_latitude = np.cos(minus_latitude) + x, z = np.sin(longitude) * cos_latitude, np.cos(longitude) * cos_latitude + y = np.sin(minus_latitude) + + rays = np.stack([x, y, z], axis=-1) + return rays + + def project(self, rays): + """ + Args: + rays: Bx3 array of 3D rays. + Returns: + u, v: tuple of 2D coordinates. + """ + rays = rays / np.linalg.norm(rays, axis=-1, keepdims=True) + x, y, z = [rays[..., i] for i in range(3)] + + longitude = np.arctan2(x, z) + minus_latitude = np.arcsin(y) + + u = (longitude + np.pi) * (1.0 / self.u_scaling) + v = (minus_latitude + np.pi / 2) * (1.0 / self.v_scaling) + return u, v + + +class PerspectiveProjection: + """ + OpenCV convention: + World space: + +X from left to right + +Y from top to bottom + +Z going outside the camera + Pixel space: + +u from left to right + +v from top to bottom + EXCEPT that the top left corner of the image is assumed to have (0,0) coordinates (OpenCV assumes (-0.5,-0.5)). + """ + + def __init__(self, K, height, width): + self.height = height + self.width = width + self.K = K + self.Kinv = np.linalg.inv(K) + + def project(self, rays): + uv_homogeneous = np.einsum("ik, ...k -> ...i", self.K, rays) + uv = uv_homogeneous[..., :2] / uv_homogeneous[..., 2, None] + return uv[..., 0], uv[..., 1] + + def unproject(self, u, v): + uv_homogeneous = np.stack((u, v, np.ones_like(u)), axis=-1) + rays = np.einsum("ik, ...k -> ...i", self.Kinv, uv_homogeneous) + return rays + + +class RotatedProjection: + def __init__(self, base_projection, R_to_base_projection): + self.base_projection = base_projection + self.R_to_base_projection = R_to_base_projection + + @property + def width(self): + return self.base_projection.width + + @property + def height(self): + return self.base_projection.height + + def project(self, rays): + if self.R_to_base_projection is not None: + rays = np.einsum("ik, ...k -> ...i", self.R_to_base_projection, rays) + return self.base_projection.project(rays) + + def unproject(self, u, v): + rays = self.base_projection.unproject(u, v) + if self.R_to_base_projection is not None: + rays = np.einsum("ik, ...k -> ...i", self.R_to_base_projection.T, rays) + return rays + + +def get_projection_rays(projection, noise_level=0): + """ + Return a 2D map of 3D rays corresponding to the projection. + If noise_level > 0, add some jittering noise to these rays. + """ + grid_u, grid_v = np.meshgrid( + 0.5 + np.arange(projection.width), 0.5 + np.arange(projection.height) + ) + if noise_level > 0: + grid_u += np.clip( + 0, + noise_level * np.random.uniform(-0.5, 0.5, size=grid_u.shape), + projection.width, + ) + grid_v += np.clip( + 0, + noise_level * np.random.uniform(-0.5, 0.5, size=grid_v.shape), + projection.height, + ) + return projection.unproject(grid_u, grid_v) + + +def compute_camera_intrinsics(height, width, hfov): + f = width / 2 / np.tan(hfov / 2 * np.pi / 180) + cu, cv = width / 2, height / 2 + return f, cu, cv + + +def colmap_to_opencv_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] -= 0.5 + K[1, 2] -= 0.5 + return K + + +def opencv_to_colmap_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] += 0.5 + K[1, 2] += 0.5 + return K diff --git a/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/projections_conversions.py b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/projections_conversions.py new file mode 100644 index 0000000000000000000000000000000000000000..428710f493beb55b688c815047026dedc744b96d --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/habitat_renderer/projections_conversions.py @@ -0,0 +1,66 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Remap data from one projection to an other +# -------------------------------------------------------- +import cv2 +import numpy as np +from habitat_renderer import projections + + +class RemapProjection: + def __init__( + self, + input_projection, + output_projection, + pixel_jittering_iterations=0, + jittering_noise_level=0, + ): + """ + Some naive random jittering can be introduced in the remapping to mitigate aliasing artecfacts. + """ + assert jittering_noise_level >= 0 + assert pixel_jittering_iterations >= 0 + + maps = [] + # Initial map + self.output_rays = projections.get_projection_rays(output_projection) + map_u, map_v = input_projection.project(self.output_rays) + map_u, map_v = np.asarray(map_u, dtype=np.float32), np.asarray( + map_v, dtype=np.float32 + ) + maps.append((map_u, map_v)) + + for _ in range(pixel_jittering_iterations): + # Define multiple mappings using some coordinates jittering to mitigate aliasing effects + crop_rays = projections.get_projection_rays( + output_projection, jittering_noise_level + ) + map_u, map_v = input_projection.project(crop_rays) + map_u, map_v = np.asarray(map_u, dtype=np.float32), np.asarray( + map_v, dtype=np.float32 + ) + maps.append((map_u, map_v)) + self.maps = maps + + def convert( + self, + img, + interpolation=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_WRAP, + single_map=False, + ): + remapped = [] + for map_u, map_v in self.maps: + res = cv2.remap( + img, map_u, map_v, interpolation=interpolation, borderMode=borderMode + ) + remapped.append(res) + if single_map: + break + if len(remapped) == 1: + res = remapped[0] + else: + res = np.asarray(np.mean(remapped, axis=0), dtype=img.dtype) + return res diff --git a/third_party/dust3r/datasets_preprocess/habitat/preprocess_habitat.py b/third_party/dust3r/datasets_preprocess/habitat/preprocess_habitat.py new file mode 100644 index 0000000000000000000000000000000000000000..8b4d44afa6b5c68dab4fdbe7ec09b659bcc7ee53 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/habitat/preprocess_habitat.py @@ -0,0 +1,149 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# main executable for preprocessing habitat +# export METADATA_DIR="/path/to/habitat/5views_v1_512x512_metadata" +# export SCENES_DIR="/path/to/habitat/data/scene_datasets/" +# export OUTPUT_DIR="data/habitat_processed" +# export PYTHONPATH=$(pwd) +# python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR | parallel -j 16 +# -------------------------------------------------------- +import glob +import json +import os + +import PIL.Image + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" # noqa +import cv2 +from habitat_renderer import multiview_crop_generator +from tqdm import tqdm + + +def preprocess_metadata( + metadata_filename, + scenes_dir, + output_dir, + crop_resolution=[512, 512], + equirectangular_resolution=None, + fix_existing_dataset=False, +): + # Load data + with open(metadata_filename, "r") as f: + metadata = json.load(f) + + if metadata["scene_dataset_config_file"] == "": + scene = os.path.join(scenes_dir, metadata["scene"]) + scene_dataset_config_file = "" + else: + scene = metadata["scene"] + scene_dataset_config_file = os.path.join( + scenes_dir, metadata["scene_dataset_config_file"] + ) + navmesh = None + + # Use 4 times the crop size as resolution for rendering the environment map. + max_res = max(crop_resolution) + + if equirectangular_resolution == None: + # Use 4 times the crop size as resolution for rendering the environment map. + max_res = max(crop_resolution) + equirectangular_resolution = (4 * max_res, 8 * max_res) + + print("equirectangular_resolution:", equirectangular_resolution) + + if os.path.exists(output_dir) and not fix_existing_dataset: + raise FileExistsError(output_dir) + + # Lazy initialization + highres_dataset = None + + for batch_label, batch in tqdm(metadata["view_batches"].items()): + for view_label, view_params in batch.items(): + assert view_params["size"] == crop_resolution + label = f"{batch_label}_{view_label}" + + output_camera_params_filename = os.path.join( + output_dir, f"{label}_camera_params.json" + ) + if fix_existing_dataset and os.path.isfile(output_camera_params_filename): + # Skip generation if we are fixing a dataset and the corresponding output file already exists + continue + + # Lazy initialization + if highres_dataset is None: + highres_dataset = multiview_crop_generator.HabitatMultiviewCrops( + scene=scene, + navmesh=navmesh, + scene_dataset_config_file=scene_dataset_config_file, + equirectangular_resolution=equirectangular_resolution, + crop_resolution=crop_resolution, + ) + os.makedirs(output_dir, exist_ok=bool(fix_existing_dataset)) + + # Generate a higher resolution crop + ( + original_projection, + position, + ) = multiview_crop_generator.dict_to_perspective_projection(view_params) + # Render an envmap at the given position + viewpoint_data = highres_dataset.render_viewpoint_data(position) + + projection = original_projection + colormap, depthmap, pointmap, _ = highres_dataset.extract_cropped_camera( + projection, + viewpoint_data.colormap, + viewpoint_data.distancemap, + viewpoint_data.pointmap, + ) + + camera_params = multiview_crop_generator.perspective_projection_to_dict( + projection, position + ) + + # Color image + PIL.Image.fromarray(colormap).save( + os.path.join(output_dir, f"{label}.jpeg") + ) + # Depth image + cv2.imwrite( + os.path.join(output_dir, f"{label}_depth.exr"), + depthmap, + [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF], + ) + # Camera parameters + with open(output_camera_params_filename, "w") as f: + json.dump(camera_params, f) + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("--metadata_dir", required=True) + parser.add_argument("--scenes_dir", required=True) + parser.add_argument("--output_dir", required=True) + parser.add_argument("--metadata_filename", default="") + + args = parser.parse_args() + + if args.metadata_filename == "": + # Walk through the metadata dir to generate commandlines + for filename in glob.iglob( + os.path.join(args.metadata_dir, "**/metadata.json"), recursive=True + ): + output_dir = os.path.join( + args.output_dir, + os.path.relpath(os.path.dirname(filename), args.metadata_dir), + ) + if not os.path.exists(output_dir): + commandline = f"python {__file__} --metadata_filename={filename} --metadata_dir={args.metadata_dir} --scenes_dir={args.scenes_dir} --output_dir={output_dir}" + print(commandline) + else: + preprocess_metadata( + metadata_filename=args.metadata_filename, + scenes_dir=args.scenes_dir, + output_dir=args.output_dir, + ) diff --git a/third_party/dust3r/datasets_preprocess/path_to_root.py b/third_party/dust3r/datasets_preprocess/path_to_root.py new file mode 100644 index 0000000000000000000000000000000000000000..4cfcafafe31ac6a98e71c4bd4c91a7bd31e58115 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/path_to_root.py @@ -0,0 +1,14 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUSt3R repo root import +# -------------------------------------------------------- + +import os.path as path +import sys + +HERE_PATH = path.normpath(path.dirname(__file__)) +DUST3R_REPO_PATH = path.normpath(path.join(HERE_PATH, "../")) +# workaround for sibling import +sys.path.insert(0, DUST3R_REPO_PATH) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_arkitscenes.py b/third_party/dust3r/datasets_preprocess/preprocess_arkitscenes.py new file mode 100644 index 0000000000000000000000000000000000000000..8cb861b4934b7953f14ee506949b354cf297d6f6 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_arkitscenes.py @@ -0,0 +1,427 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Script to pre-process the arkitscenes dataset. +# Usage: +# python3 datasets_preprocess/preprocess_arkitscenes.py --arkitscenes_dir /path/to/arkitscenes --precomputed_pairs /path/to/arkitscenes_pairs +# -------------------------------------------------------- +import argparse +import decimal +import json +import math +import os +import os.path as osp +from bisect import bisect_left + +import cv2 +import numpy as np +import quaternion +from PIL import Image +from scipy import interpolate + + +def get_parser(): + parser = argparse.ArgumentParser() + parser.add_argument("--arkitscenes_dir", required=True) + parser.add_argument("--precomputed_pairs", required=True) + parser.add_argument("--output_dir", default="data/arkitscenes_processed") + return parser + + +def value_to_decimal(value, decimal_places): + decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method + return decimal.Decimal(str(float(value))).quantize( + decimal.Decimal("1e-{}".format(decimal_places)) + ) + + +def closest(value, sorted_list): + index = bisect_left(sorted_list, value) + if index == 0: + return sorted_list[0] + elif index == len(sorted_list): + return sorted_list[-1] + else: + value_before = sorted_list[index - 1] + value_after = sorted_list[index] + if value_after - value < value - value_before: + return value_after + else: + return value_before + + +def get_up_vectors(pose_device_to_world): + return np.matmul(pose_device_to_world, np.array([[0.0], [-1.0], [0.0], [0.0]])) + + +def get_right_vectors(pose_device_to_world): + return np.matmul(pose_device_to_world, np.array([[1.0], [0.0], [0.0], [0.0]])) + + +def read_traj(traj_path): + quaternions = [] + poses = [] + timestamps = [] + poses_p_to_w = [] + with open(traj_path) as f: + traj_lines = f.readlines() + for line in traj_lines: + tokens = line.split() + assert len(tokens) == 7 + traj_timestamp = float(tokens[0]) + + timestamps_decimal_value = value_to_decimal(traj_timestamp, 3) + timestamps.append( + float(timestamps_decimal_value) + ) # for spline interpolation + + angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])] + r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis)) + t_w_to_p = np.asarray( + [float(tokens[4]), float(tokens[5]), float(tokens[6])] + ) + + pose_w_to_p = np.eye(4) + pose_w_to_p[:3, :3] = r_w_to_p + pose_w_to_p[:3, 3] = t_w_to_p + + pose_p_to_w = np.linalg.inv(pose_w_to_p) + + r_p_to_w_as_quat = quaternion.from_rotation_matrix(pose_p_to_w[:3, :3]) + t_p_to_w = pose_p_to_w[:3, 3] + poses_p_to_w.append(pose_p_to_w) + poses.append(t_p_to_w) + quaternions.append(r_p_to_w_as_quat) + return timestamps, poses, quaternions, poses_p_to_w + + +def main(rootdir, pairsdir, outdir): + os.makedirs(outdir, exist_ok=True) + + subdirs = ["Test", "Training"] + for subdir in subdirs: + if not osp.isdir(osp.join(rootdir, subdir)): + continue + # STEP 1: list all scenes + outsubdir = osp.join(outdir, subdir) + os.makedirs(outsubdir, exist_ok=True) + listfile = osp.join(pairsdir, subdir, "scene_list.json") + with open(listfile, "r") as f: + scene_dirs = json.load(f) + + valid_scenes = [] + for scene_subdir in scene_dirs: + out_scene_subdir = osp.join(outsubdir, scene_subdir) + os.makedirs(out_scene_subdir, exist_ok=True) + + scene_dir = osp.join(rootdir, subdir, scene_subdir) + depth_dir = osp.join(scene_dir, "lowres_depth") + rgb_dir = osp.join(scene_dir, "vga_wide") + intrinsics_dir = osp.join(scene_dir, "vga_wide_intrinsics") + traj_path = osp.join(scene_dir, "lowres_wide.traj") + + # STEP 2: read selected_pairs.npz + selected_pairs_path = osp.join( + pairsdir, subdir, scene_subdir, "selected_pairs.npz" + ) + selected_npz = np.load(selected_pairs_path) + selection, pairs = selected_npz["selection"], selected_npz["pairs"] + selected_sky_direction_scene = str(selected_npz["sky_direction_scene"][0]) + if len(selection) == 0 or len(pairs) == 0: + # not a valid scene + continue + valid_scenes.append(scene_subdir) + + # STEP 3: parse the scene and export the list of valid (K, pose, rgb, depth) and convert images + scene_metadata_path = osp.join(out_scene_subdir, "scene_metadata.npz") + if osp.isfile(scene_metadata_path): + continue + else: + print(f"parsing {scene_subdir}") + # loads traj + timestamps, poses, quaternions, poses_cam_to_world = read_traj( + traj_path + ) + + poses = np.array(poses) + quaternions = np.array(quaternions, dtype=np.quaternion) + quaternions = quaternion.unflip_rotors(quaternions) + timestamps = np.array(timestamps) + + selected_images = [ + (basename, basename.split(".png")[0].split("_")[1]) + for basename in selection + ] + timestamps_selected = [ + float(frame_id) for _, frame_id in selected_images + ] + + ( + sky_direction_scene, + trajectories, + intrinsics, + images, + ) = convert_scene_metadata( + scene_subdir, + intrinsics_dir, + timestamps, + quaternions, + poses, + poses_cam_to_world, + selected_images, + timestamps_selected, + ) + assert selected_sky_direction_scene == sky_direction_scene + + os.makedirs(os.path.join(out_scene_subdir, "vga_wide"), exist_ok=True) + os.makedirs( + os.path.join(out_scene_subdir, "lowres_depth"), exist_ok=True + ) + assert isinstance(sky_direction_scene, str) + for basename in images: + img_out = os.path.join( + out_scene_subdir, "vga_wide", basename.replace(".png", ".jpg") + ) + depth_out = os.path.join(out_scene_subdir, "lowres_depth", basename) + if osp.isfile(img_out) and osp.isfile(depth_out): + continue + + vga_wide_path = osp.join(rgb_dir, basename) + depth_path = osp.join(depth_dir, basename) + + img = Image.open(vga_wide_path) + depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) + + # rotate the image + if sky_direction_scene == "RIGHT": + try: + img = img.transpose(Image.Transpose.ROTATE_90) + except Exception: + img = img.transpose(Image.ROTATE_90) + depth = cv2.rotate(depth, cv2.ROTATE_90_COUNTERCLOCKWISE) + elif sky_direction_scene == "LEFT": + try: + img = img.transpose(Image.Transpose.ROTATE_270) + except Exception: + img = img.transpose(Image.ROTATE_270) + depth = cv2.rotate(depth, cv2.ROTATE_90_CLOCKWISE) + elif sky_direction_scene == "DOWN": + try: + img = img.transpose(Image.Transpose.ROTATE_180) + except Exception: + img = img.transpose(Image.ROTATE_180) + depth = cv2.rotate(depth, cv2.ROTATE_180) + + W, H = img.size + if not osp.isfile(img_out): + img.save(img_out) + + depth = cv2.resize( + depth, (W, H), interpolation=cv2.INTER_NEAREST_EXACT + ) + if not osp.isfile( + depth_out + ): # avoid destroying the base dataset when you mess up the paths + cv2.imwrite(depth_out, depth) + + # save at the end + np.savez( + scene_metadata_path, + trajectories=trajectories, + intrinsics=intrinsics, + images=images, + pairs=pairs, + ) + + outlistfile = osp.join(outsubdir, "scene_list.json") + with open(outlistfile, "w") as f: + json.dump(valid_scenes, f) + + # STEP 5: concat all scene_metadata.npz into a single file + scene_data = {} + for scene_subdir in valid_scenes: + scene_metadata_path = osp.join( + outsubdir, scene_subdir, "scene_metadata.npz" + ) + with np.load(scene_metadata_path) as data: + trajectories = data["trajectories"] + intrinsics = data["intrinsics"] + images = data["images"] + pairs = data["pairs"] + scene_data[scene_subdir] = { + "trajectories": trajectories, + "intrinsics": intrinsics, + "images": images, + "pairs": pairs, + } + offset = 0 + counts = [] + scenes = [] + sceneids = [] + images = [] + intrinsics = [] + trajectories = [] + pairs = [] + for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()): + num_imgs = data["images"].shape[0] + img_pairs = data["pairs"] + + scenes.append(scene_subdir) + sceneids.extend([scene_idx] * num_imgs) + + images.append(data["images"]) + + K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0) + K[:, 0, 0] = [fx for _, _, fx, _, _, _ in data["intrinsics"]] + K[:, 1, 1] = [fy for _, _, _, fy, _, _ in data["intrinsics"]] + K[:, 0, 2] = [hw for _, _, _, _, hw, _ in data["intrinsics"]] + K[:, 1, 2] = [hh for _, _, _, _, _, hh in data["intrinsics"]] + + intrinsics.append(K) + trajectories.append(data["trajectories"]) + + # offset pairs + img_pairs[:, 0:2] += offset + pairs.append(img_pairs) + counts.append(offset) + + offset += num_imgs + + images = np.concatenate(images, axis=0) + intrinsics = np.concatenate(intrinsics, axis=0) + trajectories = np.concatenate(trajectories, axis=0) + pairs = np.concatenate(pairs, axis=0) + np.savez( + osp.join(outsubdir, "all_metadata.npz"), + counts=counts, + scenes=scenes, + sceneids=sceneids, + images=images, + intrinsics=intrinsics, + trajectories=trajectories, + pairs=pairs, + ) + + +def convert_scene_metadata( + scene_subdir, + intrinsics_dir, + timestamps, + quaternions, + poses, + poses_cam_to_world, + selected_images, + timestamps_selected, +): + # find scene orientation + sky_direction_scene, rotated_to_cam = find_scene_orientation(poses_cam_to_world) + + # find/compute pose for selected timestamps + # most images have a valid timestamp / exact pose associated + timestamps_selected = np.array(timestamps_selected) + spline = interpolate.interp1d(timestamps, poses, kind="linear", axis=0) + interpolated_rotations = quaternion.squad( + quaternions, timestamps, timestamps_selected + ) + interpolated_positions = spline(timestamps_selected) + + trajectories = [] + intrinsics = [] + images = [] + for i, (basename, frame_id) in enumerate(selected_images): + intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{frame_id}.pincam") + if not osp.exists(intrinsic_fn): + intrinsic_fn = osp.join( + intrinsics_dir, f"{scene_subdir}_{float(frame_id) - 0.001:.3f}.pincam" + ) + if not osp.exists(intrinsic_fn): + intrinsic_fn = osp.join( + intrinsics_dir, f"{scene_subdir}_{float(frame_id) + 0.001:.3f}.pincam" + ) + assert osp.exists(intrinsic_fn) + w, h, fx, fy, hw, hh = np.loadtxt(intrinsic_fn) # PINHOLE + + pose = np.eye(4) + pose[:3, :3] = quaternion.as_rotation_matrix(interpolated_rotations[i]) + pose[:3, 3] = interpolated_positions[i] + + images.append(basename) + if sky_direction_scene == "RIGHT" or sky_direction_scene == "LEFT": + intrinsics.append([h, w, fy, fx, hh, hw]) # swapped intrinsics + else: + intrinsics.append([w, h, fx, fy, hw, hh]) + trajectories.append( + pose @ rotated_to_cam + ) # pose_cam_to_world @ rotated_to_cam = rotated(cam) to world + + return sky_direction_scene, trajectories, intrinsics, images + + +def find_scene_orientation(poses_cam_to_world): + if len(poses_cam_to_world) > 0: + up_vector = sum(get_up_vectors(p) for p in poses_cam_to_world) / len( + poses_cam_to_world + ) + right_vector = sum(get_right_vectors(p) for p in poses_cam_to_world) / len( + poses_cam_to_world + ) + up_world = np.array([[0.0], [0.0], [1.0], [0.0]]) + else: + up_vector = np.array([[0.0], [-1.0], [0.0], [0.0]]) + right_vector = np.array([[1.0], [0.0], [0.0], [0.0]]) + up_world = np.array([[0.0], [0.0], [1.0], [0.0]]) + + # value between 0, 180 + device_up_to_world_up_angle = ( + np.arccos(np.clip(np.dot(np.transpose(up_world), up_vector), -1.0, 1.0)).item() + * 180.0 + / np.pi + ) + device_right_to_world_up_angle = ( + np.arccos( + np.clip(np.dot(np.transpose(up_world), right_vector), -1.0, 1.0) + ).item() + * 180.0 + / np.pi + ) + + up_closest_to_90 = abs(device_up_to_world_up_angle - 90.0) < abs( + device_right_to_world_up_angle - 90.0 + ) + if up_closest_to_90: + assert abs(device_up_to_world_up_angle - 90.0) < 45.0 + # LEFT + if device_right_to_world_up_angle > 90.0: + sky_direction_scene = "LEFT" + cam_to_rotated_q = quaternion.from_rotation_vector( + [0.0, 0.0, math.pi / 2.0] + ) + else: + # note that in metadata.csv RIGHT does not exist, but again it's not accurate... + # well, turns out there are scenes oriented like this + # for example Training/41124801 + sky_direction_scene = "RIGHT" + cam_to_rotated_q = quaternion.from_rotation_vector( + [0.0, 0.0, -math.pi / 2.0] + ) + else: + # right is close to 90 + assert abs(device_right_to_world_up_angle - 90.0) < 45.0 + if device_up_to_world_up_angle > 90.0: + sky_direction_scene = "DOWN" + cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi]) + else: + sky_direction_scene = "UP" + cam_to_rotated_q = quaternion.quaternion(1, 0, 0, 0) + cam_to_rotated = np.eye(4) + cam_to_rotated[:3, :3] = quaternion.as_rotation_matrix(cam_to_rotated_q) + rotated_to_cam = np.linalg.inv(cam_to_rotated) + return sky_direction_scene, rotated_to_cam + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + main(args.arkitscenes_dir, args.precomputed_pairs, args.output_dir) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_blendedMVS.py b/third_party/dust3r/datasets_preprocess/preprocess_blendedMVS.py new file mode 100644 index 0000000000000000000000000000000000000000..2b96b38542d0c7a2116c68d507c5ead14edce313 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_blendedMVS.py @@ -0,0 +1,168 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Preprocessing code for the BlendedMVS dataset +# dataset at https://github.com/YoYo000/BlendedMVS +# 1) Download BlendedMVS.zip +# 2) Download BlendedMVS+.zip +# 3) Download BlendedMVS++.zip +# 4) Unzip everything in the same /path/to/tmp/blendedMVS/ directory +# 5) python datasets_preprocess/preprocess_blendedMVS.py --blendedmvs_dir /path/to/tmp/blendedMVS/ +# -------------------------------------------------------- +import os +import os.path as osp +import re + +import numpy as np +from tqdm import tqdm + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 +import path_to_root # noqa +from dust3r.datasets.utils import cropping # noqa +from dust3r.utils.parallel import parallel_threads + + +def get_parser(): + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("--blendedmvs_dir", required=True) + parser.add_argument("--precomputed_pairs", required=True) + parser.add_argument("--output_dir", default="data/blendedmvs_processed") + return parser + + +def main(db_root, pairs_path, output_dir): + print(">> Listing all sequences") + sequences = [f for f in os.listdir(db_root) if len(f) == 24] + # should find 502 scenes + assert sequences, f"did not found any sequences at {db_root}" + print(f" (found {len(sequences)} sequences)") + + for i, seq in enumerate(tqdm(sequences)): + out_dir = osp.join(output_dir, seq) + os.makedirs(out_dir, exist_ok=True) + + # generate the crops + root = osp.join(db_root, seq) + cam_dir = osp.join(root, "cams") + func_args = [ + (root, f[:-8], out_dir) + for f in os.listdir(cam_dir) + if not f.startswith("pair") + ] + parallel_threads(load_crop_and_save, func_args, star_args=True, leave=False) + + # verify that all pairs are there + pairs = np.load(pairs_path) + for seqh, seql, img1, img2, score in tqdm(pairs): + for view_index in [img1, img2]: + impath = osp.join( + output_dir, f"{seqh:08x}{seql:016x}", f"{view_index:08n}.jpg" + ) + assert osp.isfile(impath), f"missing image at {impath=}" + + print(f">> Done, saved everything in {output_dir}/") + + +def load_crop_and_save(root, img, out_dir): + if osp.isfile(osp.join(out_dir, img + ".npz")): + return # already done + + # load everything + intrinsics_in, R_camin2world, t_camin2world = _load_pose( + osp.join(root, "cams", img + "_cam.txt") + ) + color_image_in = cv2.cvtColor( + cv2.imread(osp.join(root, "blended_images", img + ".jpg"), cv2.IMREAD_COLOR), + cv2.COLOR_BGR2RGB, + ) + depthmap_in = load_pfm_file(osp.join(root, "rendered_depth_maps", img + ".pfm")) + + # do the crop + H, W = color_image_in.shape[:2] + assert H * 4 == W * 3 + image, depthmap, intrinsics_out, R_in2out = _crop_image( + intrinsics_in, color_image_in, depthmap_in, (512, 384) + ) + + # write everything + image.save(osp.join(out_dir, img + ".jpg"), quality=80) + cv2.imwrite(osp.join(out_dir, img + ".exr"), depthmap) + + # New camera parameters + R_camout2world = R_camin2world @ R_in2out.T + t_camout2world = t_camin2world + np.savez( + osp.join(out_dir, img + ".npz"), + intrinsics=intrinsics_out, + R_cam2world=R_camout2world, + t_cam2world=t_camout2world, + ) + + +def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(800, 800)): + image, depthmap, intrinsics_out = cropping.rescale_image_depthmap( + color_image_in, depthmap_in, intrinsics_in, resolution_out + ) + R_in2out = np.eye(3) + return image, depthmap, intrinsics_out, R_in2out + + +def _load_pose(path, ret_44=False): + f = open(path) + RT = np.loadtxt(f, skiprows=1, max_rows=4, dtype=np.float32) + assert RT.shape == (4, 4) + RT = np.linalg.inv(RT) # world2cam to cam2world + + K = np.loadtxt(f, skiprows=2, max_rows=3, dtype=np.float32) + assert K.shape == (3, 3) + + if ret_44: + return K, RT + return K, RT[:3, :3], RT[:3, 3] # , depth_uint8_to_f32 + + +def load_pfm_file(file_path): + with open(file_path, "rb") as file: + header = file.readline().decode("UTF-8").strip() + + if header == "PF": + is_color = True + elif header == "Pf": + is_color = False + else: + raise ValueError("The provided file is not a valid PFM file.") + + dimensions = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("UTF-8")) + if dimensions: + img_width, img_height = map(int, dimensions.groups()) + else: + raise ValueError("Invalid PFM header format.") + + endian_scale = float(file.readline().decode("UTF-8").strip()) + if endian_scale < 0: + dtype = "= img_size * 3/4, and max dimension will be >= img_size" + ), + ) + return parser + + +def convert_ndc_to_pinhole(focal_length, principal_point, image_size): + focal_length = np.array(focal_length) + principal_point = np.array(principal_point) + image_size_wh = np.array([image_size[1], image_size[0]]) + half_image_size = image_size_wh / 2 + rescale = half_image_size.min() + principal_point_px = half_image_size - principal_point * rescale + focal_length_px = focal_length * rescale + fx, fy = focal_length_px[0], focal_length_px[1] + cx, cy = principal_point_px[0], principal_point_px[1] + K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32) + return K + + +def opencv_from_cameras_projection(R, T, focal, p0, image_size): + R = torch.from_numpy(R)[None, :, :] + T = torch.from_numpy(T)[None, :] + focal = torch.from_numpy(focal)[None, :] + p0 = torch.from_numpy(p0)[None, :] + image_size = torch.from_numpy(image_size)[None, :] + + R_pytorch3d = R.clone() + T_pytorch3d = T.clone() + focal_pytorch3d = focal + p0_pytorch3d = p0 + T_pytorch3d[:, :2] *= -1 + R_pytorch3d[:, :, :2] *= -1 + tvec = T_pytorch3d + R = R_pytorch3d.permute(0, 2, 1) + + # Retype the image_size correctly and flip to width, height. + image_size_wh = image_size.to(R).flip(dims=(1,)) + + # NDC to screen conversion. + scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0 + scale = scale.expand(-1, 2) + c0 = image_size_wh / 2.0 + + principal_point = -p0_pytorch3d * scale + c0 + focal_length = focal_pytorch3d * scale + + camera_matrix = torch.zeros_like(R) + camera_matrix[:, :2, 2] = principal_point + camera_matrix[:, 2, 2] = 1.0 + camera_matrix[:, 0, 0] = focal_length[:, 0] + camera_matrix[:, 1, 1] = focal_length[:, 1] + return R[0], tvec[0], camera_matrix[0] + + +def get_set_list(category_dir, split, is_single_sequence_subset=False): + listfiles = os.listdir(osp.join(category_dir, "set_lists")) + if is_single_sequence_subset: + # not all objects have manyview_dev + subset_list_files = [f for f in listfiles if "manyview_dev" in f] + else: + subset_list_files = [f for f in listfiles if f"fewview_train" in f] + + sequences_all = [] + for subset_list_file in subset_list_files: + with open(osp.join(category_dir, "set_lists", subset_list_file)) as f: + subset_lists_data = json.load(f) + sequences_all.extend(subset_lists_data[split]) + + return sequences_all + + +def prepare_sequences( + category, + co3d_dir, + output_dir, + img_size, + split, + min_quality, + max_num_sequences_per_object, + seed, + is_single_sequence_subset=False, +): + random.seed(seed) + category_dir = osp.join(co3d_dir, category) + category_output_dir = osp.join(output_dir, category) + sequences_all = get_set_list(category_dir, split, is_single_sequence_subset) + sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all)) + + frame_file = osp.join(category_dir, "frame_annotations.jgz") + sequence_file = osp.join(category_dir, "sequence_annotations.jgz") + + with gzip.open(frame_file, "r") as fin: + frame_data = json.loads(fin.read()) + with gzip.open(sequence_file, "r") as fin: + sequence_data = json.loads(fin.read()) + + frame_data_processed = {} + for f_data in frame_data: + sequence_name = f_data["sequence_name"] + frame_data_processed.setdefault(sequence_name, {})[ + f_data["frame_number"] + ] = f_data + + good_quality_sequences = set() + for seq_data in sequence_data: + if seq_data["viewpoint_quality_score"] > min_quality: + good_quality_sequences.add(seq_data["sequence_name"]) + + sequences_numbers = [ + seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences + ] + if len(sequences_numbers) < max_num_sequences_per_object: + selected_sequences_numbers = sequences_numbers + else: + selected_sequences_numbers = random.sample( + sequences_numbers, max_num_sequences_per_object + ) + + selected_sequences_numbers_dict = { + seq_name: [] for seq_name in selected_sequences_numbers + } + sequences_all = [ + (seq_name, frame_number, filepath) + for seq_name, frame_number, filepath in sequences_all + if seq_name in selected_sequences_numbers_dict + ] + + for seq_name, frame_number, filepath in tqdm(sequences_all): + frame_idx = int(filepath.split("/")[-1][5:-4]) + selected_sequences_numbers_dict[seq_name].append(frame_idx) + mask_path = filepath.replace("images", "masks").replace(".jpg", ".png") + frame_data = frame_data_processed[seq_name][frame_number] + focal_length = frame_data["viewpoint"]["focal_length"] + principal_point = frame_data["viewpoint"]["principal_point"] + image_size = frame_data["image"]["size"] + K = convert_ndc_to_pinhole(focal_length, principal_point, image_size) + R, tvec, camera_intrinsics = opencv_from_cameras_projection( + np.array(frame_data["viewpoint"]["R"]), + np.array(frame_data["viewpoint"]["T"]), + np.array(focal_length), + np.array(principal_point), + np.array(image_size), + ) + + frame_data = frame_data_processed[seq_name][frame_number] + depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"]) + assert frame_data["depth"]["scale_adjustment"] == 1.0 + image_path = os.path.join(co3d_dir, filepath) + mask_path_full = os.path.join(co3d_dir, mask_path) + + input_rgb_image = PIL.Image.open(image_path).convert("RGB") + input_mask = plt.imread(mask_path_full) + + with PIL.Image.open(depth_path) as depth_pil: + # the image is stored with 16-bit depth but PIL reads it as I (32 bit). + # we cast it to uint16, then reinterpret as float16, then cast to float32 + input_depthmap = ( + np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) + .astype(np.float32) + .reshape((depth_pil.size[1], depth_pil.size[0])) + ) + depth_mask = np.stack((input_depthmap, input_mask), axis=-1) + H, W = input_depthmap.shape + + camera_intrinsics = camera_intrinsics.numpy() + cx, cy = camera_intrinsics[:2, 2].round().astype(int) + min_margin_x = min(cx, W - cx) + min_margin_y = min(cy, H - cy) + + # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) + l, t = cx - min_margin_x, cy - min_margin_y + r, b = cx + min_margin_x, cy + min_margin_y + crop_bbox = (l, t, r, b) + ( + input_rgb_image, + depth_mask, + input_camera_intrinsics, + ) = cropping.crop_image_depthmap( + input_rgb_image, depth_mask, camera_intrinsics, crop_bbox + ) + + # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384 + scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 + output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) + if max(output_resolution) < img_size: + # let's put the max dimension to img_size + scale_final = (img_size / max(H, W)) + 1e-8 + output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) + + ( + input_rgb_image, + depth_mask, + input_camera_intrinsics, + ) = cropping.rescale_image_depthmap( + input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution + ) + input_depthmap = depth_mask[:, :, 0] + input_mask = depth_mask[:, :, 1] + + # generate and adjust camera pose + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = R + camera_pose[:3, 3] = tvec + camera_pose = np.linalg.inv(camera_pose) + + # save crop images and depth, metadata + save_img_path = os.path.join(output_dir, filepath) + save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"]) + save_mask_path = os.path.join(output_dir, mask_path) + os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) + os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) + os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) + + input_rgb_image.save(save_img_path) + scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype( + np.uint16 + ) + cv2.imwrite(save_depth_path, scaled_depth_map) + cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) + + save_meta_path = save_img_path.replace("jpg", "npz") + np.savez( + save_meta_path, + camera_intrinsics=input_camera_intrinsics, + camera_pose=camera_pose, + maximum_depth=np.max(input_depthmap), + ) + + return selected_sequences_numbers_dict + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + assert args.co3d_dir != args.output_dir + if args.category is None: + if args.single_sequence_subset: + categories = SINGLE_SEQUENCE_CATEGORIES + else: + categories = CATEGORIES + else: + categories = [args.category] + os.makedirs(args.output_dir, exist_ok=True) + + for split in ["train", "test"]: + selected_sequences_path = os.path.join( + args.output_dir, f"selected_seqs_{split}.json" + ) + if os.path.isfile(selected_sequences_path): + continue + + all_selected_sequences = {} + for category in categories: + category_output_dir = osp.join(args.output_dir, category) + os.makedirs(category_output_dir, exist_ok=True) + category_selected_sequences_path = os.path.join( + category_output_dir, f"selected_seqs_{split}.json" + ) + if os.path.isfile(category_selected_sequences_path): + with open(category_selected_sequences_path, "r") as fid: + category_selected_sequences = json.load(fid) + else: + print(f"Processing {split} - category = {category}") + category_selected_sequences = prepare_sequences( + category=category, + co3d_dir=args.co3d_dir, + output_dir=args.output_dir, + img_size=args.img_size, + split=split, + min_quality=args.min_quality, + max_num_sequences_per_object=args.num_sequences_per_object, + seed=args.seed + CATEGORIES_IDX[category], + is_single_sequence_subset=args.single_sequence_subset, + ) + with open(category_selected_sequences_path, "w") as file: + json.dump(category_selected_sequences, file) + + all_selected_sequences[category] = category_selected_sequences + with open(selected_sequences_path, "w") as file: + json.dump(all_selected_sequences, file) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_megadepth.py b/third_party/dust3r/datasets_preprocess/preprocess_megadepth.py new file mode 100644 index 0000000000000000000000000000000000000000..526934dce5a63424aca822ab2d517ba5ba7194fa --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_megadepth.py @@ -0,0 +1,229 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Preprocessing code for the MegaDepth dataset +# dataset at https://www.cs.cornell.edu/projects/megadepth/ +# -------------------------------------------------------- +import collections +import os +import os.path as osp + +import numpy as np +from tqdm import tqdm + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 +import h5py +import path_to_root # noqa +from dust3r.datasets.utils import cropping # noqa +from dust3r.utils.parallel import parallel_threads + + +def get_parser(): + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("--megadepth_dir", required=True) + parser.add_argument("--precomputed_pairs", required=True) + parser.add_argument("--output_dir", default="data/megadepth_processed") + return parser + + +def main(db_root, pairs_path, output_dir): + os.makedirs(output_dir, exist_ok=True) + + # load all pairs + data = np.load(pairs_path, allow_pickle=True) + scenes = data["scenes"] + images = data["images"] + pairs = data["pairs"] + + # enumerate all unique images + todo = collections.defaultdict(set) + for scene, im1, im2, score in pairs: + todo[scene].add(im1) + todo[scene].add(im2) + + # for each scene, load intrinsics and then parallel crops + for scene, im_idxs in tqdm(todo.items(), desc="Overall"): + scene, subscene = scenes[scene].split() + out_dir = osp.join(output_dir, scene, subscene) + os.makedirs(out_dir, exist_ok=True) + + # load all camera params + _, pose_w2cam, intrinsics = _load_kpts_and_poses( + db_root, scene, subscene, intrinsics=True + ) + + in_dir = osp.join(db_root, scene, "dense" + subscene) + args = [ + (in_dir, img, intrinsics[img], pose_w2cam[img], out_dir) + for img in [images[im_id] for im_id in im_idxs] + ] + parallel_threads( + resize_one_image, + args, + star_args=True, + front_num=0, + leave=False, + desc=f"{scene}/{subscene}", + ) + + # save pairs + print("Done! prepared all pairs in", output_dir) + + +def resize_one_image(root, tag, K_pre_rectif, pose_w2cam, out_dir): + if osp.isfile(osp.join(out_dir, tag + ".npz")): + return + + # load image + img = cv2.cvtColor( + cv2.imread(osp.join(root, "imgs", tag), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB + ) + H, W = img.shape[:2] + + # load depth + with h5py.File(osp.join(root, "depths", osp.splitext(tag)[0] + ".h5"), "r") as hd5: + depthmap = np.asarray(hd5["depth"]) + + # rectify = undistort the intrinsics + imsize_pre, K_pre, distortion = K_pre_rectif + imsize_post = img.shape[1::-1] + K_post = cv2.getOptimalNewCameraMatrix( + K_pre, + distortion, + imsize_pre, + alpha=0, + newImgSize=imsize_post, + centerPrincipalPoint=True, + )[0] + + # downscale + img_out, depthmap_out, intrinsics_out, R_in2out = _downscale_image( + K_post, img, depthmap, resolution_out=(800, 600) + ) + + # write everything + img_out.save(osp.join(out_dir, tag + ".jpg"), quality=90) + cv2.imwrite(osp.join(out_dir, tag + ".exr"), depthmap_out) + + camout2world = np.linalg.inv(pose_w2cam) + camout2world[:3, :3] = camout2world[:3, :3] @ R_in2out.T + np.savez( + osp.join(out_dir, tag + ".npz"), + intrinsics=intrinsics_out, + cam2world=camout2world, + ) + + +def _downscale_image(camera_intrinsics, image, depthmap, resolution_out=(512, 384)): + H, W = image.shape[:2] + resolution_out = sorted(resolution_out)[:: +1 if W < H else -1] + + image, depthmap, intrinsics_out = cropping.rescale_image_depthmap( + image, depthmap, camera_intrinsics, resolution_out, force=False + ) + R_in2out = np.eye(3) + + return image, depthmap, intrinsics_out, R_in2out + + +def _load_kpts_and_poses(root, scene_id, subscene, z_only=False, intrinsics=False): + if intrinsics: + with open( + os.path.join( + root, scene_id, "sparse", "manhattan", subscene, "cameras.txt" + ), + "r", + ) as f: + raw = f.readlines()[3:] # skip the header + + camera_intrinsics = {} + for camera in raw: + camera = camera.split(" ") + width, height, focal, cx, cy, k0 = [float(elem) for elem in camera[2:]] + K = np.eye(3) + K[0, 0] = focal + K[1, 1] = focal + K[0, 2] = cx + K[1, 2] = cy + camera_intrinsics[int(camera[0])] = ( + (int(width), int(height)), + K, + (k0, 0, 0, 0), + ) + + with open( + os.path.join(root, scene_id, "sparse", "manhattan", subscene, "images.txt"), "r" + ) as f: + raw = f.read().splitlines()[4:] # skip the header + + extract_pose = ( + colmap_raw_pose_to_principal_axis if z_only else colmap_raw_pose_to_RT + ) + + poses = {} + points3D_idxs = {} + camera = [] + + for image, points in zip(raw[::2], raw[1::2]): + image = image.split(" ") + points = points.split(" ") + + image_id = image[-1] + camera.append(int(image[-2])) + + # find the principal axis + raw_pose = [float(elem) for elem in image[1:-2]] + poses[image_id] = extract_pose(raw_pose) + + current_points3D_idxs = {int(i) for i in points[2::3] if i != "-1"} + assert -1 not in current_points3D_idxs, bb() + points3D_idxs[image_id] = current_points3D_idxs + + if intrinsics: + image_intrinsics = { + im_id: camera_intrinsics[cam] for im_id, cam in zip(poses, camera) + } + return points3D_idxs, poses, image_intrinsics + else: + return points3D_idxs, poses + + +def colmap_raw_pose_to_principal_axis(image_pose): + qvec = image_pose[:4] + qvec = qvec / np.linalg.norm(qvec) + w, x, y, z = qvec + z_axis = np.float32( + [2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y] + ) + return z_axis + + +def colmap_raw_pose_to_RT(image_pose): + qvec = image_pose[:4] + qvec = qvec / np.linalg.norm(qvec) + w, x, y, z = qvec + R = np.array( + [ + [1 - 2 * y * y - 2 * z * z, 2 * x * y - 2 * z * w, 2 * x * z + 2 * y * w], + [2 * x * y + 2 * z * w, 1 - 2 * x * x - 2 * z * z, 2 * y * z - 2 * x * w], + [2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y], + ] + ) + # principal_axis.append(R[2, :]) + t = image_pose[4:7] + # World-to-Camera pose + current_pose = np.eye(4) + current_pose[:3, :3] = R + current_pose[:3, 3] = t + return current_pose + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + main(args.megadepth_dir, args.precomputed_pairs, args.output_dir) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_scannetpp.py b/third_party/dust3r/datasets_preprocess/preprocess_scannetpp.py new file mode 100644 index 0000000000000000000000000000000000000000..cc603f22023a550705dd9ad74f043c076b3c73d4 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_scannetpp.py @@ -0,0 +1,480 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Script to pre-process the scannet++ dataset. +# Usage: +# python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl +# -------------------------------------------------------- +import argparse +import json +import os +import os.path as osp +import re + +import cv2 +import dust3r.utils.geometry as geometry +import numpy as np +import PIL.Image as Image +import pyrender +import trimesh +import trimesh.exchange.ply +from dust3r.datasets.utils.cropping import rescale_image_depthmap +from scipy.spatial.transform import Rotation +from tqdm import tqdm + +inv = np.linalg.inv +norm = np.linalg.norm +REGEXPR_DSLR = re.compile(r"^DSC(?P\d+).JPG$") +REGEXPR_IPHONE = re.compile(r"frame_(?P\d+).jpg$") + +DEBUG_VIZ = None # 'iou' +if DEBUG_VIZ is not None: + import matplotlib.pyplot as plt # noqa + + +OPENGL_TO_OPENCV = np.float32( + [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]] +) + + +def get_parser(): + parser = argparse.ArgumentParser() + parser.add_argument("--scannetpp_dir", required=True) + parser.add_argument("--precomputed_pairs", required=True) + parser.add_argument("--output_dir", default="data/scannetpp_processed") + parser.add_argument( + "--target_resolution", default=920, type=int, help="images resolution" + ) + parser.add_argument( + "--pyopengl-platform", type=str, default="", help="PyOpenGL env variable" + ) + return parser + + +def pose_from_qwxyz_txyz(elems): + qw, qx, qy, qz, tx, ty, tz = map(float, elems) + pose = np.eye(4) + pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix() + pose[:3, 3] = (tx, ty, tz) + return np.linalg.inv(pose) # returns cam2world + + +def get_frame_number(name, cam_type="dslr"): + if cam_type == "dslr": + regex_expr = REGEXPR_DSLR + elif cam_type == "iphone": + regex_expr = REGEXPR_IPHONE + else: + raise NotImplementedError(f"wrong {cam_type=} for get_frame_number") + matches = re.match(regex_expr, name) + return matches["frameid"] + + +def load_sfm(sfm_dir, cam_type="dslr"): + # load cameras + with open(osp.join(sfm_dir, "cameras.txt"), "r") as f: + raw = f.read().splitlines()[3:] # skip header + + intrinsics = {} + for camera in tqdm(raw, position=1, leave=False): + camera = camera.split(" ") + intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]] + + # load images + with open(os.path.join(sfm_dir, "images.txt"), "r") as f: + raw = f.read().splitlines() + raw = [line for line in raw if not line.startswith("#")] # skip header + + img_idx = {} + img_infos = {} + for image, points in tqdm( + zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False + ): + image = image.split(" ") + points = points.split(" ") + + idx = image[0] + img_name = image[-1] + assert img_name not in img_idx, "duplicate db image: " + img_name + img_idx[img_name] = idx # register image name + + current_points2D = { + int(i): (float(x), float(y)) + for i, x, y in zip(points[2::3], points[0::3], points[1::3]) + if i != "-1" + } + img_infos[idx] = dict( + intrinsics=intrinsics[int(image[-2])], + path=img_name, + frame_id=get_frame_number(img_name, cam_type), + cam_to_world=pose_from_qwxyz_txyz(image[1:-2]), + sparse_pts2d=current_points2D, + ) + + # load 3D points + with open(os.path.join(sfm_dir, "points3D.txt"), "r") as f: + raw = f.read().splitlines() + raw = [line for line in raw if not line.startswith("#")] # skip header + + points3D = {} + observations = {idx: [] for idx in img_infos.keys()} + for point in tqdm(raw, position=1, leave=False): + point = point.split() + point_3d_idx = int(point[0]) + points3D[point_3d_idx] = tuple(map(float, point[1:4])) + if len(point) > 8: + for idx, point_2d_idx in zip(point[8::2], point[9::2]): + observations[idx].append((point_3d_idx, int(point_2d_idx))) + + return img_idx, img_infos, points3D, observations + + +def subsample_img_infos(img_infos, num_images, allowed_name_subset=None): + img_infos_val = [(idx, val) for idx, val in img_infos.items()] + if allowed_name_subset is not None: + img_infos_val = [ + (idx, val) + for idx, val in img_infos_val + if val["path"] in allowed_name_subset + ] + + if len(img_infos_val) > num_images: + img_infos_val = sorted(img_infos_val, key=lambda x: x[1]["frame_id"]) + kept_idx = ( + np.round(np.linspace(0, len(img_infos_val) - 1, num_images)) + .astype(int) + .tolist() + ) + img_infos_val = [img_infos_val[idx] for idx in kept_idx] + return {idx: val for idx, val in img_infos_val} + + +def undistort_images(intrinsics, rgb, mask): + camera_type = intrinsics[0] + + width = int(intrinsics[1]) + height = int(intrinsics[2]) + fx = intrinsics[3] + fy = intrinsics[4] + cx = intrinsics[5] + cy = intrinsics[6] + distortion = np.array(intrinsics[7:]) + + K = np.zeros([3, 3]) + K[0, 0] = fx + K[0, 2] = cx + K[1, 1] = fy + K[1, 2] = cy + K[2, 2] = 1 + + K = geometry.colmap_to_opencv_intrinsics(K) + if camera_type == "OPENCV_FISHEYE": + assert len(distortion) == 4 + + new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify( + K, + distortion, + (width, height), + np.eye(3), + balance=0.0, + ) + # Make the cx and cy to be the center of the image + new_K[0, 2] = width / 2.0 + new_K[1, 2] = height / 2.0 + + map1, map2 = cv2.fisheye.initUndistortRectifyMap( + K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1 + ) + else: + new_K, _ = cv2.getOptimalNewCameraMatrix( + K, distortion, (width, height), 1, (width, height), True + ) + map1, map2 = cv2.initUndistortRectifyMap( + K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1 + ) + + undistorted_image = cv2.remap( + rgb, + map1, + map2, + interpolation=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_REFLECT_101, + ) + undistorted_mask = cv2.remap( + mask, + map1, + map2, + interpolation=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT, + borderValue=255, + ) + new_K = geometry.opencv_to_colmap_intrinsics(new_K) + return width, height, new_K, undistorted_image, undistorted_mask + + +def process_scenes(root, pairsdir, output_dir, target_resolution): + os.makedirs(output_dir, exist_ok=True) + + # default values from + # https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml + znear = 0.05 + zfar = 20.0 + + listfile = osp.join(pairsdir, "scene_list.json") + with open(listfile, "r") as f: + scenes = json.load(f) + + # for each of these, we will select some dslr images and some iphone images + # we will undistort them and render their depth + renderer = pyrender.OffscreenRenderer(0, 0) + for scene in tqdm(scenes, position=0, leave=True): + data_dir = os.path.join(root, "data", scene) + dir_dslr = os.path.join(data_dir, "dslr") + dir_iphone = os.path.join(data_dir, "iphone") + dir_scans = os.path.join(data_dir, "scans") + + assert ( + os.path.isdir(data_dir) + and os.path.isdir(dir_dslr) + and os.path.isdir(dir_iphone) + and os.path.isdir(dir_scans) + ) + + output_dir_scene = os.path.join(output_dir, scene) + scene_metadata_path = osp.join(output_dir_scene, "scene_metadata.npz") + if osp.isfile(scene_metadata_path): + continue + + pairs_dir_scene = os.path.join(pairsdir, scene) + pairs_dir_scene_selected_pairs = os.path.join( + pairs_dir_scene, "selected_pairs.npz" + ) + assert osp.isfile(pairs_dir_scene_selected_pairs) + selected_npz = np.load(pairs_dir_scene_selected_pairs) + selection, pairs = selected_npz["selection"], selected_npz["pairs"] + + # set up the output paths + output_dir_scene_rgb = os.path.join(output_dir_scene, "images") + output_dir_scene_depth = os.path.join(output_dir_scene, "depth") + os.makedirs(output_dir_scene_rgb, exist_ok=True) + os.makedirs(output_dir_scene_depth, exist_ok=True) + + ply_path = os.path.join(dir_scans, "mesh_aligned_0.05.ply") + + sfm_dir_dslr = os.path.join(dir_dslr, "colmap") + rgb_dir_dslr = os.path.join(dir_dslr, "resized_images") + mask_dir_dslr = os.path.join(dir_dslr, "resized_anon_masks") + + sfm_dir_iphone = os.path.join(dir_iphone, "colmap") + rgb_dir_iphone = os.path.join(dir_iphone, "rgb") + mask_dir_iphone = os.path.join(dir_iphone, "rgb_masks") + + # load the mesh + with open(ply_path, "rb") as f: + mesh_kwargs = trimesh.exchange.ply.load_ply(f) + mesh_scene = trimesh.Trimesh(**mesh_kwargs) + + # read colmap reconstruction, we will only use the intrinsics and pose here + img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm( + sfm_dir_dslr, cam_type="dslr" + ) + dslr_paths = { + "in_colmap": sfm_dir_dslr, + "in_rgb": rgb_dir_dslr, + "in_mask": mask_dir_dslr, + } + + ( + img_idx_iphone, + img_infos_iphone, + points3D_iphone, + observations_iphone, + ) = load_sfm(sfm_dir_iphone, cam_type="iphone") + iphone_paths = { + "in_colmap": sfm_dir_iphone, + "in_rgb": rgb_dir_iphone, + "in_mask": mask_dir_iphone, + } + + mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False) + pyrender_scene = pyrender.Scene() + pyrender_scene.add(mesh) + + selection_dslr = [ + imgname + ".JPG" for imgname in selection if imgname.startswith("DSC") + ] + selection_iphone = [ + imgname + ".jpg" for imgname in selection if imgname.startswith("frame_") + ] + + # resize the image to a more manageable size and render depth + for selection_cam, img_idx, img_infos, paths_data in [ + (selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths), + (selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths), + ]: + rgb_dir = paths_data["in_rgb"] + mask_dir = paths_data["in_mask"] + for imgname in tqdm(selection_cam, position=1, leave=False): + imgidx = img_idx[imgname] + img_infos_idx = img_infos[imgidx] + rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx["path"]))) + mask = np.array( + Image.open( + os.path.join(mask_dir, img_infos_idx["path"][:-3] + "png") + ) + ) + + _, _, K, rgb, mask = undistort_images( + img_infos_idx["intrinsics"], rgb, mask + ) + + # rescale_image_depthmap assumes opencv intrinsics + intrinsics = geometry.colmap_to_opencv_intrinsics(K) + image, mask, intrinsics = rescale_image_depthmap( + rgb, + mask, + intrinsics, + (target_resolution, target_resolution * 3.0 / 4), + ) + + W, H = image.size + intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics) + + # update inpace img_infos_idx + img_infos_idx["intrinsics"] = intrinsics + rgb_outpath = os.path.join( + output_dir_scene_rgb, img_infos_idx["path"][:-3] + "jpg" + ) + image.save(rgb_outpath) + + depth_outpath = os.path.join( + output_dir_scene_depth, img_infos_idx["path"][:-3] + "png" + ) + # render depth image + renderer.viewport_width, renderer.viewport_height = W, H + fx, fy, cx, cy = ( + intrinsics[0, 0], + intrinsics[1, 1], + intrinsics[0, 2], + intrinsics[1, 2], + ) + camera = pyrender.camera.IntrinsicsCamera( + fx, fy, cx, cy, znear=znear, zfar=zfar + ) + camera_node = pyrender_scene.add( + camera, pose=img_infos_idx["cam_to_world"] @ OPENGL_TO_OPENCV + ) + + depth = renderer.render( + pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY + ) + pyrender_scene.remove_node(camera_node) # dont forget to remove camera + + depth = (depth * 1000).astype("uint16") + # invalidate depth from mask before saving + depth_mask = mask < 255 + depth[depth_mask] = 0 + Image.fromarray(depth).save(depth_outpath) + + trajectories = [] + intrinsics = [] + for imgname in selection: + if imgname.startswith("DSC"): + imgidx = img_idx_dslr[imgname + ".JPG"] + img_infos_idx = img_infos_dslr[imgidx] + elif imgname.startswith("frame_"): + imgidx = img_idx_iphone[imgname + ".jpg"] + img_infos_idx = img_infos_iphone[imgidx] + else: + raise ValueError("invalid image name") + + intrinsics.append(img_infos_idx["intrinsics"]) + trajectories.append(img_infos_idx["cam_to_world"]) + + intrinsics = np.stack(intrinsics, axis=0) + trajectories = np.stack(trajectories, axis=0) + # save metadata for this scene + np.savez( + scene_metadata_path, + trajectories=trajectories, + intrinsics=intrinsics, + images=selection, + pairs=pairs, + ) + + del img_infos + del pyrender_scene + + # concat all scene_metadata.npz into a single file + scene_data = {} + for scene_subdir in scenes: + scene_metadata_path = osp.join(output_dir, scene_subdir, "scene_metadata.npz") + with np.load(scene_metadata_path) as data: + trajectories = data["trajectories"] + intrinsics = data["intrinsics"] + images = data["images"] + pairs = data["pairs"] + scene_data[scene_subdir] = { + "trajectories": trajectories, + "intrinsics": intrinsics, + "images": images, + "pairs": pairs, + } + + offset = 0 + counts = [] + scenes = [] + sceneids = [] + images = [] + intrinsics = [] + trajectories = [] + pairs = [] + for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()): + num_imgs = data["images"].shape[0] + img_pairs = data["pairs"] + + scenes.append(scene_subdir) + sceneids.extend([scene_idx] * num_imgs) + + images.append(data["images"]) + + intrinsics.append(data["intrinsics"]) + trajectories.append(data["trajectories"]) + + # offset pairs + img_pairs[:, 0:2] += offset + pairs.append(img_pairs) + counts.append(offset) + + offset += num_imgs + + images = np.concatenate(images, axis=0) + intrinsics = np.concatenate(intrinsics, axis=0) + trajectories = np.concatenate(trajectories, axis=0) + pairs = np.concatenate(pairs, axis=0) + np.savez( + osp.join(output_dir, "all_metadata.npz"), + counts=counts, + scenes=scenes, + sceneids=sceneids, + images=images, + intrinsics=intrinsics, + trajectories=trajectories, + pairs=pairs, + ) + print("all done") + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + if args.pyopengl_platform.strip(): + os.environ["PYOPENGL_PLATFORM"] = args.pyopengl_platform + process_scenes( + args.scannetpp_dir, + args.precomputed_pairs, + args.output_dir, + args.target_resolution, + ) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_staticthings3d.py b/third_party/dust3r/datasets_preprocess/preprocess_staticthings3d.py new file mode 100644 index 0000000000000000000000000000000000000000..10063e24aaf82042bcd07bd8b23b95c48f9c58d4 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_staticthings3d.py @@ -0,0 +1,154 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Preprocessing code for the StaticThings3D dataset +# dataset at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/README.md#staticthings3d +# 1) Download StaticThings3D in /path/to/StaticThings3D/ +# with the script at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/scripts/download_staticthings3d.sh +# --> depths.tar.bz2 frames_finalpass.tar.bz2 poses.tar.bz2 frames_cleanpass.tar.bz2 intrinsics.tar.bz2 +# 2) unzip everything in the same /path/to/StaticThings3D/ directory +# 5) python datasets_preprocess/preprocess_staticthings3d.py --StaticThings3D_dir /path/to/tmp/StaticThings3D/ +# -------------------------------------------------------- +import os +import os.path as osp +import re + +import numpy as np +from tqdm import tqdm + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 +import path_to_root # noqa +from dust3r.datasets.utils import cropping # noqa +from dust3r.utils.parallel import parallel_threads + + +def get_parser(): + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("--StaticThings3D_dir", required=True) + parser.add_argument("--precomputed_pairs", required=True) + parser.add_argument("--output_dir", default="data/staticthings3d_processed") + return parser + + +def main(db_root, pairs_path, output_dir): + all_scenes = _list_all_scenes(db_root) + + # crop images + args = [ + (db_root, osp.join(split, subsplit, seq), camera, f"{n:04d}", output_dir) + for split, subsplit, seq in all_scenes + for camera in ["left", "right"] + for n in range(6, 16) + ] + parallel_threads(load_crop_and_save, args, star_args=True, front_num=1) + + # verify that all images are there + CAM = {b"l": "left", b"r": "right"} + pairs = np.load(pairs_path) + for scene, seq, cam1, im1, cam2, im2 in tqdm(pairs): + seq_path = osp.join("TRAIN", scene.decode("ascii"), f"{seq:04d}") + for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]: + for ext in ["clean", "final"]: + impath = osp.join(output_dir, seq_path, cam, f"{idx:04n}_{ext}.jpg") + assert osp.isfile(impath), f"missing an image at {impath=}" + + print(f">> Saved all data to {output_dir}!") + + +def load_crop_and_save(db_root, relpath_, camera, num, out_dir): + relpath = osp.join(relpath_, camera, num) + if osp.isfile(osp.join(out_dir, relpath + ".npz")): + return + os.makedirs(osp.join(out_dir, relpath_, camera), exist_ok=True) + + # load everything + intrinsics_in = readFloat( + osp.join(db_root, "intrinsics", relpath_, num + ".float3") + ) + cam2world = np.linalg.inv( + readFloat(osp.join(db_root, "poses", relpath + ".float3")) + ) + depthmap_in = readFloat(osp.join(db_root, "depths", relpath + ".float3")) + img_clean = cv2.cvtColor( + cv2.imread( + osp.join(db_root, "frames_cleanpass", relpath + ".png"), cv2.IMREAD_COLOR + ), + cv2.COLOR_BGR2RGB, + ) + img_final = cv2.cvtColor( + cv2.imread( + osp.join(db_root, "frames_finalpass", relpath + ".png"), cv2.IMREAD_COLOR + ), + cv2.COLOR_BGR2RGB, + ) + + # do the crop + assert img_clean.shape[:2] == (540, 960) + assert img_final.shape[:2] == (540, 960) + (clean_out, final_out), depthmap, intrinsics_out, R_in2out = _crop_image( + intrinsics_in, (img_clean, img_final), depthmap_in, (512, 384) + ) + + # write everything + clean_out.save(osp.join(out_dir, relpath + "_clean.jpg"), quality=80) + final_out.save(osp.join(out_dir, relpath + "_final.jpg"), quality=80) + cv2.imwrite(osp.join(out_dir, relpath + ".exr"), depthmap) + + # New camera parameters + cam2world[:3, :3] = cam2world[:3, :3] @ R_in2out.T + np.savez( + osp.join(out_dir, relpath + ".npz"), + intrinsics=intrinsics_out, + cam2world=cam2world, + ) + + +def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(512, 512)): + image, depthmap, intrinsics_out = cropping.rescale_image_depthmap( + color_image_in, depthmap_in, intrinsics_in, resolution_out + ) + R_in2out = np.eye(3) + return image, depthmap, intrinsics_out, R_in2out + + +def _list_all_scenes(path): + print(">> Listing all scenes") + + res = [] + for split in ["TRAIN"]: + for subsplit in "ABC": + for seq in os.listdir(osp.join(path, "intrinsics", split, subsplit)): + res.append((split, subsplit, seq)) + print(f" (found ({len(res)}) scenes)") + assert res, f"Did not find anything at {path=}" + return res + + +def readFloat(name): + with open(name, "rb") as f: + if (f.readline().decode("utf-8")) != "float\n": + raise Exception("float file %s did not contain keyword" % name) + + dim = int(f.readline()) + + dims = [] + count = 1 + for i in range(0, dim): + d = int(f.readline()) + dims.append(d) + count *= d + + dims = list(reversed(dims)) + data = np.fromfile(f, np.float32, count).reshape(dims) + return data # Hxw or CxHxW NxCxHxW + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + main(args.StaticThings3D_dir, args.precomputed_pairs, args.output_dir) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_waymo.py b/third_party/dust3r/datasets_preprocess/preprocess_waymo.py new file mode 100644 index 0000000000000000000000000000000000000000..b2a6d25e5abca9ee2e1242d2e49ef7946a4f40bb --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_waymo.py @@ -0,0 +1,280 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Preprocessing code for the WayMo Open dataset +# dataset at https://github.com/waymo-research/waymo-open-dataset +# 1) Accept the license +# 2) download all training/*.tfrecord files from Perception Dataset, version 1.4.2 +# 3) put all .tfrecord files in '/path/to/waymo_dir' +# 4) install the waymo_open_dataset package with +# `python3 -m pip install gcsfs waymo-open-dataset-tf-2-12-0==1.6.4` +# 5) execute this script as `python preprocess_waymo.py --waymo_dir /path/to/waymo_dir` +# -------------------------------------------------------- +import json +import os +import os.path as osp +import shutil +import sys + +import numpy as np +import PIL.Image +from tqdm import tqdm + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 +import tensorflow.compat.v1 as tf + +tf.enable_eager_execution() + +import path_to_root # noqa +from dust3r.datasets.utils import cropping +from dust3r.utils.geometry import geotrf, inv +from dust3r.utils.image import imread_cv2 +from dust3r.utils.parallel import parallel_processes as parallel_map +from dust3r.viz import show_raw_pointcloud + + +def get_parser(): + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("--waymo_dir", required=True) + parser.add_argument("--precomputed_pairs", required=True) + parser.add_argument("--output_dir", default="data/waymo_processed") + parser.add_argument("--workers", type=int, default=1) + return parser + + +def main(waymo_root, pairs_path, output_dir, workers=1): + extract_frames(waymo_root, output_dir, workers=workers) + make_crops(output_dir, workers=args.workers) + + # make sure all pairs are there + with np.load(pairs_path) as data: + scenes = data["scenes"] + frames = data["frames"] + pairs = data["pairs"] # (array of (scene_id, img1_id, img2_id) + + for scene_id, im1_id, im2_id in pairs: + for im_id in (im1_id, im2_id): + path = osp.join(output_dir, scenes[scene_id], frames[im_id] + ".jpg") + assert osp.isfile( + path + ), f"Missing a file at {path=}\nDid you download all .tfrecord files?" + + shutil.rmtree(osp.join(output_dir, "tmp")) + print("Done! all data generated at", output_dir) + + +def _list_sequences(db_root): + print(">> Looking for sequences in", db_root) + res = sorted(f for f in os.listdir(db_root) if f.endswith(".tfrecord")) + print(f" found {len(res)} sequences") + return res + + +def extract_frames(db_root, output_dir, workers=8): + sequences = _list_sequences(db_root) + output_dir = osp.join(output_dir, "tmp") + print(">> outputing result to", output_dir) + args = [(db_root, output_dir, seq) for seq in sequences] + parallel_map(process_one_seq, args, star_args=True, workers=workers) + + +def process_one_seq(db_root, output_dir, seq): + out_dir = osp.join(output_dir, seq) + os.makedirs(out_dir, exist_ok=True) + calib_path = osp.join(out_dir, "calib.json") + if osp.isfile(calib_path): + return + + try: + with tf.device("/CPU:0"): + calib, frames = extract_frames_one_seq(osp.join(db_root, seq)) + except RuntimeError: + print(f"/!\\ Error with sequence {seq} /!\\", file=sys.stderr) + return # nothing is saved + + for f, (frame_name, views) in enumerate(tqdm(frames, leave=False)): + for cam_idx, view in views.items(): + img = PIL.Image.fromarray(view.pop("img")) + img.save(osp.join(out_dir, f"{f:05d}_{cam_idx}.jpg")) + np.savez(osp.join(out_dir, f"{f:05d}_{cam_idx}.npz"), **view) + + with open(calib_path, "w") as f: + json.dump(calib, f) + + +def extract_frames_one_seq(filename): + from waymo_open_dataset import dataset_pb2 as open_dataset + from waymo_open_dataset.utils import frame_utils + + print(">> Opening", filename) + dataset = tf.data.TFRecordDataset(filename, compression_type="") + + calib = None + frames = [] + + for data in tqdm(dataset, leave=False): + frame = open_dataset.Frame() + frame.ParseFromString(bytearray(data.numpy())) + + content = frame_utils.parse_range_image_and_camera_projection(frame) + range_images, camera_projections, _, range_image_top_pose = content + + views = {} + frames.append((frame.context.name, views)) + + # once in a sequence, read camera calibration info + if calib is None: + calib = [] + for cam in frame.context.camera_calibrations: + calib.append( + ( + cam.name, + dict( + width=cam.width, + height=cam.height, + intrinsics=list(cam.intrinsic), + extrinsics=list(cam.extrinsic.transform), + ), + ) + ) + + # convert LIDAR to pointcloud + points, cp_points = frame_utils.convert_range_image_to_point_cloud( + frame, range_images, camera_projections, range_image_top_pose + ) + + # 3d points in vehicle frame. + points_all = np.concatenate(points, axis=0) + cp_points_all = np.concatenate(cp_points, axis=0) + + # The distance between lidar points and vehicle frame origin. + cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32) + + for i, image in enumerate(frame.images): + # select relevant 3D points for this view + mask = tf.equal(cp_points_all_tensor[..., 0], image.name) + cp_points_msk_tensor = tf.cast( + tf.gather_nd(cp_points_all_tensor, tf.where(mask)), dtype=tf.float32 + ) + + pose = np.asarray(image.pose.transform).reshape(4, 4) + timestamp = image.pose_timestamp + + rgb = tf.image.decode_jpeg(image.image).numpy() + + pix = cp_points_msk_tensor[..., 1:3].numpy().round().astype(np.int16) + pts3d = points_all[mask.numpy()] + + views[image.name] = dict( + img=rgb, pose=pose, pixels=pix, pts3d=pts3d, timestamp=timestamp + ) + + if not "show full point cloud": + show_raw_pointcloud( + [v["pts3d"] for v in views.values()], [v["img"] for v in views.values()] + ) + + return calib, frames + + +def make_crops(output_dir, workers=16, **kw): + tmp_dir = osp.join(output_dir, "tmp") + sequences = _list_sequences(tmp_dir) + args = [(tmp_dir, output_dir, seq) for seq in sequences] + parallel_map(crop_one_seq, args, star_args=True, workers=workers, front_num=0) + + +def crop_one_seq(input_dir, output_dir, seq, resolution=512): + seq_dir = osp.join(input_dir, seq) + out_dir = osp.join(output_dir, seq) + if osp.isfile(osp.join(out_dir, "00100_1.jpg")): + return + os.makedirs(out_dir, exist_ok=True) + + # load calibration file + try: + with open(osp.join(seq_dir, "calib.json")) as f: + calib = json.load(f) + except IOError: + print(f"/!\\ Error: Missing calib.json in sequence {seq} /!\\", file=sys.stderr) + return + + axes_transformation = np.array( + [[0, -1, 0, 0], [0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 0, 1]] + ) + + cam_K = {} + cam_distortion = {} + cam_res = {} + cam_to_car = {} + for cam_idx, cam_info in calib: + cam_idx = str(cam_idx) + cam_res[cam_idx] = (W, H) = (cam_info["width"], cam_info["height"]) + f1, f2, cx, cy, k1, k2, p1, p2, k3 = cam_info["intrinsics"] + cam_K[cam_idx] = np.asarray([(f1, 0, cx), (0, f2, cy), (0, 0, 1)]) + cam_distortion[cam_idx] = np.asarray([k1, k2, p1, p2, k3]) + cam_to_car[cam_idx] = np.asarray(cam_info["extrinsics"]).reshape( + 4, 4 + ) # cam-to-vehicle + + frames = sorted(f[:-3] for f in os.listdir(seq_dir) if f.endswith(".jpg")) + + # from dust3r.viz import SceneViz + # viz = SceneViz() + + for frame in tqdm(frames, leave=False): + cam_idx = frame[-2] # cam index + assert cam_idx in "12345", f"bad {cam_idx=} in {frame=}" + data = np.load(osp.join(seq_dir, frame + "npz")) + car_to_world = data["pose"] + W, H = cam_res[cam_idx] + + # load depthmap + pos2d = data["pixels"].round().astype(np.uint16) + x, y = pos2d.T + pts3d = data["pts3d"] # already in the car frame + pts3d = geotrf(axes_transformation @ inv(cam_to_car[cam_idx]), pts3d) + # X=LEFT_RIGHT y=ALTITUDE z=DEPTH + + # load image + image = imread_cv2(osp.join(seq_dir, frame + "jpg")) + + # downscale image + output_resolution = (resolution, 1) if W > H else (1, resolution) + image, _, intrinsics2 = cropping.rescale_image_depthmap( + image, None, cam_K[cam_idx], output_resolution + ) + image.save(osp.join(out_dir, frame + "jpg"), quality=80) + + # save as an EXR file? yes it's smaller (and easier to load) + W, H = image.size + depthmap = np.zeros((H, W), dtype=np.float32) + pos2d = ( + geotrf(intrinsics2 @ inv(cam_K[cam_idx]), pos2d).round().astype(np.int16) + ) + x, y = pos2d.T + depthmap[y.clip(min=0, max=H - 1), x.clip(min=0, max=W - 1)] = pts3d[:, 2] + cv2.imwrite(osp.join(out_dir, frame + "exr"), depthmap) + + # save camera parametes + cam2world = car_to_world @ cam_to_car[cam_idx] @ inv(axes_transformation) + np.savez( + osp.join(out_dir, frame + "npz"), + intrinsics=intrinsics2, + cam2world=cam2world, + distortion=cam_distortion[cam_idx], + ) + + # viz.add_rgbd(np.asarray(image), depthmap, intrinsics2, cam2world) + # viz.show() + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + main(args.waymo_dir, args.precomputed_pairs, args.output_dir, workers=args.workers) diff --git a/third_party/dust3r/datasets_preprocess/preprocess_wildrgbd.py b/third_party/dust3r/datasets_preprocess/preprocess_wildrgbd.py new file mode 100644 index 0000000000000000000000000000000000000000..86c512c8dc7844887f32cd334819b8948857a8c2 --- /dev/null +++ b/third_party/dust3r/datasets_preprocess/preprocess_wildrgbd.py @@ -0,0 +1,258 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Script to pre-process the WildRGB-D dataset. +# Usage: +# python3 datasets_preprocess/preprocess_wildrgbd.py --wildrgbd_dir /path/to/wildrgbd +# -------------------------------------------------------- + +import argparse +import json +import os +import os.path as osp +import random + +import cv2 +import dust3r.datasets.utils.cropping as cropping # noqa +import matplotlib.pyplot as plt +import numpy as np +import path_to_root # noqa +import PIL.Image +from dust3r.utils.image import imread_cv2 +from tqdm.auto import tqdm + + +def get_parser(): + parser = argparse.ArgumentParser() + parser.add_argument("--output_dir", type=str, default="data/wildrgbd_processed") + parser.add_argument("--wildrgbd_dir", type=str, required=True) + parser.add_argument("--train_num_sequences_per_object", type=int, default=50) + parser.add_argument("--test_num_sequences_per_object", type=int, default=10) + parser.add_argument("--num_frames", type=int, default=100) + parser.add_argument("--seed", type=int, default=42) + + parser.add_argument( + "--img_size", + type=int, + default=512, + help=( + "lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size" + ), + ) + return parser + + +def get_set_list(category_dir, split): + listfiles = ["camera_eval_list.json", "nvs_list.json"] + + sequences_all = {s: {k: set() for k in listfiles} for s in ["train", "val"]} + for listfile in listfiles: + with open(osp.join(category_dir, listfile)) as f: + subset_lists_data = json.load(f) + for s in ["train", "val"]: + sequences_all[s][listfile].update(subset_lists_data[s]) + train_intersection = set.intersection(*list(sequences_all["train"].values())) + if split == "train": + return train_intersection + else: + all_seqs = set.union( + *list(sequences_all["train"].values()), *list(sequences_all["val"].values()) + ) + return all_seqs.difference(train_intersection) + + +def prepare_sequences( + category, + wildrgbd_dir, + output_dir, + img_size, + split, + max_num_sequences_per_object, + output_num_frames, + seed, +): + random.seed(seed) + category_dir = osp.join(wildrgbd_dir, category) + category_output_dir = osp.join(output_dir, category) + sequences_all = get_set_list(category_dir, split) + sequences_all = sorted(sequences_all) + + sequences_all_tmp = [] + for seq_name in sequences_all: + scene_dir = osp.join(wildrgbd_dir, category_dir, seq_name) + if not os.path.isdir(scene_dir): + print(f"{scene_dir} does not exist, skipped") + continue + sequences_all_tmp.append(seq_name) + sequences_all = sequences_all_tmp + if len(sequences_all) <= max_num_sequences_per_object: + selected_sequences = sequences_all + else: + selected_sequences = random.sample(sequences_all, max_num_sequences_per_object) + + selected_sequences_numbers_dict = {} + for seq_name in tqdm(selected_sequences, leave=False): + scene_dir = osp.join(category_dir, seq_name) + scene_output_dir = osp.join(category_output_dir, seq_name) + with open(osp.join(scene_dir, "metadata"), "r") as f: + metadata = json.load(f) + + K = np.array(metadata["K"]).reshape(3, 3).T + fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2] + w, h = metadata["w"], metadata["h"] + + camera_intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) + camera_to_world_path = os.path.join(scene_dir, "cam_poses.txt") + camera_to_world_content = np.genfromtxt(camera_to_world_path) + camera_to_world = camera_to_world_content[:, 1:].reshape(-1, 4, 4) + + frame_idx = camera_to_world_content[:, 0] + num_frames = frame_idx.shape[0] + assert num_frames >= output_num_frames + assert np.all(frame_idx == np.arange(num_frames)) + + # selected_sequences_numbers_dict[seq_name] = num_frames + + selected_frames = ( + np.round(np.linspace(0, num_frames - 1, output_num_frames)) + .astype(int) + .tolist() + ) + selected_sequences_numbers_dict[seq_name] = selected_frames + + for frame_id in tqdm(selected_frames): + depth_path = os.path.join(scene_dir, "depth", f"{frame_id:0>5d}.png") + masks_path = os.path.join(scene_dir, "masks", f"{frame_id:0>5d}.png") + rgb_path = os.path.join(scene_dir, "rgb", f"{frame_id:0>5d}.png") + + input_rgb_image = PIL.Image.open(rgb_path).convert("RGB") + input_mask = plt.imread(masks_path) + input_depthmap = imread_cv2(depth_path, cv2.IMREAD_UNCHANGED).astype( + np.float64 + ) + depth_mask = np.stack((input_depthmap, input_mask), axis=-1) + H, W = input_depthmap.shape + + min_margin_x = min(cx, W - cx) + min_margin_y = min(cy, H - cy) + + # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) + l, t = int(cx - min_margin_x), int(cy - min_margin_y) + r, b = int(cx + min_margin_x), int(cy + min_margin_y) + crop_bbox = (l, t, r, b) + ( + input_rgb_image, + depth_mask, + input_camera_intrinsics, + ) = cropping.crop_image_depthmap( + input_rgb_image, depth_mask, camera_intrinsics, crop_bbox + ) + + # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384 + scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 + output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) + if max(output_resolution) < img_size: + # let's put the max dimension to img_size + scale_final = (img_size / max(H, W)) + 1e-8 + output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) + + ( + input_rgb_image, + depth_mask, + input_camera_intrinsics, + ) = cropping.rescale_image_depthmap( + input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution + ) + input_depthmap = depth_mask[:, :, 0] + input_mask = depth_mask[:, :, 1] + + camera_pose = camera_to_world[frame_id] + + # save crop images and depth, metadata + save_img_path = os.path.join( + scene_output_dir, "rgb", f"{frame_id:0>5d}.jpg" + ) + save_depth_path = os.path.join( + scene_output_dir, "depth", f"{frame_id:0>5d}.png" + ) + save_mask_path = os.path.join( + scene_output_dir, "masks", f"{frame_id:0>5d}.png" + ) + os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) + os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) + os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) + + input_rgb_image.save(save_img_path) + cv2.imwrite(save_depth_path, input_depthmap.astype(np.uint16)) + cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) + + save_meta_path = os.path.join( + scene_output_dir, "metadata", f"{frame_id:0>5d}.npz" + ) + os.makedirs(os.path.split(save_meta_path)[0], exist_ok=True) + np.savez( + save_meta_path, + camera_intrinsics=input_camera_intrinsics, + camera_pose=camera_pose, + ) + + return selected_sequences_numbers_dict + + +if __name__ == "__main__": + parser = get_parser() + args = parser.parse_args() + assert args.wildrgbd_dir != args.output_dir + + categories = sorted( + [ + dirname + for dirname in os.listdir(args.wildrgbd_dir) + if os.path.isdir(os.path.join(args.wildrgbd_dir, dirname, "scenes")) + ] + ) + + os.makedirs(args.output_dir, exist_ok=True) + + splits_num_sequences_per_object = [ + args.train_num_sequences_per_object, + args.test_num_sequences_per_object, + ] + for split, num_sequences_per_object in zip( + ["train", "test"], splits_num_sequences_per_object + ): + selected_sequences_path = os.path.join( + args.output_dir, f"selected_seqs_{split}.json" + ) + if os.path.isfile(selected_sequences_path): + continue + all_selected_sequences = {} + for category in categories: + category_output_dir = osp.join(args.output_dir, category) + os.makedirs(category_output_dir, exist_ok=True) + category_selected_sequences_path = os.path.join( + category_output_dir, f"selected_seqs_{split}.json" + ) + if os.path.isfile(category_selected_sequences_path): + with open(category_selected_sequences_path, "r") as fid: + category_selected_sequences = json.load(fid) + else: + print(f"Processing {split} - category = {category}") + category_selected_sequences = prepare_sequences( + category=category, + wildrgbd_dir=args.wildrgbd_dir, + output_dir=args.output_dir, + img_size=args.img_size, + split=split, + max_num_sequences_per_object=num_sequences_per_object, + output_num_frames=args.num_frames, + seed=args.seed + int("category".encode("ascii").hex(), 16), + ) + with open(category_selected_sequences_path, "w") as file: + json.dump(category_selected_sequences, file) + + all_selected_sequences[category] = category_selected_sequences + with open(selected_sequences_path, "w") as file: + json.dump(all_selected_sequences, file) diff --git a/third_party/dust3r/demo.py b/third_party/dust3r/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..16cccef2908042e8f0c12368ec8d7c18545e83eb --- /dev/null +++ b/third_party/dust3r/demo.py @@ -0,0 +1,53 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# dust3r gradio demo executable +# -------------------------------------------------------- +import os +import tempfile + +import matplotlib.pyplot as pl +import torch +from dust3r.demo import get_args_parser, main_demo, set_print_with_timestamp +from dust3r.model import AsymmetricCroCo3DStereo + +pl.ion() + +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 + +if __name__ == "__main__": + parser = get_args_parser() + args = parser.parse_args() + set_print_with_timestamp() + + if args.tmp_dir is not None: + tmp_path = args.tmp_dir + os.makedirs(tmp_path, exist_ok=True) + tempfile.tempdir = tmp_path + + if args.server_name is not None: + server_name = args.server_name + else: + server_name = "0.0.0.0" if args.local_network else "127.0.0.1" + + if args.weights is not None: + weights_path = args.weights + else: + weights_path = "naver/" + args.model_name + model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device) + + # dust3r will write the 3D model inside tmpdirname + with tempfile.TemporaryDirectory(suffix="dust3r_gradio_demo") as tmpdirname: + if not args.silent: + print("Outputing stuff in", tmpdirname) + main_demo( + tmpdirname, + model, + args.device, + args.image_size, + server_name, + args.server_port, + silent=args.silent, + ) diff --git a/third_party/dust3r/docker/docker-compose-cpu.yml b/third_party/dust3r/docker/docker-compose-cpu.yml new file mode 100644 index 0000000000000000000000000000000000000000..2015fd771e8b6246d288c03a38f6fbb3f17dff20 --- /dev/null +++ b/third_party/dust3r/docker/docker-compose-cpu.yml @@ -0,0 +1,16 @@ +version: '3.8' +services: + dust3r-demo: + build: + context: ./files + dockerfile: cpu.Dockerfile + ports: + - "7860:7860" + volumes: + - ./files/checkpoints:/dust3r/checkpoints + environment: + - DEVICE=cpu + - MODEL=${MODEL:-DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth} + cap_add: + - IPC_LOCK + - SYS_RESOURCE diff --git a/third_party/dust3r/docker/docker-compose-cuda.yml b/third_party/dust3r/docker/docker-compose-cuda.yml new file mode 100644 index 0000000000000000000000000000000000000000..85710af953d669fe618273de6ce3a062a7a84cca --- /dev/null +++ b/third_party/dust3r/docker/docker-compose-cuda.yml @@ -0,0 +1,23 @@ +version: '3.8' +services: + dust3r-demo: + build: + context: ./files + dockerfile: cuda.Dockerfile + ports: + - "7860:7860" + environment: + - DEVICE=cuda + - MODEL=${MODEL:-DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth} + volumes: + - ./files/checkpoints:/dust3r/checkpoints + cap_add: + - IPC_LOCK + - SYS_RESOURCE + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: 1 + capabilities: [gpu] diff --git a/third_party/dust3r/docker/files/cpu.Dockerfile b/third_party/dust3r/docker/files/cpu.Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..c9ccc39682dd7c7723f447ff47f12531a593446f --- /dev/null +++ b/third_party/dust3r/docker/files/cpu.Dockerfile @@ -0,0 +1,38 @@ +FROM python:3.11-slim + +LABEL description="Docker container for DUSt3R with dependencies installed. CPU VERSION" + +ENV DEVICE="cpu" +ENV MODEL="DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" +ARG DEBIAN_FRONTEND=noninteractive + +RUN apt-get update && apt-get install -y \ + git \ + libgl1-mesa-glx \ + libegl1-mesa \ + libxrandr2 \ + libxrandr2 \ + libxss1 \ + libxcursor1 \ + libxcomposite1 \ + libasound2 \ + libxi6 \ + libxtst6 \ + libglib2.0-0 \ + && apt-get clean \ + && rm -rf /var/lib/apt/lists/* + +RUN git clone --recursive https://github.com/naver/dust3r /dust3r +WORKDIR /dust3r + +RUN pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu +RUN pip install -r requirements.txt +RUN pip install -r requirements_optional.txt +RUN pip install opencv-python==4.8.0.74 + +WORKDIR /dust3r + +COPY entrypoint.sh /entrypoint.sh +RUN chmod +x /entrypoint.sh + +ENTRYPOINT ["/entrypoint.sh"] diff --git a/third_party/dust3r/docker/files/cuda.Dockerfile b/third_party/dust3r/docker/files/cuda.Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..a1d2edce1a5e7cee2fa3d66faf4f6ee019595267 --- /dev/null +++ b/third_party/dust3r/docker/files/cuda.Dockerfile @@ -0,0 +1,27 @@ +FROM nvcr.io/nvidia/pytorch:24.01-py3 + +LABEL description="Docker container for DUSt3R with dependencies installed. CUDA VERSION" +ENV DEVICE="cuda" +ENV MODEL="DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" +ARG DEBIAN_FRONTEND=noninteractive + +RUN apt-get update && apt-get install -y \ + git=1:2.34.1-1ubuntu1.10 \ + libglib2.0-0=2.72.4-0ubuntu2.2 \ + && apt-get clean \ + && rm -rf /var/lib/apt/lists/* + +RUN git clone --recursive https://github.com/naver/dust3r /dust3r +WORKDIR /dust3r +RUN pip install -r requirements.txt +RUN pip install -r requirements_optional.txt +RUN pip install opencv-python==4.8.0.74 + +WORKDIR /dust3r/croco/models/curope/ +RUN python setup.py build_ext --inplace + +WORKDIR /dust3r +COPY entrypoint.sh /entrypoint.sh +RUN chmod +x /entrypoint.sh + +ENTRYPOINT ["/entrypoint.sh"] diff --git a/third_party/dust3r/docker/files/entrypoint.sh b/third_party/dust3r/docker/files/entrypoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..9637072a0af071f927ca0481bcaa4b600644b8b5 --- /dev/null +++ b/third_party/dust3r/docker/files/entrypoint.sh @@ -0,0 +1,8 @@ +#!/bin/bash + +set -eux + +DEVICE=${DEVICE:-cuda} +MODEL=${MODEL:-DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth} + +exec python3 demo.py --weights "checkpoints/$MODEL" --device "$DEVICE" --local_network "$@" diff --git a/third_party/dust3r/docker/run.sh b/third_party/dust3r/docker/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..6c920363d607fc6019f10780d072edf49bee3046 --- /dev/null +++ b/third_party/dust3r/docker/run.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +set -eux + +# Default model name +model_name="DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth" + +check_docker() { + if ! command -v docker &>/dev/null; then + echo "Docker could not be found. Please install Docker and try again." + exit 1 + fi +} + +download_model_checkpoint() { + if [ -f "./files/checkpoints/${model_name}" ]; then + echo "Model checkpoint ${model_name} already exists. Skipping download." + return + fi + echo "Downloading model checkpoint ${model_name}..." + wget "https://download.europe.naverlabs.com/ComputerVision/DUSt3R/${model_name}" -P ./files/checkpoints +} + +set_dcomp() { + if command -v docker-compose &>/dev/null; then + dcomp="docker-compose" + elif command -v docker &>/dev/null && docker compose version &>/dev/null; then + dcomp="docker compose" + else + echo "Docker Compose could not be found. Please install Docker Compose and try again." + exit 1 + fi +} + +run_docker() { + export MODEL=${model_name} + if [ "$with_cuda" -eq 1 ]; then + $dcomp -f docker-compose-cuda.yml up --build + else + $dcomp -f docker-compose-cpu.yml up --build + fi +} + +with_cuda=0 +for arg in "$@"; do + case $arg in + --with-cuda) + with_cuda=1 + ;; + --model_name=*) + model_name="${arg#*=}.pth" + ;; + *) + echo "Unknown parameter passed: $arg" + exit 1 + ;; + esac +done + + +main() { + check_docker + download_model_checkpoint + set_dcomp + run_docker +} + +main diff --git a/third_party/dust3r/dust3r/__init__.py b/third_party/dust3r/dust3r/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/third_party/dust3r/dust3r/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/third_party/dust3r/dust3r/cloud_opt/__init__.py b/third_party/dust3r/dust3r/cloud_opt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c4029b6fd61d6de7ddecc4f909fc9631b1d5f71d --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/__init__.py @@ -0,0 +1,39 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# global alignment optimization wrapper function +# -------------------------------------------------------- +from enum import Enum + +from .modular_optimizer import ModularPointCloudOptimizer +from .optimizer import PointCloudOptimizer +from .pair_viewer import PairViewer + + +class GlobalAlignerMode(Enum): + PointCloudOptimizer = "PointCloudOptimizer" + ModularPointCloudOptimizer = "ModularPointCloudOptimizer" + PairViewer = "PairViewer" + + +def global_aligner( + dust3r_output, device, mode=GlobalAlignerMode.PointCloudOptimizer, **optim_kw +): + # extract all inputs + view1, view2, pred1, pred2 = [ + dust3r_output[k] for k in "view1 view2 pred1 pred2".split() + ] + # build the optimizer + if mode == GlobalAlignerMode.PointCloudOptimizer: + net = PointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to(device) + elif mode == GlobalAlignerMode.ModularPointCloudOptimizer: + net = ModularPointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to( + device + ) + elif mode == GlobalAlignerMode.PairViewer: + net = PairViewer(view1, view2, pred1, pred2, **optim_kw).to(device) + else: + raise NotImplementedError(f"Unknown mode {mode}") + + return net diff --git a/third_party/dust3r/dust3r/cloud_opt/base_opt.py b/third_party/dust3r/dust3r/cloud_opt/base_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..76c1636e647c62c567ded2c7fa1b90772ce2b0f5 --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/base_opt.py @@ -0,0 +1,487 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Base class for the global alignement procedure +# -------------------------------------------------------- +from copy import deepcopy + +import numpy as np +import roma +import torch +import torch.nn as nn +import tqdm + +import dust3r.cloud_opt.init_im_poses as init_fun +from dust3r.cloud_opt.commons import ( + ALL_DISTS, + NoGradParamDict, + cosine_schedule, + edge_str, + get_conf_trf, + get_imshapes, + linear_schedule, + signed_expm1, + signed_log1p, +) +from dust3r.optim_factory import adjust_learning_rate_by_lr +from dust3r.utils.device import to_numpy +from dust3r.utils.geometry import geotrf, inv +from dust3r.utils.image import rgb +from dust3r.viz import SceneViz, auto_cam_size, segment_sky + + +class BasePCOptimizer(nn.Module): + """Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, **kwargs): + if len(args) == 1 and len(kwargs) == 0: + other = deepcopy(args[0]) + attrs = """edges is_symmetrized dist n_imgs pred_i pred_j imshapes + min_conf_thr conf_thr conf_i conf_j im_conf + base_scale norm_pw_scale POSE_DIM pw_poses + pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose""".split() + self.__dict__.update({k: other[k] for k in attrs}) + else: + self._init_from_views(*args, **kwargs) + + def _init_from_views( + self, + view1, + view2, + pred1, + pred2, + dist="l1", + conf="log", + min_conf_thr=3, + base_scale=0.5, + allow_pw_adaptors=False, + pw_break=20, + rand_pose=torch.randn, + iterationsCount=None, + same_focals=False, + verbose=True, + ): + super().__init__() + if not isinstance(view1["idx"], list): + view1["idx"] = view1["idx"].tolist() + if not isinstance(view2["idx"], list): + view2["idx"] = view2["idx"].tolist() + self.edges = [(int(i), int(j)) for i, j in zip(view1["idx"], view2["idx"])] + self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges} + self.dist = ALL_DISTS[dist] + self.verbose = verbose + self.same_focals = same_focals + + self.n_imgs = self._check_edges() + + # input data + pred1_pts = pred1["pts3d"] + pred2_pts = pred2["pts3d_in_other_view"] + self.pred_i = NoGradParamDict( + {ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)} + ) + self.pred_j = NoGradParamDict( + {ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)} + ) + self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts) + + # work in log-scale with conf + pred1_conf = pred1["conf"] + pred2_conf = pred2["conf"] + self.min_conf_thr = min_conf_thr + self.conf_trf = get_conf_trf(conf) + + self.conf_i = NoGradParamDict( + {ij: pred1_conf[n] for n, ij in enumerate(self.str_edges)} + ) + self.conf_j = NoGradParamDict( + {ij: pred2_conf[n] for n, ij in enumerate(self.str_edges)} + ) + self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf) + for i in range(len(self.im_conf)): + self.im_conf[i].requires_grad = False + + # pairwise pose parameters + self.base_scale = base_scale + self.norm_pw_scale = True + self.pw_break = pw_break + self.POSE_DIM = 7 + self.pw_poses = nn.Parameter( + rand_pose((self.n_edges, 1 + self.POSE_DIM)) + ) # pairwise poses + self.pw_adaptors = nn.Parameter( + torch.zeros((self.n_edges, 2)) + ) # slight xy/z adaptation + self.pw_adaptors.requires_grad_(allow_pw_adaptors) + self.has_im_poses = False + self.rand_pose = rand_pose + + # possibly store images for show_pointcloud + self.imgs = None + if "img" in view1 and "img" in view2: + imgs = [torch.zeros((3,) + hw) for hw in self.imshapes] + for v in range(len(self.edges)): + idx = view1["idx"][v] + imgs[idx] = view1["img"][v] + idx = view2["idx"][v] + imgs[idx] = view2["img"][v] + self.imgs = rgb(imgs) + + @property + def n_edges(self): + return len(self.edges) + + @property + def str_edges(self): + return [edge_str(i, j) for i, j in self.edges] + + @property + def imsizes(self): + return [(w, h) for h, w in self.imshapes] + + @property + def device(self): + return next(iter(self.parameters())).device + + def state_dict(self, trainable=True): + all_params = super().state_dict() + return { + k: v + for k, v in all_params.items() + if k.startswith(("_", "pred_i.", "pred_j.", "conf_i.", "conf_j.")) + != trainable + } + + def load_state_dict(self, data): + return super().load_state_dict(self.state_dict(trainable=False) | data) + + def _check_edges(self): + indices = sorted({i for edge in self.edges for i in edge}) + assert indices == list(range(len(indices))), "bad pair indices: missing values " + return len(indices) + + @torch.no_grad() + def _compute_img_conf(self, pred1_conf, pred2_conf): + im_conf = nn.ParameterList( + [torch.zeros(hw, device=self.device) for hw in self.imshapes] + ) + for e, (i, j) in enumerate(self.edges): + im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e]) + im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e]) + return im_conf + + def get_adaptors(self): + adapt = self.pw_adaptors + adapt = torch.cat( + (adapt[:, 0:1], adapt), dim=-1 + ) # (scale_xy, scale_xy, scale_z) + if self.norm_pw_scale: # normalize so that the product == 1 + adapt = adapt - adapt.mean(dim=1, keepdim=True) + return (adapt / self.pw_break).exp() + + def _get_poses(self, poses): + # normalize rotation + Q = poses[:, :4] + T = signed_expm1(poses[:, 4:7]) + RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous() + return RT + + def _set_pose(self, poses, idx, R, T=None, scale=None, force=False): + # all poses == cam-to-world + pose = poses[idx] + if not (pose.requires_grad or force): + return pose + + if R.shape == (4, 4): + assert T is None + T = R[:3, 3] + R = R[:3, :3] + + if R is not None: + pose.data[0:4] = roma.rotmat_to_unitquat(R) + if T is not None: + pose.data[4:7] = signed_log1p( + T / (scale or 1) + ) # translation is function of scale + + if scale is not None: + assert poses.shape[-1] in (8, 13) + pose.data[-1] = np.log(float(scale)) + return pose + + def get_pw_norm_scale_factor(self): + if self.norm_pw_scale: + # normalize scales so that things cannot go south + # we want that exp(scale) ~= self.base_scale + return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp() + else: + return 1 # don't norm scale for known poses + + def get_pw_scale(self): + scale = self.pw_poses[:, -1].exp() # (n_edges,) + scale = scale * self.get_pw_norm_scale_factor() + return scale + + def get_pw_poses(self): # cam to world + RT = self._get_poses(self.pw_poses) + scaled_RT = RT.clone() + scaled_RT[:, :3] *= self.get_pw_scale().view( + -1, 1, 1 + ) # scale the rotation AND translation + return scaled_RT + + def get_masks(self): + return [(conf > self.min_conf_thr) for conf in self.im_conf] + + def depth_to_pts3d(self): + raise NotImplementedError() + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[: h * w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def _set_focal(self, idx, focal, force=False): + raise NotImplementedError() + + def get_focals(self): + raise NotImplementedError() + + def get_known_focal_mask(self): + raise NotImplementedError() + + def get_principal_points(self): + raise NotImplementedError() + + def get_conf(self, mode=None): + trf = self.conf_trf if mode is None else get_conf_trf(mode) + return [trf(c) for c in self.im_conf] + + def get_im_poses(self): + raise NotImplementedError() + + def _set_depthmap(self, idx, depth, force=False): + raise NotImplementedError() + + def get_depthmaps(self, raw=False): + raise NotImplementedError() + + def clean_pointcloud(self, **kw): + cams = inv(self.get_im_poses()) + Ks = self.get_intrinsics() + depthmaps = self.get_depthmaps() + all_pts3d = self.get_pts3d() + res = deepcopy(self) + + for i, pts3d in enumerate(self.depth_to_pts3d()): + for j in range(self.n_imgs): + if self.same_focals: + K = Ks[0] + else: + K = Ks[j] + + if i == j: + continue + + # project 3dpts in other view + Hi, Wi = self.imshapes[i] + Hj, Wj = self.imshapes[j] + proj = geotrf(cams[j], pts3d[: Hi * Wi]).reshape(Hi, Wi, 3) + proj_depth = proj[:, :, 2] + u, v = geotrf(K, proj, norm=1, ncol=2).round().long().unbind(-1) + + # check which points are actually in the visible cone + msk_i = (proj_depth > 0) & (0 <= u) & (u < Wj) & (0 <= v) & (v < Hj) + msk_j = v[msk_i], u[msk_i] + + new_im_confs = clean_pointcloud( + self.im_conf, K, cams, depthmaps, all_pts3d, **kw + ) + + for i, new_conf in enumerate(new_im_confs): + self.im_conf[i].data[:] = new_conf + return self + + def forward(self, ret_details=False): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors() + proj_pts3d = self.get_pts3d() + # pre-compute pixel weights + weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()} + weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()} + + loss = 0 + if ret_details: + details = -torch.ones((self.n_imgs, self.n_imgs)) + + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # distance in image i and j + aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j]) + aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j]) + li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean() + lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean() + loss = loss + li + lj + + if ret_details: + details[i, j] = li + lj + loss /= self.n_edges # average over all pairs + + if ret_details: + return loss, details + return loss + + @torch.amp.autocast("cuda", enabled=False) + def compute_global_alignment(self, init=None, niter_PnP=10, **kw): + if init is None: + pass + elif init == "msp" or init == "mst": + init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP) + elif init == "known_poses": + init_fun.init_from_known_poses( + self, min_conf_thr=self.min_conf_thr, niter_PnP=niter_PnP + ) + else: + raise ValueError(f"bad value for {init=}") + + return global_alignment_loop(self, **kw) + + @torch.no_grad() + def mask_sky(self): + res = deepcopy(self) + for i in range(self.n_imgs): + sky = segment_sky(self.imgs[i]) + res.im_conf[i][sky] = 0 + return res + + def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw): + viz = SceneViz() + if self.imgs is None: + colors = np.random.randint(0, 256, size=(self.n_imgs, 3)) + colors = list(map(tuple, colors.tolist())) + for n in range(self.n_imgs): + viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n]) + else: + viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks()) + colors = np.random.randint(256, size=(self.n_imgs, 3)) + + # camera poses + im_poses = to_numpy(self.get_im_poses()) + if cam_size is None: + cam_size = auto_cam_size(im_poses) + viz.add_cameras( + im_poses, + self.get_focals(), + colors=colors, + images=self.imgs, + imsizes=self.imsizes, + cam_size=cam_size, + ) + if show_pw_cams: + pw_poses = self.get_pw_poses() + viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size) + + if show_pw_pts3d: + pts = [ + geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) + for e, (i, j) in enumerate(self.edges) + ] + viz.add_pointcloud(pts, (128, 0, 128)) + + viz.show(**kw) + return viz + + +def global_alignment_loop(net, lr=0.01, niter=300, schedule="cosine", lr_min=1e-6): + params = [p for p in net.parameters() if p.requires_grad] + if not params: + return net + + verbose = net.verbose + if verbose: + print("Global alignement - optimizing for:") + print([name for name, value in net.named_parameters() if value.requires_grad]) + + lr_base = lr + optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9)) + + loss = float("inf") + if verbose: + with tqdm.tqdm(total=niter) as bar: + while bar.n < bar.total: + loss, lr = global_alignment_iter( + net, bar.n, niter, lr_base, lr_min, optimizer, schedule + ) + bar.set_postfix_str(f"{lr=:g} loss={loss:g}") + bar.update() + else: + for n in range(niter): + loss, _ = global_alignment_iter( + net, n, niter, lr_base, lr_min, optimizer, schedule + ) + return loss + + +def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule): + t = cur_iter / niter + if schedule == "cosine": + lr = cosine_schedule(t, lr_base, lr_min) + elif schedule == "linear": + lr = linear_schedule(t, lr_base, lr_min) + else: + raise ValueError(f"bad lr {schedule=}") + adjust_learning_rate_by_lr(optimizer, lr) + optimizer.zero_grad() + loss = net() + loss.backward() + optimizer.step() + + return float(loss), lr + + +@torch.no_grad() +def clean_pointcloud( + im_confs, K, cams, depthmaps, all_pts3d, tol=0.001, bad_conf=0, dbg=() +): + """Method: + 1) express all 3d points in each camera coordinate frame + 2) if they're in front of a depthmap --> then lower their confidence + """ + assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d) + assert 0 <= tol < 1 + res = [c.clone() for c in im_confs] + + # reshape appropriately + all_pts3d = [p.view(*c.shape, 3) for p, c in zip(all_pts3d, im_confs)] + depthmaps = [d.view(*c.shape) for d, c in zip(depthmaps, im_confs)] + + for i, pts3d in enumerate(all_pts3d): + for j in range(len(all_pts3d)): + if i == j: + continue + + # project 3dpts in other view + proj = geotrf(cams[j], pts3d) + proj_depth = proj[:, :, 2] + u, v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1) + + # check which points are actually in the visible cone + H, W = im_confs[j].shape + msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H) + msk_j = v[msk_i], u[msk_i] + + # find bad points = those in front but less confident + bad_points = (proj_depth[msk_i] < (1 - tol) * depthmaps[j][msk_j]) & ( + res[i][msk_i] < res[j][msk_j] + ) + + bad_msk_i = msk_i.clone() + bad_msk_i[msk_i] = bad_points + res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf) + + return res diff --git a/third_party/dust3r/dust3r/cloud_opt/commons.py b/third_party/dust3r/dust3r/cloud_opt/commons.py new file mode 100644 index 0000000000000000000000000000000000000000..097e04fabd37d81af4a3fefd0e92880ccfe35ddb --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/commons.py @@ -0,0 +1,102 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utility functions for global alignment +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn + + +def edge_str(i, j): + return f"{i}_{j}" + + +def i_j_ij(ij): + return edge_str(*ij), ij + + +def edge_conf(conf_i, conf_j, edge): + return float(conf_i[edge].mean() * conf_j[edge].mean()) + + +def compute_edge_scores(edges, conf_i, conf_j): + return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges} + + +def NoGradParamDict(x): + assert isinstance(x, dict) + return nn.ParameterDict(x).requires_grad_(False) + + +def get_imshapes(edges, pred_i, pred_j): + n_imgs = max(max(e) for e in edges) + 1 + imshapes = [None] * n_imgs + for e, (i, j) in enumerate(edges): + shape_i = tuple(pred_i[e].shape[0:2]) + shape_j = tuple(pred_j[e].shape[0:2]) + if imshapes[i]: + assert imshapes[i] == shape_i, f"incorrect shape for image {i}" + if imshapes[j]: + assert imshapes[j] == shape_j, f"incorrect shape for image {j}" + imshapes[i] = shape_i + imshapes[j] = shape_j + return imshapes + + +def get_conf_trf(mode): + if mode == "log": + + def conf_trf(x): + return x.log() + + elif mode == "sqrt": + + def conf_trf(x): + return x.sqrt() + + elif mode == "m1": + + def conf_trf(x): + return x - 1 + + elif mode in ("id", "none"): + + def conf_trf(x): + return x + + else: + raise ValueError(f"bad mode for {mode=}") + return conf_trf + + +def l2_dist(a, b, weight): + return (a - b).square().sum(dim=-1) * weight + + +def l1_dist(a, b, weight): + return (a - b).norm(dim=-1) * weight + + +ALL_DISTS = dict(l1=l1_dist, l2=l2_dist) + + +def signed_log1p(x): + sign = torch.sign(x) + return sign * torch.log1p(torch.abs(x)) + + +def signed_expm1(x): + sign = torch.sign(x) + return sign * torch.expm1(torch.abs(x)) + + +def cosine_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_end + (lr_start - lr_end) * (1 + np.cos(t * np.pi)) / 2 + + +def linear_schedule(t, lr_start, lr_end): + assert 0 <= t <= 1 + return lr_start + (lr_end - lr_start) * t diff --git a/third_party/dust3r/dust3r/cloud_opt/init_im_poses.py b/third_party/dust3r/dust3r/cloud_opt/init_im_poses.py new file mode 100644 index 0000000000000000000000000000000000000000..ef0bf918fead1e0d0525a01cf522ce68884b27a2 --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/init_im_poses.py @@ -0,0 +1,376 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Initialization functions for global alignment +# -------------------------------------------------------- +from functools import cache + +import cv2 +import numpy as np +import roma +import scipy.sparse as sp +import torch +from dust3r.cloud_opt.commons import compute_edge_scores, edge_str, i_j_ij +from dust3r.post_process import estimate_focal_knowing_depth +from dust3r.utils.geometry import geotrf, get_med_dist_between_poses, inv +from dust3r.viz import to_numpy +from tqdm import tqdm + + +@torch.no_grad() +def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3): + device = self.device + + # indices of known poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + assert nkp == self.n_imgs, "not all poses are known" + + # get all focals + nkf, _, im_focals = get_known_focals(self) + assert nkf == self.n_imgs + im_pp = self.get_principal_points() + + best_depthmaps = {} + # init all pairwise poses + for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)): + i_j = edge_str(i, j) + + # find relative pose for this pair + P1 = torch.eye(4, device=device) + msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1) + _, P2 = fast_pnp( + self.pred_j[i_j], + float(im_focals[i].mean()), + pp=im_pp[i], + msk=msk, + device=device, + niter_PnP=niter_PnP, + ) + + # align the two predicted camera with the two gt cameras + s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]]) + # normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1 + # and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3]) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # remember if this is a good depthmap + score = float(self.conf_i[i_j].mean()) + if score > best_depthmaps.get(i, (0,))[0]: + best_depthmaps[i] = score, i_j, s + + # init all image poses + for n in range(self.n_imgs): + assert known_poses_msk[n] + _, i_j, scale = best_depthmaps[n] + depth = self.pred_i[i_j][:, :, 2] + self._set_depthmap(n, depth * scale) + + +@torch.no_grad() +def init_minimum_spanning_tree(self, **kw): + """Init all camera poses (image-wise and pairwise poses) given + an initial set of pairwise estimations. + """ + device = self.device + pts3d, _, im_focals, im_poses = minimum_spanning_tree( + self.imshapes, + self.edges, + self.pred_i, + self.pred_j, + self.conf_i, + self.conf_j, + self.im_conf, + self.min_conf_thr, + device, + has_im_poses=self.has_im_poses, + verbose=self.verbose, + **kw, + ) + + return init_from_pts3d(self, pts3d, im_focals, im_poses) + + +def init_from_pts3d(self, pts3d, im_focals, im_poses): + # init poses + nkp, known_poses_msk, known_poses = get_known_poses(self) + if nkp == 1: + raise NotImplementedError( + "Would be simpler to just align everything afterwards on the single known pose" + ) + elif nkp > 1: + # global rigid SE3 alignment + s, R, T = align_multiple_poses( + im_poses[known_poses_msk], known_poses[known_poses_msk] + ) + trf = sRT_to_4x4(s, R, T, device=known_poses.device) + + # rotate everything + im_poses = trf @ im_poses + im_poses[:, :3, :3] /= s # undo scaling on the rotation part + for img_pts3d in pts3d: + img_pts3d[:] = geotrf(trf, img_pts3d) + + # set all pairwise poses + for e, (i, j) in enumerate(self.edges): + i_j = edge_str(i, j) + # compute transform that goes from cam to world + s, R, T = rigid_points_registration( + self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j] + ) + self._set_pose(self.pw_poses, e, R, T, scale=s) + + # take into account the scale normalization + s_factor = self.get_pw_norm_scale_factor() + im_poses[:, :3, 3] *= s_factor # apply downscaling factor + for img_pts3d in pts3d: + img_pts3d *= s_factor + + # init all image poses + if self.has_im_poses: + for i in range(self.n_imgs): + cam2world = im_poses[i] + depth = geotrf(inv(cam2world), pts3d[i])[..., 2] + self._set_depthmap(i, depth) + self._set_pose(self.im_poses, i, cam2world) + if im_focals[i] is not None and not self.same_focals: + self._set_focal(i, im_focals[i]) + if self.same_focals: + self._set_focal( + 0, torch.tensor(im_focals).mean() + ) # initialize with mean focal + + if self.verbose: + print(" init loss =", float(self())) + + +def minimum_spanning_tree( + imshapes, + edges, + pred_i, + pred_j, + conf_i, + conf_j, + im_conf, + min_conf_thr, + device, + has_im_poses=True, + niter_PnP=10, + verbose=True, +): + n_imgs = len(imshapes) + sparse_graph = -dict_to_sparse_graph( + compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j) + ) + msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo() + + # temp variable to store 3d points + pts3d = [None] * len(imshapes) + + todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges + im_poses = [None] * n_imgs + im_focals = [None] * n_imgs + + # init with strongest edge + score, i, j = todo.pop() + if verbose: + print(f" init edge ({i}*,{j}*) {score=}") + i_j = edge_str(i, j) + pts3d[i] = pred_i[i_j].clone() + pts3d[j] = pred_j[i_j].clone() + done = {i, j} + if has_im_poses: + im_poses[i] = torch.eye(4, device=device) + im_focals[i] = estimate_focal(pred_i[i_j]) + + # set initial pointcloud based on pairwise graph + msp_edges = [(i, j)] + while todo: + # each time, predict the next one + score, i, j = todo.pop() + + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[i_j]) + + if i in done: + if verbose: + print(f" init edge ({i},{j}*) {score=}") + assert j not in done + # align pred[i] with pts3d[i], and then set j accordingly + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[j] = geotrf(trf, pred_j[i_j]) + done.add(j) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + + elif j in done: + if verbose: + print(f" init edge ({i}*,{j}) {score=}") + assert i not in done + i_j = edge_str(i, j) + s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j]) + trf = sRT_to_4x4(s, R, T, device) + pts3d[i] = geotrf(trf, pred_i[i_j]) + done.add(i) + msp_edges.append((i, j)) + + if has_im_poses and im_poses[i] is None: + im_poses[i] = sRT_to_4x4(1, R, T, device) + else: + # let's try again later + todo.insert(0, (score, i, j)) + + if has_im_poses: + # complete all missing informations + pair_scores = list( + sparse_graph.values() + ) # already negative scores: less is best + edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[ + np.argsort(pair_scores) + ] + for i, j in edges_from_best_to_worse.tolist(): + if im_focals[i] is None: + im_focals[i] = estimate_focal(pred_i[edge_str(i, j)]) + + for i in range(n_imgs): + if im_poses[i] is None: + msk = im_conf[i] > min_conf_thr + res = fast_pnp( + pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP + ) + if res: + im_focals[i], im_poses[i] = res + if im_poses[i] is None: + im_poses[i] = torch.eye(4, device=device) + im_poses = torch.stack(im_poses) + else: + im_poses = im_focals = None + + return pts3d, msp_edges, im_focals, im_poses + + +def dict_to_sparse_graph(dic): + n_imgs = max(max(e) for e in dic) + 1 + res = sp.dok_array((n_imgs, n_imgs)) + for edge, value in dic.items(): + res[edge] = value + return res + + +def rigid_points_registration(pts1, pts2, conf): + R, T, s = roma.rigid_points_registration( + pts1.reshape(-1, 3), + pts2.reshape(-1, 3), + weights=conf.ravel(), + compute_scaling=True, + ) + return s, R, T # return un-scaled (R, T) + + +def sRT_to_4x4(scale, R, T, device): + trf = torch.eye(4, device=device) + trf[:3, :3] = R * scale + trf[:3, 3] = T.ravel() # doesn't need scaling + return trf + + +def estimate_focal(pts3d_i, pp=None): + if pp is None: + H, W, THREE = pts3d_i.shape + assert THREE == 3 + pp = torch.tensor((W / 2, H / 2), device=pts3d_i.device) + focal = estimate_focal_knowing_depth( + pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode="weiszfeld" + ).ravel() + return float(focal) + + +@cache +def pixel_grid(H, W): + return np.mgrid[:W, :H].T.astype(np.float32) + + +def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10): + # extract camera poses and focals with RANSAC-PnP + if msk.sum() < 4: + return None # we need at least 4 points for PnP + pts3d, msk = map(to_numpy, (pts3d, msk)) + + H, W, THREE = pts3d.shape + assert THREE == 3 + pixels = pixel_grid(H, W) + + if focal is None: + S = max(W, H) + tentative_focals = np.geomspace(S / 2, S * 3, 21) + else: + tentative_focals = [focal] + + if pp is None: + pp = (W / 2, H / 2) + else: + pp = to_numpy(pp) + + best = (0,) + for focal in tentative_focals: + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + success, R, T, inliers = cv2.solvePnPRansac( + pts3d[msk], + pixels[msk], + K, + None, + iterationsCount=niter_PnP, + reprojectionError=5, + flags=cv2.SOLVEPNP_SQPNP, + ) + if not success: + continue + + score = len(inliers) + if success and score > best[0]: + best = score, R, T, focal + + if not best[0]: + return None + + _, R, T, best_focal = best + R = cv2.Rodrigues(R)[0] # world to cam + R, T = map(torch.from_numpy, (R, T)) + return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world + + +def get_known_poses(self): + if self.has_im_poses: + known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses]) + known_poses = self.get_im_poses() + return known_poses_msk.sum(), known_poses_msk, known_poses + else: + return 0, None, None + + +def get_known_focals(self): + if self.has_im_poses: + known_focal_msk = self.get_known_focal_mask() + known_focals = self.get_focals() + return known_focal_msk.sum(), known_focal_msk, known_focals + else: + return 0, None, None + + +def align_multiple_poses(src_poses, target_poses): + N = len(src_poses) + assert src_poses.shape == target_poses.shape == (N, 4, 4) + + def center_and_z(poses): + eps = get_med_dist_between_poses(poses) / 100 + return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps * poses[:, :3, 2])) + + R, T, s = roma.rigid_points_registration( + center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True + ) + return s, R, T diff --git a/third_party/dust3r/dust3r/cloud_opt/modular_optimizer.py b/third_party/dust3r/dust3r/cloud_opt/modular_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..e99a4b3e3561d0abd4d9e532dc3c9bb1c4c3afd7 --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/modular_optimizer.py @@ -0,0 +1,174 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Slower implementation of the global alignment that allows to freeze partial poses/intrinsics +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.device import to_cpu, to_numpy +from dust3r.utils.geometry import depthmap_to_pts3d, geotrf + + +class ModularPointCloudOptimizer(BasePCOptimizer): + """Optimize a global scene, given a list of pairwise observations. + Unlike PointCloudOptimizer, you can fix parts of the optimization process (partial poses/intrinsics) + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__( + self, *args, optimize_pp=False, fx_and_fy=False, focal_brake=20, **kwargs + ): + super().__init__(*args, **kwargs) + self.has_im_poses = True # by definition of this class + self.focal_brake = focal_brake + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList( + torch.randn(H, W) / 10 - 3 for H, W in self.imshapes + ) # log(depth) + self.im_poses = nn.ParameterList( + self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs) + ) # camera poses + default_focals = [ + self.focal_brake * np.log(max(H, W)) for H, W in self.imshapes + ] + self.im_focals = nn.ParameterList( + torch.FloatTensor([f, f] if fx_and_fy else [f]) for f in default_focals + ) # camera intrinsics + self.im_pp = nn.ParameterList( + torch.zeros((2,)) for _ in range(self.n_imgs) + ) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f" (setting pose #{idx} = {pose[:3,3]})") + self._no_grad( + self._set_pose(self.im_poses, idx, torch.tensor(pose), force=True) + ) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = n_known_poses <= 1 + + def preset_intrinsics(self, known_intrinsics, msk=None): + if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2: + known_intrinsics = [known_intrinsics] + for K in known_intrinsics: + assert K.shape == (3, 3) + self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk) + self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk) + + def preset_focal(self, known_focals, msk=None): + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f" (setting focal #{idx} = {focal})") + self._no_grad(self._set_focal(idx, focal, force=True)) + + def preset_principal_point(self, known_pp, msk=None): + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f" (setting principal point #{idx} = {pp})") + self._no_grad(self._set_principal_point(idx, pp, force=True)) + + def _no_grad(self, tensor): + return tensor.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f"bad {msk=}") + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if ( + param.requires_grad or force + ): # can only init a parameter not already initialized + param.data[:] = self.focal_brake * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_brake).exp() + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if ( + param.requires_grad or force + ): # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W / 2, H / 2)) / 10 + return param + + def get_principal_points(self): + return torch.stack( + [ + pp.new((W / 2, H / 2)) + 10 * pp + for pp, (H, W) in zip(self.im_pp, self.imshapes) + ] + ) + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().view(self.n_imgs, -1) + K[:, 0, 0] = focals[:, 0] + K[:, 1, 1] = focals[:, -1] + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(torch.stack(list(self.im_poses))) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + param = self.im_depthmaps[idx] + if ( + param.requires_grad or force + ): # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self): + return [d.exp() for d in self.im_depthmaps] + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps() + + # convert focal to (1,2,H,W) constant field + def focal_ex(i): + return focals[i][..., None, None].expand( + 1, *focals[i].shape, *self.imshapes[i] + ) + + # get pointmaps in camera frame + rel_ptmaps = [ + depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i : i + 1])[0] + for i in range(im_poses.shape[0]) + ] + # project to world frame + return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)] + + def get_pts3d(self): + return self.depth_to_pts3d() diff --git a/third_party/dust3r/dust3r/cloud_opt/optimizer.py b/third_party/dust3r/dust3r/cloud_opt/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..ec62ad907c3be49a50cfb162fc5d9d1e53eb4a48 --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/optimizer.py @@ -0,0 +1,310 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Main class for the implementation of the global alignment +# -------------------------------------------------------- +import numpy as np +import torch +import torch.nn as nn +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.utils.device import to_cpu, to_numpy +from dust3r.utils.geometry import geotrf, xy_grid + + +class PointCloudOptimizer(BasePCOptimizer): + """Optimize a global scene, given a list of pairwise observations. + Graph node: images + Graph edges: observations = (pred1, pred2) + """ + + def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): + super().__init__(*args, **kwargs) + + self.has_im_poses = True # by definition of this class + self.focal_break = focal_break + + # adding thing to optimize + self.im_depthmaps = nn.ParameterList( + torch.randn(H, W) / 10 - 3 for H, W in self.imshapes + ) # log(depth) + self.im_poses = nn.ParameterList( + self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs) + ) # camera poses + if self.same_focals: + self.im_focals = nn.Parameter( + torch.FloatTensor( + [[torch.tensor(self.focal_break) * np.log(max(self.imshapes[0]))]] + ) + ) # initialize with H x W of first image + else: + self.im_focals = nn.ParameterList( + torch.FloatTensor([self.focal_break * np.log(max(H, W))]) + for H, W in self.imshapes + ) # camera intrinsics + self.im_pp = nn.ParameterList( + torch.zeros((2,)) for _ in range(self.n_imgs) + ) # camera intrinsics + self.im_pp.requires_grad_(optimize_pp) + + self.imshape = self.imshapes[0] + im_areas = [h * w for h, w in self.imshapes] + self.max_area = max(im_areas) + + # adding thing to optimize + self.im_depthmaps = ParameterStack( + self.im_depthmaps, is_param=True, fill=self.max_area + ) + self.im_poses = ParameterStack(self.im_poses, is_param=True) + self.im_focals = ParameterStack(self.im_focals, is_param=True) + self.im_pp = ParameterStack(self.im_pp, is_param=True) + self.register_buffer( + "_pp", torch.tensor([(w / 2, h / 2) for h, w in self.imshapes]) + ) + self.register_buffer( + "_grid", + ParameterStack( + [xy_grid(W, H, device=self.device) for H, W in self.imshapes], + fill=self.max_area, + ), + ) + + # pre-compute pixel weights + self.register_buffer( + "_weight_i", + ParameterStack( + [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], + fill=self.max_area, + ), + ) + self.register_buffer( + "_weight_j", + ParameterStack( + [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], + fill=self.max_area, + ), + ) + + # precompute aa + self.register_buffer( + "_stacked_pred_i", + ParameterStack(self.pred_i, self.str_edges, fill=self.max_area), + ) + self.register_buffer( + "_stacked_pred_j", + ParameterStack(self.pred_j, self.str_edges, fill=self.max_area), + ) + self.register_buffer("_ei", torch.tensor([i for i, j in self.edges])) + self.register_buffer("_ej", torch.tensor([j for i, j in self.edges])) + self.total_area_i = sum([im_areas[i] for i, j in self.edges]) + self.total_area_j = sum([im_areas[j] for i, j in self.edges]) + + def _check_all_imgs_are_selected(self, msk): + assert np.all( + self._get_msk_indices(msk) == np.arange(self.n_imgs) + ), "incomplete mask!" + + def preset_pose(self, known_poses, pose_msk=None): # cam-to-world + self._check_all_imgs_are_selected(pose_msk) + + if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: + known_poses = [known_poses] + for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): + if self.verbose: + print(f" (setting pose #{idx} = {pose[:3,3]})") + self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) + + # normalize scale if there's less than 1 known pose + n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) + self.norm_pw_scale = n_known_poses <= 1 + + self.im_poses.requires_grad_(False) + self.norm_pw_scale = False + + def preset_focal(self, known_focals, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, focal in zip(self._get_msk_indices(msk), known_focals): + if self.verbose: + print(f" (setting focal #{idx} = {focal})") + self._no_grad(self._set_focal(idx, focal)) + + self.im_focals.requires_grad_(False) + + def preset_principal_point(self, known_pp, msk=None): + self._check_all_imgs_are_selected(msk) + + for idx, pp in zip(self._get_msk_indices(msk), known_pp): + if self.verbose: + print(f" (setting principal point #{idx} = {pp})") + self._no_grad(self._set_principal_point(idx, pp)) + + self.im_pp.requires_grad_(False) + + def _get_msk_indices(self, msk): + if msk is None: + return range(self.n_imgs) + elif isinstance(msk, int): + return [msk] + elif isinstance(msk, (tuple, list)): + return self._get_msk_indices(np.array(msk)) + elif msk.dtype in (bool, torch.bool, np.bool_): + assert len(msk) == self.n_imgs + return np.where(msk)[0] + elif np.issubdtype(msk.dtype, np.integer): + return msk + else: + raise ValueError(f"bad {msk=}") + + def _no_grad(self, tensor): + assert ( + tensor.requires_grad + ), "it must be True at this point, otherwise no modification occurs" + + def _set_focal(self, idx, focal, force=False): + param = self.im_focals[idx] + if ( + param.requires_grad or force + ): # can only init a parameter not already initialized + param.data[:] = self.focal_break * np.log(focal) + return param + + def get_focals(self): + log_focals = torch.stack(list(self.im_focals), dim=0) + return (log_focals / self.focal_break).exp() + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.im_focals]) + + def _set_principal_point(self, idx, pp, force=False): + param = self.im_pp[idx] + H, W = self.imshapes[idx] + if ( + param.requires_grad or force + ): # can only init a parameter not already initialized + param.data[:] = to_cpu(to_numpy(pp) - (W / 2, H / 2)) / 10 + return param + + def get_principal_points(self): + return self._pp + 10 * self.im_pp + + def get_intrinsics(self): + K = torch.zeros((self.n_imgs, 3, 3), device=self.device) + focals = self.get_focals().flatten() + K[:, 0, 0] = K[:, 1, 1] = focals + K[:, :2, 2] = self.get_principal_points() + K[:, 2, 2] = 1 + return K + + def get_im_poses(self): # cam to world + cam2world = self._get_poses(self.im_poses) + return cam2world + + def _set_depthmap(self, idx, depth, force=False): + depth = _ravel_hw(depth, self.max_area) + + param = self.im_depthmaps[idx] + if ( + param.requires_grad or force + ): # can only init a parameter not already initialized + param.data[:] = depth.log().nan_to_num(neginf=0) + return param + + def get_depthmaps(self, raw=False): + res = self.im_depthmaps.exp() + if not raw: + res = [dm[: h * w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def depth_to_pts3d(self): + # Get depths and projection params if not provided + focals = self.get_focals() + pp = self.get_principal_points() + im_poses = self.get_im_poses() + depth = self.get_depthmaps(raw=True) + + # get pointmaps in camera frame + rel_ptmaps = _fast_depthmap_to_pts3d( + depth, self._grid, focals, pp=pp, same_focals=self.same_focals + ) + # project to world frame + return geotrf(im_poses, rel_ptmaps) + + def get_pts3d(self, raw=False): + res = self.depth_to_pts3d() + if not raw: + res = [dm[: h * w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] + return res + + def forward(self): + pw_poses = self.get_pw_poses() # cam-to-world + pw_adapt = self.get_adaptors().unsqueeze(1) + proj_pts3d = self.get_pts3d(raw=True) + + # rotate pairwise prediction according to pw_poses + aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) + aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) + + # compute the less + li = ( + self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() + / self.total_area_i + ) + lj = ( + self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() + / self.total_area_j + ) + + return li + lj + + +def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp, same_focals=False): + pp = pp.unsqueeze(1) + focal = focal.unsqueeze(1) + if not same_focals: + assert focal.shape == (len(depth), 1, 1) + assert pp.shape == (len(depth), 1, 2) + assert pixel_grid.shape == depth.shape + (2,) + depth = depth.unsqueeze(-1) + return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) + + +def ParameterStack(params, keys=None, is_param=None, fill=0): + if keys is not None: + params = [params[k] for k in keys] + + if fill > 0: + params = [_ravel_hw(p, fill) for p in params] + + requires_grad = params[0].requires_grad + assert all(p.requires_grad == requires_grad for p in params) + + params = torch.stack(list(params)).float().detach() + if is_param or requires_grad: + params = nn.Parameter(params) + params.requires_grad_(requires_grad) + return params + + +def _ravel_hw(tensor, fill=0): + # ravel H,W + tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) + + if len(tensor) < fill: + tensor = torch.cat( + (tensor, tensor.new_zeros((fill - len(tensor),) + tensor.shape[1:])) + ) + return tensor + + +def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): + focal_base = max(H, W) / ( + 2 * np.tan(np.deg2rad(60) / 2) + ) # size / 1.1547005383792515 + return minf * focal_base, maxf * focal_base + + +def apply_mask(img, msk): + img = img.copy() + img[msk] = 0 + return img diff --git a/third_party/dust3r/dust3r/cloud_opt/pair_viewer.py b/third_party/dust3r/dust3r/cloud_opt/pair_viewer.py new file mode 100644 index 0000000000000000000000000000000000000000..e247485f7f0920721f91c367afe85fc2d0b3bb9d --- /dev/null +++ b/third_party/dust3r/dust3r/cloud_opt/pair_viewer.py @@ -0,0 +1,156 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dummy optimizer for visualizing pairs +# -------------------------------------------------------- +import cv2 +import numpy as np +import torch +import torch.nn as nn +from dust3r.cloud_opt.base_opt import BasePCOptimizer +from dust3r.cloud_opt.commons import edge_str +from dust3r.post_process import estimate_focal_knowing_depth +from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates, geotrf, inv + + +class PairViewer(BasePCOptimizer): + """ + This a Dummy Optimizer. + To use only when the goal is to visualize the results for a pair of images (with is_symmetrized) + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.is_symmetrized and self.n_edges == 2 + self.has_im_poses = True + + # compute all parameters directly from raw input + self.focals = [] + self.pp = [] + rel_poses = [] + confs = [] + for i in range(self.n_imgs): + conf = float( + self.conf_i[edge_str(i, 1 - i)].mean() + * self.conf_j[edge_str(i, 1 - i)].mean() + ) + if self.verbose: + print(f" - {conf=:.3} for edge {i}-{1-i}") + confs.append(conf) + + H, W = self.imshapes[i] + pts3d = self.pred_i[edge_str(i, 1 - i)] + pp = torch.tensor((W / 2, H / 2)) + focal = float( + estimate_focal_knowing_depth(pts3d[None], pp, focal_mode="weiszfeld") + ) + self.focals.append(focal) + self.pp.append(pp) + + # estimate the pose of pts1 in image 2 + pixels = np.mgrid[:W, :H].T.astype(np.float32) + pts3d = self.pred_j[edge_str(1 - i, i)].numpy() + assert pts3d.shape[:2] == (H, W) + msk = self.get_masks()[i].numpy() + K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) + + try: + res = cv2.solvePnPRansac( + pts3d[msk], + pixels[msk], + K, + None, + iterationsCount=100, + reprojectionError=5, + flags=cv2.SOLVEPNP_SQPNP, + ) + success, R, T, inliers = res + assert success + + R = cv2.Rodrigues(R)[0] # world to cam + pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) # cam to world + except: + pose = np.eye(4) + rel_poses.append(torch.from_numpy(pose.astype(np.float32))) + + # let's use the pair with the most confidence + if confs[0] > confs[1]: + # ptcloud is expressed in camera1 + self.im_poses = [torch.eye(4), rel_poses[1]] # I, cam2-to-cam1 + self.depth = [ + self.pred_i["0_1"][..., 2], + geotrf(inv(rel_poses[1]), self.pred_j["0_1"])[..., 2], + ] + else: + # ptcloud is expressed in camera2 + self.im_poses = [rel_poses[0], torch.eye(4)] # I, cam1-to-cam2 + self.depth = [ + geotrf(inv(rel_poses[0]), self.pred_j["1_0"])[..., 2], + self.pred_i["1_0"][..., 2], + ] + + self.im_poses = nn.Parameter( + torch.stack(self.im_poses, dim=0), requires_grad=False + ) + if self.same_focals: + self.focals = nn.Parameter( + torch.tensor([torch.tensor(self.focals).mean()]), requires_grad=False + ) + else: + self.focals = nn.Parameter(torch.tensor(self.focals), requires_grad=False) + self.pp = nn.Parameter(torch.stack(self.pp, dim=0), requires_grad=False) + self.depth = nn.ParameterList(self.depth) + for p in self.parameters(): + p.requires_grad = False + + def _set_depthmap(self, idx, depth, force=False): + if self.verbose: + print("_set_depthmap is ignored in PairViewer") + return + + def get_depthmaps(self, raw=False): + depth = [d.to(self.device) for d in self.depth] + return depth + + def _set_focal(self, idx, focal, force=False): + self.focals[idx] = focal + + def get_focals(self): + return self.focals + + def get_known_focal_mask(self): + return torch.tensor([not (p.requires_grad) for p in self.focals]) + + def get_principal_points(self): + return self.pp + + def get_intrinsics(self): + focals = self.get_focals() + pps = self.get_principal_points() + K = torch.zeros((len(focals), 3, 3), device=self.device) + for i in range(len(focals)): + K[i, 0, 0] = K[i, 1, 1] = focals[i] + K[i, :2, 2] = pps[i] + K[i, 2, 2] = 1 + return K + + def get_im_poses(self): + return self.im_poses + + def depth_to_pts3d(self): + pts3d = [] + + for i, (d, im_pose) in enumerate(zip(self.depth, self.get_im_poses())): + if self.same_focals: + intrinsic = self.get_intrinsics()[0] + else: + intrinsic = self.get_intrinsics()[i] + pts, _ = depthmap_to_absolute_camera_coordinates( + d.cpu().numpy(), intrinsic.cpu().numpy(), im_pose.cpu().numpy() + ) + pts3d.append(torch.from_numpy(pts).to(device=self.device)) + return pts3d + + def forward(self): + return float("nan") diff --git a/third_party/dust3r/dust3r/datasets/__init__.py b/third_party/dust3r/dust3r/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..16b105af2488b86e3a656ada6d14c0ca365bc8c7 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/__init__.py @@ -0,0 +1,61 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +from .arkitscenes import ARKitScenes # noqa +from .base.batched_sampler import BatchedRandomSampler # noqa +from .blendedmvs import BlendedMVS # noqa +from .co3d import Co3d # noqa +from .habitat import Habitat # noqa +from .megadepth import MegaDepth # noqa +from .scannetpp import ScanNetpp # noqa +from .staticthings3d import StaticThings3D # noqa +from .utils.transforms import * +from .waymo import Waymo # noqa +from .wildrgbd import WildRGBD # noqa + + +def get_data_loader( + dataset, batch_size, num_workers=8, shuffle=True, drop_last=True, pin_mem=True +): + import torch + from croco.utils.misc import get_rank, get_world_size + + # pytorch dataset + if isinstance(dataset, str): + dataset = eval(dataset) + + world_size = get_world_size() + rank = get_rank() + + try: + sampler = dataset.make_sampler( + batch_size, + shuffle=shuffle, + world_size=world_size, + rank=rank, + drop_last=drop_last, + ) + except (AttributeError, NotImplementedError): + # not avail for this dataset + if torch.distributed.is_initialized(): + sampler = torch.utils.data.DistributedSampler( + dataset, + num_replicas=world_size, + rank=rank, + shuffle=shuffle, + drop_last=drop_last, + ) + elif shuffle: + sampler = torch.utils.data.RandomSampler(dataset) + else: + sampler = torch.utils.data.SequentialSampler(dataset) + + data_loader = torch.utils.data.DataLoader( + dataset, + sampler=sampler, + batch_size=batch_size, + num_workers=num_workers, + pin_memory=pin_mem, + drop_last=drop_last, + ) + + return data_loader diff --git a/third_party/dust3r/dust3r/datasets/arkitscenes.py b/third_party/dust3r/dust3r/datasets/arkitscenes.py new file mode 100644 index 0000000000000000000000000000000000000000..901c6156facd03aa3227e20cee8636b1a2debf8e --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/arkitscenes.py @@ -0,0 +1,112 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed arkitscenes +# dataset at https://github.com/apple/ARKitScenes - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License https://github.com/apple/ARKitScenes/tree/main?tab=readme-ov-file#license +# See datasets_preprocess/preprocess_arkitscenes.py +# -------------------------------------------------------- +import os.path as osp + +import cv2 +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class ARKitScenes(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + if split == "train": + self.split = "Training" + elif split == "test": + self.split = "Test" + else: + raise ValueError("") + + self.loaded_data = self._load_data(self.split) + + def _load_data(self, split): + with np.load(osp.join(self.ROOT, split, "all_metadata.npz")) as data: + self.scenes = data["scenes"] + self.sceneids = data["sceneids"] + self.images = data["images"] + self.intrinsics = data["intrinsics"].astype(np.float32) + self.trajectories = data["trajectories"].astype(np.float32) + self.pairs = data["pairs"][:, :2].astype(int) + + def __len__(self): + return len(self.pairs) + + def _get_views(self, idx, resolution, rng): + image_idx1, image_idx2 = self.pairs[idx] + + views = [] + for view_idx in [image_idx1, image_idx2]: + scene_id = self.sceneids[view_idx] + scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id]) + + intrinsics = self.intrinsics[view_idx] + camera_pose = self.trajectories[view_idx] + basename = self.images[view_idx] + + # Load RGB image + rgb_image = imread_cv2( + osp.join(scene_dir, "vga_wide", basename.replace(".png", ".jpg")) + ) + # Load depthmap + depthmap = imread_cv2( + osp.join(scene_dir, "lowres_depth", basename), cv2.IMREAD_UNCHANGED + ) + depthmap = depthmap.astype(np.float32) / 1000 + depthmap[~np.isfinite(depthmap)] = 0 # invalid + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx + ) + + views.append( + dict( + img=rgb_image, + depthmap=depthmap.astype(np.float32), + camera_pose=camera_pose.astype(np.float32), + camera_intrinsics=intrinsics.astype(np.float32), + dataset="arkitscenes", + label=self.scenes[scene_id] + "_" + basename, + instance=f"{str(idx)}_{str(view_idx)}", + ) + ) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = ARKitScenes( + split="train", ROOT="data/arkitscenes_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/base/__init__.py b/third_party/dust3r/dust3r/datasets/base/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/base/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/third_party/dust3r/dust3r/datasets/base/base_stereo_view_dataset.py b/third_party/dust3r/dust3r/datasets/base/base_stereo_view_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..25f6c05499c4514d681e6faf4af62652cb47cc52 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/base/base_stereo_view_dataset.py @@ -0,0 +1,253 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# base class for implementing datasets +# -------------------------------------------------------- +import dust3r.datasets.utils.cropping as cropping +import numpy as np +import PIL +import torch +from dust3r.datasets.base.easy_dataset import EasyDataset +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates + + +class BaseStereoViewDataset(EasyDataset): + """Define all basic options. + + Usage: + class MyDataset (BaseStereoViewDataset): + def _get_views(self, idx, rng): + # overload here + views = [] + views.append(dict(img=, ...)) + return views + """ + + def __init__( + self, + *, # only keyword arguments + split=None, + resolution=None, # square_size or (width, height) or list of [(width,height), ...] + transform=ImgNorm, + aug_crop=False, + seed=None, + ): + self.num_views = 2 + self.split = split + self._set_resolutions(resolution) + + self.transform = transform + if isinstance(transform, str): + transform = eval(transform) + + self.aug_crop = aug_crop + self.seed = seed + + def __len__(self): + return len(self.scenes) + + def get_stats(self): + return f"{len(self)} pairs" + + def __repr__(self): + resolutions_str = "[" + ";".join(f"{w}x{h}" for w, h in self._resolutions) + "]" + return ( + f"""{type(self).__name__}({self.get_stats()}, + {self.split=}, + {self.seed=}, + resolutions={resolutions_str}, + {self.transform=})""".replace( + "self.", "" + ) + .replace("\n", "") + .replace(" ", "") + ) + + def _get_views(self, idx, resolution, rng): + raise NotImplementedError() + + def __getitem__(self, idx): + if isinstance(idx, tuple): + # the idx is specifying the aspect-ratio + idx, ar_idx = idx + else: + assert len(self._resolutions) == 1 + ar_idx = 0 + + # set-up the rng + if self.seed: # reseed for each __getitem__ + self._rng = np.random.default_rng(seed=self.seed + idx) + elif not hasattr(self, "_rng"): + seed = torch.initial_seed() # this is different for each dataloader process + self._rng = np.random.default_rng(seed=seed) + + # over-loaded code + resolution = self._resolutions[ + ar_idx + ] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler) + views = self._get_views(idx, resolution, self._rng) + assert len(views) == self.num_views + + # check data-types + for v, view in enumerate(views): + assert ( + "pts3d" not in view + ), f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" + view["idx"] = (idx, ar_idx, v) + + # encode the image + width, height = view["img"].size + view["true_shape"] = np.int32((height, width)) + view["img"] = self.transform(view["img"]) + + assert "camera_intrinsics" in view + if "camera_pose" not in view: + view["camera_pose"] = np.full((4, 4), np.nan, dtype=np.float32) + else: + assert np.isfinite( + view["camera_pose"] + ).all(), f"NaN in camera pose for view {view_name(view)}" + assert "pts3d" not in view + assert "valid_mask" not in view + assert np.isfinite( + view["depthmap"] + ).all(), f"NaN in depthmap for view {view_name(view)}" + pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) + + view["pts3d"] = pts3d + view["valid_mask"] = valid_mask & np.isfinite(pts3d).all(axis=-1) + + # check all datatypes + for key, val in view.items(): + res, err_msg = is_good_type(key, val) + assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" + K = view["camera_intrinsics"] + + # last thing done! + for view in views: + # transpose to make sure all views are the same size + transpose_to_landscape(view) + # this allows to check whether the RNG is is the same state each time + view["rng"] = int.from_bytes(self._rng.bytes(4), "big") + return views + + def _set_resolutions(self, resolutions): + assert resolutions is not None, "undefined resolution" + + if not isinstance(resolutions, list): + resolutions = [resolutions] + + self._resolutions = [] + for resolution in resolutions: + if isinstance(resolution, int): + width = height = resolution + else: + width, height = resolution + assert isinstance( + width, int + ), f"Bad type for {width=} {type(width)=}, should be int" + assert isinstance( + height, int + ), f"Bad type for {height=} {type(height)=}, should be int" + assert width >= height + self._resolutions.append((width, height)) + + def _crop_resize_if_necessary( + self, image, depthmap, intrinsics, resolution, rng=None, info=None + ): + """This function: + - first downsizes the image with LANCZOS inteprolation, + which is better than bilinear interpolation in + """ + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + + # downscale with lanczos interpolation so that image.size == resolution + # cropping centered on the principal point + W, H = image.size + cx, cy = intrinsics[:2, 2].round().astype(int) + min_margin_x = min(cx, W - cx) + min_margin_y = min(cy, H - cy) + # assert min_margin_x > W/5, f'Bad principal point in view={info}' + # assert min_margin_y > H/5, f'Bad principal point in view={info}' + # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) + l, t = cx - min_margin_x, cy - min_margin_y + r, b = cx + min_margin_x, cy + min_margin_y + crop_bbox = (l, t, r, b) + image, depthmap, intrinsics = cropping.crop_image_depthmap( + image, depthmap, intrinsics, crop_bbox + ) + + # transpose the resolution if necessary + W, H = image.size # new size + assert resolution[0] >= resolution[1] + if H > 1.1 * W: + # image is portrait mode + resolution = resolution[::-1] + elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]: + # image is square, so we chose (portrait, landscape) randomly + if rng.integers(2): + resolution = resolution[::-1] + + # high-quality Lanczos down-scaling + target_resolution = np.array(resolution) + if self.aug_crop > 1: + target_resolution += rng.integers(0, self.aug_crop) + image, depthmap, intrinsics = cropping.rescale_image_depthmap( + image, depthmap, intrinsics, target_resolution + ) + + # actual cropping (if necessary) with bilinear interpolation + intrinsics2 = cropping.camera_matrix_of_crop( + intrinsics, image.size, resolution, offset_factor=0.5 + ) + crop_bbox = cropping.bbox_from_intrinsics_in_out( + intrinsics, intrinsics2, resolution + ) + image, depthmap, intrinsics2 = cropping.crop_image_depthmap( + image, depthmap, intrinsics, crop_bbox + ) + + return image, depthmap, intrinsics2 + + +def is_good_type(key, v): + """returns (is_good, err_msg)""" + if isinstance(v, (str, int, tuple)): + return True, None + if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8): + return False, f"bad {v.dtype=}" + return True, None + + +def view_name(view, batch_index=None): + def sel(x): + return x[batch_index] if batch_index not in (None, slice(None)) else x + + db = sel(view["dataset"]) + label = sel(view["label"]) + instance = sel(view["instance"]) + return f"{db}/{label}/{instance}" + + +def transpose_to_landscape(view): + height, width = view["true_shape"] + + if width < height: + # rectify portrait to landscape + assert view["img"].shape == (3, height, width) + view["img"] = view["img"].swapaxes(1, 2) + + assert view["valid_mask"].shape == (height, width) + view["valid_mask"] = view["valid_mask"].swapaxes(0, 1) + + assert view["depthmap"].shape == (height, width) + view["depthmap"] = view["depthmap"].swapaxes(0, 1) + + assert view["pts3d"].shape == (height, width, 3) + view["pts3d"] = view["pts3d"].swapaxes(0, 1) + + # transpose x and y pixels + view["camera_intrinsics"] = view["camera_intrinsics"][[1, 0, 2]] diff --git a/third_party/dust3r/dust3r/datasets/base/batched_sampler.py b/third_party/dust3r/dust3r/datasets/base/batched_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..aec1526a1f8b731501ebb558acf363ed11c02aad --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/base/batched_sampler.py @@ -0,0 +1,82 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Random sampling under a constraint +# -------------------------------------------------------- +import numpy as np +import torch + + +class BatchedRandomSampler: + """Random sampling under a constraint: each sample in the batch has the same feature, + which is chosen randomly from a known pool of 'features' for each batch. + + For instance, the 'feature' could be the image aspect-ratio. + + The index returned is a tuple (sample_idx, feat_idx). + This sampler ensures that each series of `batch_size` indices has the same `feat_idx`. + """ + + def __init__( + self, dataset, batch_size, pool_size, world_size=1, rank=0, drop_last=True + ): + self.batch_size = batch_size + self.pool_size = pool_size + + self.len_dataset = N = len(dataset) + self.total_size = round_by(N, batch_size * world_size) if drop_last else N + assert ( + world_size == 1 or drop_last + ), "must drop the last batch in distributed mode" + + # distributed sampler + self.world_size = world_size + self.rank = rank + self.epoch = None + + def __len__(self): + return self.total_size // self.world_size + + def set_epoch(self, epoch): + self.epoch = epoch + + def __iter__(self): + # prepare RNG + if self.epoch is None: + assert ( + self.world_size == 1 and self.rank == 0 + ), "use set_epoch() if distributed mode is used" + seed = int(torch.empty((), dtype=torch.int64).random_().item()) + else: + seed = self.epoch + 777 + rng = np.random.default_rng(seed=seed) + + # random indices (will restart from 0 if not drop_last) + sample_idxs = np.arange(self.total_size) + rng.shuffle(sample_idxs) + + # random feat_idxs (same across each batch) + n_batches = (self.total_size + self.batch_size - 1) // self.batch_size + feat_idxs = rng.integers(self.pool_size, size=n_batches) + feat_idxs = np.broadcast_to(feat_idxs[:, None], (n_batches, self.batch_size)) + feat_idxs = feat_idxs.ravel()[: self.total_size] + + # put them together + idxs = np.c_[sample_idxs, feat_idxs] # shape = (total_size, 2) + + # Distributed sampler: we select a subset of batches + # make sure the slice for each node is aligned with batch_size + size_per_proc = self.batch_size * ( + (self.total_size + self.world_size * self.batch_size - 1) + // (self.world_size * self.batch_size) + ) + idxs = idxs[self.rank * size_per_proc : (self.rank + 1) * size_per_proc] + + yield from (tuple(idx) for idx in idxs) + + +def round_by(total, multiple, up=False): + if up: + total = total + multiple - 1 + return (total // multiple) * multiple diff --git a/third_party/dust3r/dust3r/datasets/base/easy_dataset.py b/third_party/dust3r/dust3r/datasets/base/easy_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..e5aa95bf556c201731304898582ef88db04f9108 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/base/easy_dataset.py @@ -0,0 +1,175 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# A dataset base class that you can easily resize and combine. +# -------------------------------------------------------- +import numpy as np +from dust3r.datasets.base.batched_sampler import BatchedRandomSampler + + +class EasyDataset: + """a dataset that you can easily resize and combine. + Examples: + --------- + 2 * dataset ==> duplicate each element 2x + + 10 @ dataset ==> set the size to 10 (random sampling, duplicates if necessary) + + dataset1 + dataset2 ==> concatenate datasets + """ + + def __add__(self, other): + return CatDataset([self, other]) + + def __rmul__(self, factor): + return MulDataset(factor, self) + + def __rmatmul__(self, factor): + return ResizedDataset(factor, self) + + def set_epoch(self, epoch): + pass # nothing to do by default + + def make_sampler( + self, batch_size, shuffle=True, world_size=1, rank=0, drop_last=True + ): + if not (shuffle): + raise NotImplementedError() # cannot deal yet + num_of_aspect_ratios = len(self._resolutions) + return BatchedRandomSampler( + self, + batch_size, + num_of_aspect_ratios, + world_size=world_size, + rank=rank, + drop_last=drop_last, + ) + + +class MulDataset(EasyDataset): + """Artifically augmenting the size of a dataset.""" + + multiplicator: int + + def __init__(self, multiplicator, dataset): + assert isinstance(multiplicator, int) and multiplicator > 0 + self.multiplicator = multiplicator + self.dataset = dataset + + def __len__(self): + return self.multiplicator * len(self.dataset) + + def __repr__(self): + return f"{self.multiplicator}*{repr(self.dataset)}" + + def __getitem__(self, idx): + if isinstance(idx, tuple): + idx, other = idx + return self.dataset[idx // self.multiplicator, other] + else: + return self.dataset[idx // self.multiplicator] + + @property + def _resolutions(self): + return self.dataset._resolutions + + +class ResizedDataset(EasyDataset): + """Artifically changing the size of a dataset.""" + + new_size: int + + def __init__(self, new_size, dataset): + assert isinstance(new_size, int) and new_size > 0 + self.new_size = new_size + self.dataset = dataset + + def __len__(self): + return self.new_size + + def __repr__(self): + size_str = str(self.new_size) + for i in range((len(size_str) - 1) // 3): + sep = -4 * i - 3 + size_str = size_str[:sep] + "_" + size_str[sep:] + return f"{size_str} @ {repr(self.dataset)}" + + def set_epoch(self, epoch): + # this random shuffle only depends on the epoch + rng = np.random.default_rng(seed=epoch + 777) + + # shuffle all indices + perm = rng.permutation(len(self.dataset)) + + # rotary extension until target size is met + shuffled_idxs = np.concatenate( + [perm] * (1 + (len(self) - 1) // len(self.dataset)) + ) + self._idxs_mapping = shuffled_idxs[: self.new_size] + + assert len(self._idxs_mapping) == self.new_size + + def __getitem__(self, idx): + assert hasattr( + self, "_idxs_mapping" + ), "You need to call dataset.set_epoch() to use ResizedDataset.__getitem__()" + if isinstance(idx, tuple): + idx, other = idx + return self.dataset[self._idxs_mapping[idx], other] + else: + return self.dataset[self._idxs_mapping[idx]] + + @property + def _resolutions(self): + return self.dataset._resolutions + + +class CatDataset(EasyDataset): + """Concatenation of several datasets""" + + def __init__(self, datasets): + for dataset in datasets: + assert isinstance(dataset, EasyDataset) + self.datasets = datasets + self._cum_sizes = np.cumsum([len(dataset) for dataset in datasets]) + + def __len__(self): + return self._cum_sizes[-1] + + def __repr__(self): + # remove uselessly long transform + return " + ".join( + repr(dataset).replace( + ",transform=Compose( ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))", + "", + ) + for dataset in self.datasets + ) + + def set_epoch(self, epoch): + for dataset in self.datasets: + dataset.set_epoch(epoch) + + def __getitem__(self, idx): + other = None + if isinstance(idx, tuple): + idx, other = idx + + if not (0 <= idx < len(self)): + raise IndexError() + + db_idx = np.searchsorted(self._cum_sizes, idx, "right") + dataset = self.datasets[db_idx] + new_idx = idx - (self._cum_sizes[db_idx - 1] if db_idx > 0 else 0) + + if other is not None: + new_idx = (new_idx, other) + return dataset[new_idx] + + @property + def _resolutions(self): + resolutions = self.datasets[0]._resolutions + for dataset in self.datasets[1:]: + assert tuple(dataset._resolutions) == tuple(resolutions) + return resolutions diff --git a/third_party/dust3r/dust3r/datasets/blendedmvs.py b/third_party/dust3r/dust3r/datasets/blendedmvs.py new file mode 100644 index 0000000000000000000000000000000000000000..d0faf7298cf63fc182bf87582042b03c6aae1f50 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/blendedmvs.py @@ -0,0 +1,111 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed BlendedMVS +# dataset at https://github.com/YoYo000/BlendedMVS +# See datasets_preprocess/preprocess_blendedmvs.py +# -------------------------------------------------------- +import os.path as osp + +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class BlendedMVS(BaseStereoViewDataset): + """Dataset of outdoor street scenes, 5 images each time""" + + def __init__(self, *args, ROOT, split=None, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self._load_data(split) + + def _load_data(self, split): + pairs = np.load(osp.join(self.ROOT, "blendedmvs_pairs.npy")) + if split is None: + selection = slice(None) + if split == "train": + # select 90% of all scenes + selection = (pairs["seq_low"] % 10) > 0 + if split == "val": + # select 10% of all scenes + selection = (pairs["seq_low"] % 10) == 0 + self.pairs = pairs[selection] + + # list of all scenes + self.scenes = np.unique(self.pairs["seq_low"]) # low is unique enough + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f"{len(self)} pairs from {len(self.scenes)} scenes" + + def _get_views(self, pair_idx, resolution, rng): + seqh, seql, img1, img2, score = self.pairs[pair_idx] + + seq = f"{seqh:08x}{seql:016x}" + seq_path = osp.join(self.ROOT, seq) + + views = [] + + for view_index in [img1, img2]: + impath = f"{view_index:08n}" + image = imread_cv2(osp.join(seq_path, impath + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) + camera_params = np.load(osp.join(seq_path, impath + ".npz")) + + intrinsics = np.float32(camera_params["intrinsics"]) + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = camera_params["R_cam2world"] + camera_pose[:3, 3] = camera_params["t_cam2world"] + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath) + ) + + views.append( + dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset="BlendedMVS", + label=osp.relpath(seq_path, self.ROOT), + instance=impath, + ) + ) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = BlendedMVS( + split="train", ROOT="data/blendedmvs_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/co3d.py b/third_party/dust3r/dust3r/datasets/co3d.py new file mode 100644 index 0000000000000000000000000000000000000000..4052db8591ac17c792c47137281d57e50b596d51 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/co3d.py @@ -0,0 +1,185 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed Co3d_v2 +# dataset at https://github.com/facebookresearch/co3d - Creative Commons Attribution-NonCommercial 4.0 International +# See datasets_preprocess/preprocess_co3d.py +# -------------------------------------------------------- +import itertools +import json +import os.path as osp +from collections import deque + +import cv2 +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class Co3d(BaseStereoViewDataset): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert mask_bg in (True, False, "rand") + self.mask_bg = mask_bg + self.dataset_label = "Co3d_v2" + + # load all scenes + with open(osp.join(self.ROOT, f"selected_seqs_{self.split}.json"), "r") as f: + self.scenes = json.load(f) + self.scenes = {k: v for k, v in self.scenes.items() if len(v) > 0} + self.scenes = { + (k, k2): v2 for k, v in self.scenes.items() for k2, v2 in v.items() + } + self.scene_list = list(self.scenes.keys()) + + # for each scene, we have 100 images ==> 360 degrees (so 25 frames ~= 90 degrees) + # we prepare all combinations such that i-j = +/- [5, 10, .., 90] degrees + self.combinations = [ + (i, j) + for i, j in itertools.combinations(range(100), 2) + if 0 < abs(i - j) <= 30 and abs(i - j) % 5 == 0 + ] + + self.invalidate = {scene: {} for scene in self.scene_list} + + def __len__(self): + return len(self.scene_list) * len(self.combinations) + + def _get_metadatapath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "images", f"frame{view_idx:06n}.npz") + + def _get_impath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "images", f"frame{view_idx:06n}.jpg") + + def _get_depthpath(self, obj, instance, view_idx): + return osp.join( + self.ROOT, obj, instance, "depths", f"frame{view_idx:06n}.jpg.geometric.png" + ) + + def _get_maskpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "masks", f"frame{view_idx:06n}.png") + + def _read_depthmap(self, depthpath, input_metadata): + depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) + depthmap = (depthmap.astype(np.float32) / 65535) * np.nan_to_num( + input_metadata["maximum_depth"] + ) + return depthmap + + def _get_views(self, idx, resolution, rng): + # choose a scene + obj, instance = self.scene_list[idx // len(self.combinations)] + image_pool = self.scenes[obj, instance] + im1_idx, im2_idx = self.combinations[idx % len(self.combinations)] + + # add a bit of randomness + last = len(image_pool) - 1 + + if resolution not in self.invalidate[obj, instance]: # flag invalid images + self.invalidate[obj, instance][resolution] = [ + False for _ in range(len(image_pool)) + ] + + # decide now if we mask the bg + mask_bg = (self.mask_bg == True) or (self.mask_bg == "rand" and rng.choice(2)) + + views = [] + imgs_idxs = [ + max(0, min(im_idx + rng.integers(-4, 5), last)) + for im_idx in [im2_idx, im1_idx] + ] + imgs_idxs = deque(imgs_idxs) + while len(imgs_idxs) > 0: # some images (few) have zero depth + im_idx = imgs_idxs.pop() + + if self.invalidate[obj, instance][resolution][im_idx]: + # search for a valid image + random_direction = 2 * rng.choice(2) - 1 + for offset in range(1, len(image_pool)): + tentative_im_idx = (im_idx + (random_direction * offset)) % len( + image_pool + ) + if not self.invalidate[obj, instance][resolution][tentative_im_idx]: + im_idx = tentative_im_idx + break + + view_idx = image_pool[im_idx] + + impath = self._get_impath(obj, instance, view_idx) + depthpath = self._get_depthpath(obj, instance, view_idx) + + # load camera params + metadata_path = self._get_metadatapath(obj, instance, view_idx) + input_metadata = np.load(metadata_path) + camera_pose = input_metadata["camera_pose"].astype(np.float32) + intrinsics = input_metadata["camera_intrinsics"].astype(np.float32) + + # load image and depth + rgb_image = imread_cv2(impath) + depthmap = self._read_depthmap(depthpath, input_metadata) + + if mask_bg: + # load object mask + maskpath = self._get_maskpath(obj, instance, view_idx) + maskmap = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED).astype(np.float32) + maskmap = (maskmap / 255.0) > 0.1 + + # update the depthmap with mask + depthmap *= maskmap + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath + ) + + num_valid = (depthmap > 0.0).sum() + if num_valid == 0: + # problem, invalidate image and retry + self.invalidate[obj, instance][resolution][im_idx] = True + imgs_idxs.append(im_idx) + continue + + views.append( + dict( + img=rgb_image, + depthmap=depthmap, + camera_pose=camera_pose, + camera_intrinsics=intrinsics, + dataset=self.dataset_label, + label=osp.join(obj, instance), + instance=osp.split(impath)[1], + ) + ) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = Co3d( + split="train", ROOT="data/co3d_subset_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/habitat.py b/third_party/dust3r/dust3r/datasets/habitat.py new file mode 100644 index 0000000000000000000000000000000000000000..483eecb81e153d2c768960470838ed38bc3b0ccc --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/habitat.py @@ -0,0 +1,128 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed habitat +# dataset at https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md +# See datasets_preprocess/habitat for more details +# -------------------------------------------------------- +import os +import os.path as osp + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" # noqa +import json + +import cv2 # noqa +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from PIL import Image + + +class Habitat(BaseStereoViewDataset): + def __init__(self, size, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert self.split is not None + # loading list of scenes + with open(osp.join(self.ROOT, f"Habitat_{size}_scenes_{self.split}.txt")) as f: + self.scenes = f.read().splitlines() + self.instances = list(range(1, 5)) + + def filter_scene(self, label, instance=None): + if instance: + subscene, instance = instance.split("_") + label += "/" + subscene + self.instances = [int(instance) - 1] + valid = np.bool_([scene.startswith(label) for scene in self.scenes]) + assert sum(valid), "no scene was selected for {label=} {instance=}" + self.scenes = [scene for i, scene in enumerate(self.scenes) if valid[i]] + + def _get_views(self, idx, resolution, rng): + scene = self.scenes[idx] + data_path, key = osp.split(osp.join(self.ROOT, scene)) + views = [] + two_random_views = [ + 0, + rng.choice(self.instances), + ] # view 0 is connected with all other views + for view_index in two_random_views: + # load the view (and use the next one if this one's broken) + for ii in range(view_index, view_index + 5): + image, depthmap, intrinsics, camera_pose = self._load_one_view( + data_path, key, ii % 5, resolution, rng + ) + if np.isfinite(camera_pose).all(): + break + views.append( + dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset="Habitat", + label=osp.relpath(data_path, self.ROOT), + instance=f"{key}_{view_index}", + ) + ) + return views + + def _load_one_view(self, data_path, key, view_index, resolution, rng): + view_index += 1 # file indices starts at 1 + impath = osp.join(data_path, f"{key}_{view_index}.jpeg") + image = Image.open(impath) + + depthmap_filename = osp.join(data_path, f"{key}_{view_index}_depth.exr") + depthmap = cv2.imread( + depthmap_filename, cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH + ) + + camera_params_filename = osp.join( + data_path, f"{key}_{view_index}_camera_params.json" + ) + with open(camera_params_filename, "r") as f: + camera_params = json.load(f) + + intrinsics = np.float32(camera_params["camera_intrinsics"]) + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = camera_params["R_cam2world"] + camera_pose[:3, 3] = camera_params["t_cam2world"] + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=impath + ) + return image, depthmap, intrinsics, camera_pose + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = Habitat( + 1_000_000, + split="train", + ROOT="data/habitat_processed", + resolution=224, + aug_crop=16, + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/megadepth.py b/third_party/dust3r/dust3r/datasets/megadepth.py new file mode 100644 index 0000000000000000000000000000000000000000..913d2ee63d44b524d3fed2e8197133b20a69869d --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/megadepth.py @@ -0,0 +1,135 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed MegaDepth +# dataset at https://www.cs.cornell.edu/projects/megadepth/ +# See datasets_preprocess/preprocess_megadepth.py +# -------------------------------------------------------- +import os.path as osp + +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class MegaDepth(BaseStereoViewDataset): + def __init__(self, *args, split, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self.loaded_data = self._load_data(self.split) + + if self.split is None: + pass + elif self.split == "train": + self.select_scene(("0015", "0022"), opposite=True) + elif self.split == "val": + self.select_scene(("0015", "0022")) + else: + raise ValueError(f"bad {self.split=}") + + def _load_data(self, split): + with np.load(osp.join(self.ROOT, "all_metadata.npz")) as data: + self.all_scenes = data["scenes"] + self.all_images = data["images"] + self.pairs = data["pairs"] + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f"{len(self)} pairs from {len(self.all_scenes)} scenes" + + def select_scene(self, scene, *instances, opposite=False): + scenes = (scene,) if isinstance(scene, str) else tuple(scene) + scene_id = [s.startswith(scenes) for s in self.all_scenes] + assert any(scene_id), "no scene found" + + valid = np.in1d(self.pairs["scene_id"], np.nonzero(scene_id)[0]) + if instances: + image_id = [i.startswith(instances) for i in self.all_images] + image_id = np.nonzero(image_id)[0] + assert len(image_id), "no instance found" + # both together? + if len(instances) == 2: + valid &= np.in1d(self.pairs["im1_id"], image_id) & np.in1d( + self.pairs["im2_id"], image_id + ) + else: + valid &= np.in1d(self.pairs["im1_id"], image_id) | np.in1d( + self.pairs["im2_id"], image_id + ) + + if opposite: + valid = ~valid + assert valid.any() + self.pairs = self.pairs[valid] + + def _get_views(self, pair_idx, resolution, rng): + scene_id, im1_id, im2_id, score = self.pairs[pair_idx] + + scene, subscene = self.all_scenes[scene_id].split() + seq_path = osp.join(self.ROOT, scene, subscene) + + views = [] + + for im_id in [im1_id, im2_id]: + img = self.all_images[im_id] + try: + image = imread_cv2(osp.join(seq_path, img + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, img + ".exr")) + camera_params = np.load(osp.join(seq_path, img + ".npz")) + except Exception as e: + raise OSError(f"cannot load {img}, got exception {e}") + + intrinsics = np.float32(camera_params["intrinsics"]) + camera_pose = np.float32(camera_params["cam2world"]) + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, img) + ) + + views.append( + dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset="MegaDepth", + label=osp.relpath(seq_path, self.ROOT), + instance=img, + ) + ) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = MegaDepth( + split="train", ROOT="data/megadepth_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/scannetpp.py b/third_party/dust3r/dust3r/datasets/scannetpp.py new file mode 100644 index 0000000000000000000000000000000000000000..f80300822860ab32c4fce2d01e20b4d0c359d0b6 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/scannetpp.py @@ -0,0 +1,104 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed scannet++ +# dataset at https://github.com/scannetpp/scannetpp - non-commercial research and educational purposes +# https://kaldir.vc.in.tum.de/scannetpp/static/scannetpp-terms-of-use.pdf +# See datasets_preprocess/preprocess_scannetpp.py +# -------------------------------------------------------- +import os.path as osp + +import cv2 +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class ScanNetpp(BaseStereoViewDataset): + def __init__(self, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + assert self.split == "train" + self.loaded_data = self._load_data() + + def _load_data(self): + with np.load(osp.join(self.ROOT, "all_metadata.npz")) as data: + self.scenes = data["scenes"] + self.sceneids = data["sceneids"] + self.images = data["images"] + self.intrinsics = data["intrinsics"].astype(np.float32) + self.trajectories = data["trajectories"].astype(np.float32) + self.pairs = data["pairs"][:, :2].astype(int) + + def __len__(self): + return len(self.pairs) + + def _get_views(self, idx, resolution, rng): + image_idx1, image_idx2 = self.pairs[idx] + + views = [] + for view_idx in [image_idx1, image_idx2]: + scene_id = self.sceneids[view_idx] + scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) + + intrinsics = self.intrinsics[view_idx] + camera_pose = self.trajectories[view_idx] + basename = self.images[view_idx] + + # Load RGB image + rgb_image = imread_cv2(osp.join(scene_dir, "images", basename + ".jpg")) + # Load depthmap + depthmap = imread_cv2( + osp.join(scene_dir, "depth", basename + ".png"), cv2.IMREAD_UNCHANGED + ) + depthmap = depthmap.astype(np.float32) / 1000 + depthmap[~np.isfinite(depthmap)] = 0 # invalid + + rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( + rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx + ) + + views.append( + dict( + img=rgb_image, + depthmap=depthmap.astype(np.float32), + camera_pose=camera_pose.astype(np.float32), + camera_intrinsics=intrinsics.astype(np.float32), + dataset="ScanNet++", + label=self.scenes[scene_id] + "_" + basename, + instance=f"{str(idx)}_{str(view_idx)}", + ) + ) + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = ScanNetpp( + split="train", ROOT="data/scannetpp_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/staticthings3d.py b/third_party/dust3r/dust3r/datasets/staticthings3d.py new file mode 100644 index 0000000000000000000000000000000000000000..0ebc1b505f1ed4905e0ef104bbba48fac21d4755 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/staticthings3d.py @@ -0,0 +1,105 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed StaticThings3D +# dataset at https://github.com/lmb-freiburg/robustmvd/ +# See datasets_preprocess/preprocess_staticthings3d.py +# -------------------------------------------------------- +import os.path as osp + +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class StaticThings3D(BaseStereoViewDataset): + """Dataset of indoor scenes, 5 images each time""" + + def __init__(self, ROOT, *args, mask_bg="rand", **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + + assert mask_bg in (True, False, "rand") + self.mask_bg = mask_bg + + # loading all pairs + assert self.split is None + self.pairs = np.load(osp.join(ROOT, "staticthings_pairs.npy")) + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f"{len(self)} pairs" + + def _get_views(self, pair_idx, resolution, rng): + scene, seq, cam1, im1, cam2, im2 = self.pairs[pair_idx] + seq_path = osp.join("TRAIN", scene.decode("ascii"), f"{seq:04d}") + + views = [] + + mask_bg = (self.mask_bg == True) or (self.mask_bg == "rand" and rng.choice(2)) + + CAM = {b"l": "left", b"r": "right"} + for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]: + num = f"{idx:04n}" + img = num + "_clean.jpg" if rng.choice(2) else num + "_final.jpg" + image = imread_cv2(osp.join(self.ROOT, seq_path, cam, img)) + depthmap = imread_cv2(osp.join(self.ROOT, seq_path, cam, num + ".exr")) + camera_params = np.load(osp.join(self.ROOT, seq_path, cam, num + ".npz")) + + intrinsics = camera_params["intrinsics"] + camera_pose = camera_params["cam2world"] + + if mask_bg: + depthmap[depthmap > 200] = 0 + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, cam, img) + ) + + views.append( + dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset="StaticThings3D", + label=seq_path, + instance=cam + "_" + img, + ) + ) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = StaticThings3D( + ROOT="data/staticthings3d_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/utils/__init__.py b/third_party/dust3r/dust3r/datasets/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/third_party/dust3r/dust3r/datasets/utils/cropping.py b/third_party/dust3r/dust3r/datasets/utils/cropping.py new file mode 100644 index 0000000000000000000000000000000000000000..584dd43f1bc367ee0801c1bfadefc38285ace827 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/utils/cropping.py @@ -0,0 +1,148 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# croppping utilities +# -------------------------------------------------------- +import os + +import PIL.Image + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa +import numpy as np # noqa +from dust3r.utils.geometry import ( # noqa + colmap_to_opencv_intrinsics, + opencv_to_colmap_intrinsics, +) + +try: + lanczos = PIL.Image.Resampling.LANCZOS + bicubic = PIL.Image.Resampling.BICUBIC +except AttributeError: + lanczos = PIL.Image.LANCZOS + bicubic = PIL.Image.BICUBIC + + +class ImageList: + """Convenience class to aply the same operation to a whole set of images.""" + + def __init__(self, images): + if not isinstance(images, (tuple, list, set)): + images = [images] + self.images = [] + for image in images: + if not isinstance(image, PIL.Image.Image): + image = PIL.Image.fromarray(image) + self.images.append(image) + + def __len__(self): + return len(self.images) + + def to_pil(self): + return tuple(self.images) if len(self.images) > 1 else self.images[0] + + @property + def size(self): + sizes = [im.size for im in self.images] + assert all(sizes[0] == s for s in sizes) + return sizes[0] + + def resize(self, *args, **kwargs): + return ImageList(self._dispatch("resize", *args, **kwargs)) + + def crop(self, *args, **kwargs): + return ImageList(self._dispatch("crop", *args, **kwargs)) + + def _dispatch(self, func, *args, **kwargs): + return [getattr(im, func)(*args, **kwargs) for im in self.images] + + +def rescale_image_depthmap( + image, depthmap, camera_intrinsics, output_resolution, force=True +): + """Jointly rescale a (image, depthmap) + so that (out_width, out_height) >= output_res + """ + image = ImageList(image) + input_resolution = np.array(image.size) # (W,H) + output_resolution = np.array(output_resolution) + if depthmap is not None: + # can also use this with masks instead of depthmaps + assert tuple(depthmap.shape[:2]) == image.size[::-1] + + # define output resolution + assert output_resolution.shape == (2,) + scale_final = max(output_resolution / image.size) + 1e-8 + if scale_final >= 1 and not force: # image is already smaller than what is asked + return (image.to_pil(), depthmap, camera_intrinsics) + output_resolution = np.floor(input_resolution * scale_final).astype(int) + + # first rescale the image so that it contains the crop + image = image.resize( + tuple(output_resolution), resample=lanczos if scale_final < 1 else bicubic + ) + if depthmap is not None: + depthmap = cv2.resize( + depthmap, + output_resolution, + fx=scale_final, + fy=scale_final, + interpolation=cv2.INTER_NEAREST, + ) + + # no offset here; simple rescaling + camera_intrinsics = camera_matrix_of_crop( + camera_intrinsics, input_resolution, output_resolution, scaling=scale_final + ) + + return image.to_pil(), depthmap, camera_intrinsics + + +def camera_matrix_of_crop( + input_camera_matrix, + input_resolution, + output_resolution, + scaling=1, + offset_factor=0.5, + offset=None, +): + # Margins to offset the origin + margins = np.asarray(input_resolution) * scaling - output_resolution + assert np.all(margins >= 0.0) + if offset is None: + offset = offset_factor * margins + + # Generate new camera parameters + output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix) + output_camera_matrix_colmap[:2, :] *= scaling + output_camera_matrix_colmap[:2, 2] -= offset + output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap) + + return output_camera_matrix + + +def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox): + """ + Return a crop of the input view. + """ + image = ImageList(image) + l, t, r, b = crop_bbox + + image = image.crop((l, t, r, b)) + depthmap = depthmap[t:b, l:r] + + camera_intrinsics = camera_intrinsics.copy() + camera_intrinsics[0, 2] -= l + camera_intrinsics[1, 2] -= t + + return image.to_pil(), depthmap, camera_intrinsics + + +def bbox_from_intrinsics_in_out( + input_camera_matrix, output_camera_matrix, output_resolution +): + out_width, out_height = output_resolution + l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2])) + crop_bbox = (l, t, l + out_width, t + out_height) + return crop_bbox diff --git a/third_party/dust3r/dust3r/datasets/utils/transforms.py b/third_party/dust3r/dust3r/datasets/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..eb34f2f01d3f8f829ba71a7e03e181bf18f72c25 --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/utils/transforms.py @@ -0,0 +1,11 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUST3R default transforms +# -------------------------------------------------------- +import torchvision.transforms as tvf +from dust3r.utils.image import ImgNorm + +# define the standard image transforms +ColorJitter = tvf.Compose([tvf.ColorJitter(0.5, 0.5, 0.5, 0.1), ImgNorm]) diff --git a/third_party/dust3r/dust3r/datasets/waymo.py b/third_party/dust3r/dust3r/datasets/waymo.py new file mode 100644 index 0000000000000000000000000000000000000000..8872ad38cce5b4bf47ebfdc860d46652d170400e --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/waymo.py @@ -0,0 +1,100 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed WayMo +# dataset at https://github.com/waymo-research/waymo-open-dataset +# See datasets_preprocess/preprocess_waymo.py +# -------------------------------------------------------- +import os.path as osp + +import numpy as np +from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset +from dust3r.utils.image import imread_cv2 + + +class Waymo(BaseStereoViewDataset): + """Dataset of outdoor street scenes, 5 images each time""" + + def __init__(self, *args, ROOT, **kwargs): + self.ROOT = ROOT + super().__init__(*args, **kwargs) + self._load_data() + + def _load_data(self): + with np.load(osp.join(self.ROOT, "waymo_pairs.npz")) as data: + self.scenes = data["scenes"] + self.frames = data["frames"] + self.inv_frames = {frame: i for i, frame in enumerate(data["frames"])} + self.pairs = data["pairs"] # (array of (scene_id, img1_id, img2_id) + assert self.pairs[:, 0].max() == len(self.scenes) - 1 + + def __len__(self): + return len(self.pairs) + + def get_stats(self): + return f"{len(self)} pairs from {len(self.scenes)} scenes" + + def _get_views(self, pair_idx, resolution, rng): + seq, img1, img2 = self.pairs[pair_idx] + seq_path = osp.join(self.ROOT, self.scenes[seq]) + + views = [] + + for view_index in [img1, img2]: + impath = self.frames[view_index] + image = imread_cv2(osp.join(seq_path, impath + ".jpg")) + depthmap = imread_cv2(osp.join(seq_path, impath + ".exr")) + camera_params = np.load(osp.join(seq_path, impath + ".npz")) + + intrinsics = np.float32(camera_params["intrinsics"]) + camera_pose = np.float32(camera_params["cam2world"]) + + image, depthmap, intrinsics = self._crop_resize_if_necessary( + image, depthmap, intrinsics, resolution, rng, info=(seq_path, impath) + ) + + views.append( + dict( + img=image, + depthmap=depthmap, + camera_pose=camera_pose, # cam2world + camera_intrinsics=intrinsics, + dataset="Waymo", + label=osp.relpath(seq_path, self.ROOT), + instance=impath, + ) + ) + + return views + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = Waymo( + split="train", ROOT="data/megadepth_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(idx, view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/datasets/wildrgbd.py b/third_party/dust3r/dust3r/datasets/wildrgbd.py new file mode 100644 index 0000000000000000000000000000000000000000..ee66ce86d3434de3c67b1faf0270e7b29c1d230a --- /dev/null +++ b/third_party/dust3r/dust3r/datasets/wildrgbd.py @@ -0,0 +1,70 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Dataloader for preprocessed WildRGB-D +# dataset at https://github.com/wildrgbd/wildrgbd/ +# See datasets_preprocess/preprocess_wildrgbd.py +# -------------------------------------------------------- +import os.path as osp + +import cv2 +import numpy as np +from dust3r.datasets.co3d import Co3d +from dust3r.utils.image import imread_cv2 + + +class WildRGBD(Co3d): + def __init__(self, mask_bg=True, *args, ROOT, **kwargs): + super().__init__(mask_bg, *args, ROOT=ROOT, **kwargs) + self.dataset_label = "WildRGBD" + + def _get_metadatapath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "metadata", f"{view_idx:0>5d}.npz") + + def _get_impath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "rgb", f"{view_idx:0>5d}.jpg") + + def _get_depthpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "depth", f"{view_idx:0>5d}.png") + + def _get_maskpath(self, obj, instance, view_idx): + return osp.join(self.ROOT, obj, instance, "masks", f"{view_idx:0>5d}.png") + + def _read_depthmap(self, depthpath, input_metadata): + # We store depths in the depth scale of 1000. + # That is, when we load depth image and divide by 1000, we could get depth in meters. + depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) + depthmap = depthmap.astype(np.float32) / 1000.0 + return depthmap + + +if __name__ == "__main__": + from dust3r.datasets.base.base_stereo_view_dataset import view_name + from dust3r.utils.image import rgb + from dust3r.viz import SceneViz, auto_cam_size + + dataset = WildRGBD( + split="train", ROOT="data/wildrgbd_processed", resolution=224, aug_crop=16 + ) + + for idx in np.random.permutation(len(dataset)): + views = dataset[idx] + assert len(views) == 2 + print(view_name(views[0]), view_name(views[1])) + viz = SceneViz() + poses = [views[view_idx]["camera_pose"] for view_idx in [0, 1]] + cam_size = max(auto_cam_size(poses), 0.001) + for view_idx in [0, 1]: + pts3d = views[view_idx]["pts3d"] + valid_mask = views[view_idx]["valid_mask"] + colors = rgb(views[view_idx]["img"]) + viz.add_pointcloud(pts3d, colors, valid_mask) + viz.add_camera( + pose_c2w=views[view_idx]["camera_pose"], + focal=views[view_idx]["camera_intrinsics"][0, 0], + color=(idx * 255, (1 - idx) * 255, 0), + image=colors, + cam_size=cam_size, + ) + viz.show() diff --git a/third_party/dust3r/dust3r/demo.py b/third_party/dust3r/dust3r/demo.py new file mode 100644 index 0000000000000000000000000000000000000000..1932a857ac83c68dc84ed6b462cb410fc7fe47cf --- /dev/null +++ b/third_party/dust3r/dust3r/demo.py @@ -0,0 +1,527 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# gradio demo +# -------------------------------------------------------- +import argparse +import builtins +import copy +import datetime +import functools +import math +import os + +import gradio +import matplotlib.pyplot as pl +import numpy as np +import torch +import trimesh +from dust3r.cloud_opt import GlobalAlignerMode, global_aligner +from dust3r.image_pairs import make_pairs +from dust3r.inference import inference +from dust3r.utils.device import to_numpy +from dust3r.utils.image import load_images, rgb +from dust3r.viz import CAM_COLORS, OPENGL, add_scene_cam, cat_meshes, pts3d_to_trimesh +from scipy.spatial.transform import Rotation + + +def get_args_parser(): + parser = argparse.ArgumentParser() + parser_url = parser.add_mutually_exclusive_group() + parser_url.add_argument( + "--local_network", + action="store_true", + default=False, + help="make app accessible on local network: address will be set to 0.0.0.0", + ) + parser_url.add_argument( + "--server_name", type=str, default=None, help="server url, default is 127.0.0.1" + ) + parser.add_argument( + "--image_size", type=int, default=512, choices=[512, 224], help="image size" + ) + parser.add_argument( + "--server_port", + type=int, + help=( + "will start gradio app on this port (if available). " + "If None, will search for an available port starting at 7860." + ), + default=None, + ) + parser_weights = parser.add_mutually_exclusive_group(required=True) + parser_weights.add_argument( + "--weights", type=str, help="path to the model weights", default=None + ) + parser_weights.add_argument( + "--model_name", + type=str, + help="name of the model weights", + choices=[ + "DUSt3R_ViTLarge_BaseDecoder_512_dpt", + "DUSt3R_ViTLarge_BaseDecoder_512_linear", + "DUSt3R_ViTLarge_BaseDecoder_224_linear", + ], + ) + parser.add_argument("--device", type=str, default="cuda", help="pytorch device") + parser.add_argument( + "--tmp_dir", type=str, default=None, help="value for tempfile.tempdir" + ) + parser.add_argument( + "--silent", action="store_true", default=False, help="silence logs" + ) + return parser + + +def set_print_with_timestamp(time_format="%Y-%m-%d %H:%M:%S"): + builtin_print = builtins.print + + def print_with_timestamp(*args, **kwargs): + now = datetime.datetime.now() + formatted_date_time = now.strftime(time_format) + + builtin_print(f"[{formatted_date_time}] ", end="") # print with time stamp + builtin_print(*args, **kwargs) + + builtins.print = print_with_timestamp + + +def _convert_scene_output_to_glb( + outdir, + imgs, + pts3d, + mask, + focals, + cams2world, + cam_size=0.05, + cam_color=None, + as_pointcloud=False, + transparent_cams=False, + silent=False, +): + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + if as_pointcloud: + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) + pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) + scene.add_geometry(pct) + else: + meshes = [] + for i in range(len(imgs)): + meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) + mesh = trimesh.Trimesh(**cat_meshes(meshes)) + scene.add_geometry(mesh) + + # add each camera + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam( + scene, + pose_c2w, + camera_edge_color, + None if transparent_cams else imgs[i], + focals[i], + imsize=imgs[i].shape[1::-1], + screen_width=cam_size, + ) + + rot = np.eye(4) + rot[:3, :3] = Rotation.from_euler("y", np.deg2rad(180)).as_matrix() + scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) + outfile = os.path.join(outdir, "scene.glb") + if not silent: + print("(exporting 3D scene to", outfile, ")") + scene.export(file_obj=outfile) + return outfile + + +def get_3D_model_from_scene( + outdir, + silent, + scene, + min_conf_thr=3, + as_pointcloud=False, + mask_sky=False, + clean_depth=False, + transparent_cams=False, + cam_size=0.05, +): + """ + extract 3D_model (glb file) from a reconstructed scene + """ + if scene is None: + return None + # post processes + if clean_depth: + scene = scene.clean_pointcloud() + if mask_sky: + scene = scene.mask_sky() + + # get optimized values from scene + rgbimg = scene.imgs + focals = scene.get_focals().cpu() + cams2world = scene.get_im_poses().cpu() + # 3D pointcloud from depthmap, poses and intrinsics + pts3d = to_numpy(scene.get_pts3d()) + scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) + msk = to_numpy(scene.get_masks()) + return _convert_scene_output_to_glb( + outdir, + rgbimg, + pts3d, + msk, + focals, + cams2world, + as_pointcloud=as_pointcloud, + transparent_cams=transparent_cams, + cam_size=cam_size, + silent=silent, + ) + + +def get_reconstructed_scene( + outdir, + model, + device, + silent, + image_size, + filelist, + schedule, + niter, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + scenegraph_type, + winsize, + refid, +): + """ + from a list of images, run dust3r inference, global aligner. + then run get_3D_model_from_scene + """ + imgs = load_images(filelist, size=image_size, verbose=not silent) + if len(imgs) == 1: + imgs = [imgs[0], copy.deepcopy(imgs[0])] + imgs[1]["idx"] = 1 + if scenegraph_type == "swin": + scenegraph_type = scenegraph_type + "-" + str(winsize) + elif scenegraph_type == "oneref": + scenegraph_type = scenegraph_type + "-" + str(refid) + + pairs = make_pairs( + imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True + ) + output = inference(pairs, model, device, batch_size=1, verbose=not silent) + + mode = ( + GlobalAlignerMode.PointCloudOptimizer + if len(imgs) > 2 + else GlobalAlignerMode.PairViewer + ) + scene = global_aligner(output, device=device, mode=mode, verbose=not silent) + lr = 0.01 + + if mode == GlobalAlignerMode.PointCloudOptimizer: + loss = scene.compute_global_alignment( + init="mst", niter=niter, schedule=schedule, lr=lr + ) + + outfile = get_3D_model_from_scene( + outdir, + silent, + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ) + + # also return rgb, depth and confidence imgs + # depth is normalized with the max value for all images + # we apply the jet colormap on the confidence maps + rgbimg = scene.imgs + depths = to_numpy(scene.get_depthmaps()) + confs = to_numpy([c for c in scene.im_conf]) + cmap = pl.get_cmap("jet") + depths_max = max([d.max() for d in depths]) + depths = [d / depths_max for d in depths] + confs_max = max([d.max() for d in confs]) + confs = [cmap(d / confs_max) for d in confs] + + imgs = [] + for i in range(len(rgbimg)): + imgs.append(rgbimg[i]) + imgs.append(rgb(depths[i])) + imgs.append(rgb(confs[i])) + + return scene, outfile, imgs + + +def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type): + num_files = len(inputfiles) if inputfiles is not None else 1 + max_winsize = max(1, math.ceil((num_files - 1) / 2)) + if scenegraph_type == "swin": + winsize = gradio.Slider( + label="Scene Graph: Window Size", + value=max_winsize, + minimum=1, + maximum=max_winsize, + step=1, + visible=True, + ) + refid = gradio.Slider( + label="Scene Graph: Id", + value=0, + minimum=0, + maximum=num_files - 1, + step=1, + visible=False, + ) + elif scenegraph_type == "oneref": + winsize = gradio.Slider( + label="Scene Graph: Window Size", + value=max_winsize, + minimum=1, + maximum=max_winsize, + step=1, + visible=False, + ) + refid = gradio.Slider( + label="Scene Graph: Id", + value=0, + minimum=0, + maximum=num_files - 1, + step=1, + visible=True, + ) + else: + winsize = gradio.Slider( + label="Scene Graph: Window Size", + value=max_winsize, + minimum=1, + maximum=max_winsize, + step=1, + visible=False, + ) + refid = gradio.Slider( + label="Scene Graph: Id", + value=0, + minimum=0, + maximum=num_files - 1, + step=1, + visible=False, + ) + return winsize, refid + + +def main_demo( + tmpdirname, model, device, image_size, server_name, server_port, silent=False +): + recon_fun = functools.partial( + get_reconstructed_scene, tmpdirname, model, device, silent, image_size + ) + model_from_scene_fun = functools.partial( + get_3D_model_from_scene, tmpdirname, silent + ) + with gradio.Blocks( + css=""".gradio-container {margin: 0 !important; min-width: 100%};""", + title="DUSt3R Demo", + ) as demo: + # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference + scene = gradio.State(None) + gradio.HTML('

DUSt3R Demo

') + with gradio.Column(): + inputfiles = gradio.File(file_count="multiple") + with gradio.Row(): + schedule = gradio.Dropdown( + ["linear", "cosine"], + value="linear", + label="schedule", + info="For global alignment!", + ) + niter = gradio.Number( + value=300, + precision=0, + minimum=0, + maximum=5000, + label="num_iterations", + info="For global alignment!", + ) + scenegraph_type = gradio.Dropdown( + [ + ("complete: all possible image pairs", "complete"), + ("swin: sliding window", "swin"), + ("oneref: match one image with all", "oneref"), + ], + value="complete", + label="Scenegraph", + info="Define how to make pairs", + interactive=True, + ) + winsize = gradio.Slider( + label="Scene Graph: Window Size", + value=1, + minimum=1, + maximum=1, + step=1, + visible=False, + ) + refid = gradio.Slider( + label="Scene Graph: Id", + value=0, + minimum=0, + maximum=0, + step=1, + visible=False, + ) + + run_btn = gradio.Button("Run") + + with gradio.Row(): + # adjust the confidence threshold + min_conf_thr = gradio.Slider( + label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1 + ) + # adjust the camera size in the output pointcloud + cam_size = gradio.Slider( + label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001 + ) + with gradio.Row(): + as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud") + # two post process implemented + mask_sky = gradio.Checkbox(value=False, label="Mask sky") + clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") + transparent_cams = gradio.Checkbox( + value=False, label="Transparent cameras" + ) + + outmodel = gradio.Model3D() + outgallery = gradio.Gallery( + label="rgb,depth,confidence", columns=3, height="100%" + ) + + # events + scenegraph_type.change( + set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid], + ) + inputfiles.change( + set_scenegraph_options, + inputs=[inputfiles, winsize, refid, scenegraph_type], + outputs=[winsize, refid], + ) + run_btn.click( + fn=recon_fun, + inputs=[ + inputfiles, + schedule, + niter, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + scenegraph_type, + winsize, + refid, + ], + outputs=[scene, outmodel, outgallery], + ) + min_conf_thr.release( + fn=model_from_scene_fun, + inputs=[ + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ], + outputs=outmodel, + ) + cam_size.change( + fn=model_from_scene_fun, + inputs=[ + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ], + outputs=outmodel, + ) + as_pointcloud.change( + fn=model_from_scene_fun, + inputs=[ + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ], + outputs=outmodel, + ) + mask_sky.change( + fn=model_from_scene_fun, + inputs=[ + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ], + outputs=outmodel, + ) + clean_depth.change( + fn=model_from_scene_fun, + inputs=[ + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ], + outputs=outmodel, + ) + transparent_cams.change( + model_from_scene_fun, + inputs=[ + scene, + min_conf_thr, + as_pointcloud, + mask_sky, + clean_depth, + transparent_cams, + cam_size, + ], + outputs=outmodel, + ) + demo.launch(share=False, server_name=server_name, server_port=server_port) diff --git a/third_party/dust3r/dust3r/heads/__init__.py b/third_party/dust3r/dust3r/heads/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..39091c4a0bc9a94c1b8cc426a289c82a08346b76 --- /dev/null +++ b/third_party/dust3r/dust3r/heads/__init__.py @@ -0,0 +1,18 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# head factory +# -------------------------------------------------------- +from .dpt_head import create_dpt_head +from .linear_head import LinearPts3d + + +def head_factory(head_type, output_mode, net, has_conf=False): + """ " build a prediction head for the decoder""" + if head_type == "linear" and output_mode == "pts3d": + return LinearPts3d(net, has_conf) + elif head_type == "dpt" and output_mode == "pts3d": + return create_dpt_head(net, has_conf=has_conf) + else: + raise NotImplementedError(f"unexpected {head_type=} and {output_mode=}") diff --git a/third_party/dust3r/dust3r/heads/dpt_head.py b/third_party/dust3r/dust3r/heads/dpt_head.py new file mode 100644 index 0000000000000000000000000000000000000000..ff30f3cf605040803221b39ca62f8a73cc895c29 --- /dev/null +++ b/third_party/dust3r/dust3r/heads/dpt_head.py @@ -0,0 +1,135 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# dpt head implementation for DUST3R +# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; +# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True +# the forward function also takes as input a dictionnary img_info with key "height" and "width" +# for PixelwiseTask, the output will be of dimension B x num_channels x H x W +# -------------------------------------------------------- +from typing import List + +import dust3r.utils.path_to_croco # noqa: F401 +import torch +import torch.nn as nn +from dust3r.heads.postprocess import postprocess +from einops import rearrange +from models.dpt_block import DPTOutputAdapter # noqa + + +class DPTOutputAdapter_fix(DPTOutputAdapter): + """ + Adapt croco's DPTOutputAdapter implementation for dust3r: + remove duplicated weigths, and fix forward for dust3r + """ + + def init(self, dim_tokens_enc=768): + super().init(dim_tokens_enc) + # these are duplicated weights + del self.act_1_postprocess + del self.act_2_postprocess + del self.act_3_postprocess + del self.act_4_postprocess + + def forward(self, encoder_tokens: List[torch.Tensor], image_size=None): + assert ( + self.dim_tokens_enc is not None + ), "Need to call init(dim_tokens_enc) function first" + # H, W = input_info['image_size'] + image_size = self.image_size if image_size is None else image_size + H, W = image_size + # Number of patches in height and width + N_H = H // (self.stride_level * self.P_H) + N_W = W // (self.stride_level * self.P_W) + + # Hook decoder onto 4 layers from specified ViT layers + layers = [encoder_tokens[hook] for hook in self.hooks] + + # Extract only task-relevant tokens and ignore global tokens. + layers = [self.adapt_tokens(l) for l in layers] + + # Reshape tokens to spatial representation + layers = [ + rearrange(l, "b (nh nw) c -> b c nh nw", nh=N_H, nw=N_W) for l in layers + ] + + layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] + # Project layers to chosen feature dim + layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] + + # Fuse layers using refinement stages + path_4 = self.scratch.refinenet4(layers[3])[ + :, :, : layers[2].shape[2], : layers[2].shape[3] + ] + path_3 = self.scratch.refinenet3(path_4, layers[2]) + path_2 = self.scratch.refinenet2(path_3, layers[1]) + path_1 = self.scratch.refinenet1(path_2, layers[0]) + + # Output head + out = self.head(path_1) + + return out + + +class PixelwiseTaskWithDPT(nn.Module): + """DPT module for dust3r, can return 3D points + confidence for all pixels""" + + def __init__( + self, + *, + n_cls_token=0, + hooks_idx=None, + dim_tokens=None, + output_width_ratio=1, + num_channels=1, + postprocess=None, + depth_mode=None, + conf_mode=None, + **kwargs + ): + super(PixelwiseTaskWithDPT, self).__init__() + self.return_all_layers = True # backbone needs to return all layers + self.postprocess = postprocess + self.depth_mode = depth_mode + self.conf_mode = conf_mode + + assert n_cls_token == 0, "Not implemented" + dpt_args = dict( + output_width_ratio=output_width_ratio, num_channels=num_channels, **kwargs + ) + if hooks_idx is not None: + dpt_args.update(hooks=hooks_idx) + self.dpt = DPTOutputAdapter_fix(**dpt_args) + dpt_init_args = {} if dim_tokens is None else {"dim_tokens_enc": dim_tokens} + self.dpt.init(**dpt_init_args) + + def forward(self, x, img_info): + out = self.dpt(x, image_size=(img_info[0], img_info[1])) + if self.postprocess: + out = self.postprocess(out, self.depth_mode, self.conf_mode) + return out + + +def create_dpt_head(net, has_conf=False): + """ + return PixelwiseTaskWithDPT for given net params + """ + assert net.dec_depth > 9 + l2 = net.dec_depth + feature_dim = 256 + last_dim = feature_dim // 2 + out_nchan = 3 + ed = net.enc_embed_dim + dd = net.dec_embed_dim + return PixelwiseTaskWithDPT( + num_channels=out_nchan + has_conf, + feature_dim=feature_dim, + last_dim=last_dim, + hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2], + dim_tokens=[ed, dd, dd, dd], + postprocess=postprocess, + depth_mode=net.depth_mode, + conf_mode=net.conf_mode, + head_type="regression", + ) diff --git a/third_party/dust3r/dust3r/heads/linear_head.py b/third_party/dust3r/dust3r/heads/linear_head.py new file mode 100644 index 0000000000000000000000000000000000000000..969a27c978e7f88934d0d4f8c997a2de8eeedc81 --- /dev/null +++ b/third_party/dust3r/dust3r/heads/linear_head.py @@ -0,0 +1,43 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# linear head implementation for DUST3R +# -------------------------------------------------------- +import torch.nn as nn +import torch.nn.functional as F +from dust3r.heads.postprocess import postprocess + + +class LinearPts3d(nn.Module): + """ + Linear head for dust3r + Each token outputs: - 16x16 3D points (+ confidence) + """ + + def __init__(self, net, has_conf=False): + super().__init__() + self.patch_size = net.patch_embed.patch_size[0] + self.depth_mode = net.depth_mode + self.conf_mode = net.conf_mode + self.has_conf = has_conf + + self.proj = nn.Linear(net.dec_embed_dim, (3 + has_conf) * self.patch_size**2) + + def setup(self, croconet): + pass + + def forward(self, decout, img_shape): + H, W = img_shape + tokens = decout[-1] + B, S, D = tokens.shape + + # extract 3D points + feat = self.proj(tokens) # B,S,D + feat = feat.transpose(-1, -2).view( + B, -1, H // self.patch_size, W // self.patch_size + ) + feat = F.pixel_shuffle(feat, self.patch_size) # B,3,H,W + + # permute + norm depth + return postprocess(feat, self.depth_mode, self.conf_mode) diff --git a/third_party/dust3r/dust3r/heads/postprocess.py b/third_party/dust3r/dust3r/heads/postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..7ccd3392202fa3834f5512430b63192dbd32acfa --- /dev/null +++ b/third_party/dust3r/dust3r/heads/postprocess.py @@ -0,0 +1,58 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# post process function for all heads: extract 3D points/confidence from output +# -------------------------------------------------------- +import torch + + +def postprocess(out, depth_mode, conf_mode): + """ + extract 3D points/confidence from prediction head output + """ + fmap = out.permute(0, 2, 3, 1) # B,H,W,3 + res = dict(pts3d=reg_dense_depth(fmap[:, :, :, 0:3], mode=depth_mode)) + + if conf_mode is not None: + res["conf"] = reg_dense_conf(fmap[:, :, :, 3], mode=conf_mode) + return res + + +def reg_dense_depth(xyz, mode): + """ + extract 3D points from prediction head output + """ + mode, vmin, vmax = mode + + no_bounds = (vmin == -float("inf")) and (vmax == float("inf")) + assert no_bounds + + if mode == "linear": + if no_bounds: + return xyz # [-inf, +inf] + return xyz.clip(min=vmin, max=vmax) + + # distance to origin + d = xyz.norm(dim=-1, keepdim=True) + xyz = xyz / d.clip(min=1e-8) + + if mode == "square": + return xyz * d.square() + + if mode == "exp": + return xyz * torch.expm1(d) + + raise ValueError(f"bad {mode=}") + + +def reg_dense_conf(x, mode): + """ + extract confidence from prediction head output + """ + mode, vmin, vmax = mode + if mode == "exp": + return vmin + x.exp().clip(max=vmax - vmin) + if mode == "sigmoid": + return (vmax - vmin) * torch.sigmoid(x) + vmin + raise ValueError(f"bad {mode=}") diff --git a/third_party/dust3r/dust3r/image_pairs.py b/third_party/dust3r/dust3r/image_pairs.py new file mode 100644 index 0000000000000000000000000000000000000000..636b938895298fc85257621e3bc2c382f9042a77 --- /dev/null +++ b/third_party/dust3r/dust3r/image_pairs.py @@ -0,0 +1,106 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities needed to load image pairs +# -------------------------------------------------------- +import numpy as np +import torch + + +def make_pairs(imgs, scene_graph="complete", prefilter=None, symmetrize=True): + pairs = [] + if scene_graph == "complete": # complete graph + for i in range(len(imgs)): + for j in range(i): + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith("swin"): + iscyclic = not scene_graph.endswith("noncyclic") + try: + winsize = int(scene_graph.split("-")[1]) + except Exception as e: + winsize = 3 + pairsid = set() + for i in range(len(imgs)): + for j in range(1, winsize + 1): + idx = i + j + if iscyclic: + idx = idx % len(imgs) # explicit loop closure + if idx >= len(imgs): + continue + pairsid.add((i, idx) if i < idx else (idx, i)) + for i, j in pairsid: + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith("logwin"): + iscyclic = not scene_graph.endswith("noncyclic") + try: + winsize = int(scene_graph.split("-")[1]) + except Exception as e: + winsize = 3 + offsets = [2**i for i in range(winsize)] + pairsid = set() + for i in range(len(imgs)): + ixs_l = [i - off for off in offsets] + ixs_r = [i + off for off in offsets] + for j in ixs_l + ixs_r: + if iscyclic: + j = j % len(imgs) # Explicit loop closure + if j < 0 or j >= len(imgs) or j == i: + continue + pairsid.add((i, j) if i < j else (j, i)) + for i, j in pairsid: + pairs.append((imgs[i], imgs[j])) + elif scene_graph.startswith("oneref"): + refid = int(scene_graph.split("-")[1]) if "-" in scene_graph else 0 + for j in range(len(imgs)): + if j != refid: + pairs.append((imgs[refid], imgs[j])) + if symmetrize: + pairs += [(img2, img1) for img1, img2 in pairs] + + # now, remove edges + if isinstance(prefilter, str) and prefilter.startswith("seq"): + pairs = filter_pairs_seq(pairs, int(prefilter[3:])) + + if isinstance(prefilter, str) and prefilter.startswith("cyc"): + pairs = filter_pairs_seq(pairs, int(prefilter[3:]), cyclic=True) + + return pairs + + +def sel(x, kept): + if isinstance(x, dict): + return {k: sel(v, kept) for k, v in x.items()} + if isinstance(x, (torch.Tensor, np.ndarray)): + return x[kept] + if isinstance(x, (tuple, list)): + return type(x)([x[k] for k in kept]) + + +def _filter_edges_seq(edges, seq_dis_thr, cyclic=False): + # number of images + n = max(max(e) for e in edges) + 1 + + kept = [] + for e, (i, j) in enumerate(edges): + dis = abs(i - j) + if cyclic: + dis = min(dis, abs(i + n - j), abs(i - n - j)) + if dis <= seq_dis_thr: + kept.append(e) + return kept + + +def filter_pairs_seq(pairs, seq_dis_thr, cyclic=False): + edges = [(img1["idx"], img2["idx"]) for img1, img2 in pairs] + kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic) + return [pairs[i] for i in kept] + + +def filter_edges_seq(view1, view2, pred1, pred2, seq_dis_thr, cyclic=False): + edges = [(int(i), int(j)) for i, j in zip(view1["idx"], view2["idx"])] + kept = _filter_edges_seq(edges, seq_dis_thr, cyclic=cyclic) + print( + f">> Filtering edges more than {seq_dis_thr} frames apart: kept {len(kept)}/{len(edges)} edges" + ) + return sel(view1, kept), sel(view2, kept), sel(pred1, kept), sel(pred2, kept) diff --git a/third_party/dust3r/dust3r/inference.py b/third_party/dust3r/dust3r/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..022a794945d2367f3ed1c674c6a5fd039cfc30a3 --- /dev/null +++ b/third_party/dust3r/dust3r/inference.py @@ -0,0 +1,177 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities needed for the inference +# -------------------------------------------------------- +import torch +import tqdm + +from dust3r.utils.device import collate_with_cat, to_cpu +from dust3r.utils.geometry import depthmap_to_pts3d, geotrf +from dust3r.utils.misc import invalid_to_nans + + +def _interleave_imgs(img1, img2): + res = {} + for key, value1 in img1.items(): + value2 = img2[key] + if isinstance(value1, torch.Tensor): + value = torch.stack((value1, value2), dim=1).flatten(0, 1) + else: + value = [x for pair in zip(value1, value2) for x in pair] + res[key] = value + return res + + +def make_batch_symmetric(batch): + view1, view2 = batch + view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1)) + return view1, view2 + + +def loss_of_one_batch( + batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None +): + view1, view2 = batch + ignore_keys = set( + ["depthmap", "dataset", "label", "instance", "idx", "true_shape", "rng"] + ) + for view in batch: + for name in view.keys(): # pseudo_focal + if name in ignore_keys: + continue + view[name] = view[name].to(device, non_blocking=True) + + if symmetrize_batch: + view1, view2 = make_batch_symmetric(batch) + + with torch.amp.autocast("cuda", enabled=bool(use_amp)): + pred1, pred2 = model(view1, view2) + + # loss is supposed to be symmetric + with torch.amp.autocast("cuda", enabled=False): + loss = ( + criterion(view1, view2, pred1, pred2) if criterion is not None else None + ) + + result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) + return result[ret] if ret else result + + +@torch.no_grad() +def inference(pairs, model, device, batch_size=8, verbose=True): + if verbose: + print(f">> Inference with model on {len(pairs)} image pairs") + result = [] + + # first, check if all images have the same size + multiple_shapes = not (check_if_same_size(pairs)) + if multiple_shapes: # force bs=1 + batch_size = 1 + + for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose): + res = loss_of_one_batch( + collate_with_cat(pairs[i : i + batch_size]), model, None, device + ) + result.append(to_cpu(res)) + + result = collate_with_cat(result, lists=multiple_shapes) + + return result + + +def check_if_same_size(pairs): + shapes1 = [img1["img"].shape[-2:] for img1, img2 in pairs] + shapes2 = [img2["img"].shape[-2:] for img1, img2 in pairs] + return all(shapes1[0] == s for s in shapes1) and all( + shapes2[0] == s for s in shapes2 + ) + + +def get_pred_pts3d(gt, pred, use_pose=False): + if "depth" in pred and "pseudo_focal" in pred: + try: + pp = gt["camera_intrinsics"][..., :2, 2] + except KeyError: + pp = None + pts3d = depthmap_to_pts3d(**pred, pp=pp) + + elif "pts3d" in pred: + # pts3d from my camera + pts3d = pred["pts3d"] + + elif "pts3d_in_other_view" in pred: + # pts3d from the other camera, already transformed + assert use_pose is True + return pred["pts3d_in_other_view"] # return! + + if use_pose: + camera_pose = pred.get("camera_pose") + assert camera_pose is not None + pts3d = geotrf(camera_pose, pts3d) + + return pts3d + + +def find_opt_scaling( + gt_pts1, + gt_pts2, + pr_pts1, + pr_pts2=None, + fit_mode="weiszfeld_stop_grad", + valid1=None, + valid2=None, +): + assert gt_pts1.ndim == pr_pts1.ndim == 4 + assert gt_pts1.shape == pr_pts1.shape + if gt_pts2 is not None: + assert gt_pts2.ndim == pr_pts2.ndim == 4 + assert gt_pts2.shape == pr_pts2.shape + + # concat the pointcloud + nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2) + nan_gt_pts2 = ( + invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None + ) + + pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2) + pr_pts2 = ( + invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None + ) + + all_gt = ( + torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) + if gt_pts2 is not None + else nan_gt_pts1 + ) + all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1 + + dot_gt_pr = (all_pr * all_gt).sum(dim=-1) + dot_gt_gt = all_gt.square().sum(dim=-1) + + if fit_mode.startswith("avg"): + # scaling = (all_pr / all_gt).view(B, -1).mean(dim=1) + scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) + elif fit_mode.startswith("median"): + scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values + elif fit_mode.startswith("weiszfeld"): + # init scaling with l2 closed form + scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1) + # iterative re-weighted least-squares + for iter in range(10): + # re-weighting by inverse of distance + dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1) + # print(dis.nanmean(-1)) + w = dis.clip_(min=1e-8).reciprocal() + # update the scaling with the new weights + scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1) + else: + raise ValueError(f"bad {fit_mode=}") + + if fit_mode.endswith("stop_grad"): + scaling = scaling.detach() + + scaling = scaling.clip(min=1e-3) + # assert scaling.isfinite().all(), bb() + return scaling diff --git a/third_party/dust3r/dust3r/losses.py b/third_party/dust3r/dust3r/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..72a0160f9c935858fffb5d48dc7a101d35a0ee28 --- /dev/null +++ b/third_party/dust3r/dust3r/losses.py @@ -0,0 +1,346 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Implementation of DUSt3R training losses +# -------------------------------------------------------- +from copy import copy, deepcopy + +import torch +import torch.nn as nn +from dust3r.inference import find_opt_scaling, get_pred_pts3d +from dust3r.utils.geometry import ( + geotrf, + get_joint_pointcloud_center_scale, + get_joint_pointcloud_depth, + inv, + normalize_pointcloud, +) + + +def Sum(*losses_and_masks): + loss, mask = losses_and_masks[0] + if loss.ndim > 0: + # we are actually returning the loss for every pixels + return losses_and_masks + else: + # we are returning the global loss + for loss2, mask2 in losses_and_masks[1:]: + loss = loss + loss2 + return loss + + +class BaseCriterion(nn.Module): + def __init__(self, reduction="mean"): + super().__init__() + self.reduction = reduction + + +class LLoss(BaseCriterion): + """L-norm loss""" + + def forward(self, a, b): + assert ( + a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3 + ), f"Bad shape = {a.shape}" + dist = self.distance(a, b) + assert dist.ndim == a.ndim - 1 # one dimension less + if self.reduction == "none": + return dist + if self.reduction == "sum": + return dist.sum() + if self.reduction == "mean": + return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) + raise ValueError(f"bad {self.reduction=} mode") + + def distance(self, a, b): + raise NotImplementedError() + + +class L21Loss(LLoss): + """Euclidean distance between 3d points""" + + def distance(self, a, b): + return torch.norm(a - b, dim=-1) # normalized L2 distance + + +L21 = L21Loss() + + +class Criterion(nn.Module): + def __init__(self, criterion=None): + super().__init__() + assert isinstance( + criterion, BaseCriterion + ), f"{criterion} is not a proper criterion!" + self.criterion = copy(criterion) + + def get_name(self): + return f"{type(self).__name__}({self.criterion})" + + def with_reduction(self, mode="none"): + res = loss = deepcopy(self) + while loss is not None: + assert isinstance(loss, Criterion) + loss.criterion.reduction = mode # make it return the loss for each sample + loss = loss._loss2 # we assume loss is a Multiloss + return res + + +class MultiLoss(nn.Module): + """Easily combinable losses (also keep track of individual loss values): + loss = MyLoss1() + 0.1*MyLoss2() + Usage: + Inherit from this class and override get_name() and compute_loss() + """ + + def __init__(self): + super().__init__() + self._alpha = 1 + self._loss2 = None + + def compute_loss(self, *args, **kwargs): + raise NotImplementedError() + + def get_name(self): + raise NotImplementedError() + + def __mul__(self, alpha): + assert isinstance(alpha, (int, float)) + res = copy(self) + res._alpha = alpha + return res + + __rmul__ = __mul__ # same + + def __add__(self, loss2): + assert isinstance(loss2, MultiLoss) + res = cur = copy(self) + # find the end of the chain + while cur._loss2 is not None: + cur = cur._loss2 + cur._loss2 = loss2 + return res + + def __repr__(self): + name = self.get_name() + if self._alpha != 1: + name = f"{self._alpha:g}*{name}" + if self._loss2: + name = f"{name} + {self._loss2}" + return name + + def forward(self, *args, **kwargs): + loss = self.compute_loss(*args, **kwargs) + if isinstance(loss, tuple): + loss, details = loss + elif loss.ndim == 0: + details = {self.get_name(): float(loss)} + else: + details = {} + loss = loss * self._alpha + + if self._loss2: + loss2, details2 = self._loss2(*args, **kwargs) + loss = loss + loss2 + details |= details2 + + return loss, details + + +class Regr3D(Criterion, MultiLoss): + """Ensure that all 3D points are correct. + Asymmetric loss: view1 is supposed to be the anchor. + + P1 = RT1 @ D1 + P2 = RT2 @ D2 + loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1) + loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2) + = (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2) + """ + + def __init__(self, criterion, norm_mode="avg_dis", gt_scale=False): + super().__init__(criterion) + self.norm_mode = norm_mode + self.gt_scale = gt_scale + + def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): + # everything is normalized w.r.t. camera of view1 + in_camera1 = inv(gt1["camera_pose"]) + gt_pts1 = geotrf(in_camera1, gt1["pts3d"]) # B,H,W,3 + gt_pts2 = geotrf(in_camera1, gt2["pts3d"]) # B,H,W,3 + + valid1 = gt1["valid_mask"].clone() + valid2 = gt2["valid_mask"].clone() + + if dist_clip is not None: + # points that are too far-away == invalid + dis1 = gt_pts1.norm(dim=-1) # (B, H, W) + dis2 = gt_pts2.norm(dim=-1) # (B, H, W) + valid1 = valid1 & (dis1 <= dist_clip) + valid2 = valid2 & (dis2 <= dist_clip) + + pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False) + pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True) + + # normalize 3d points + if self.norm_mode: + pr_pts1, pr_pts2 = normalize_pointcloud( + pr_pts1, pr_pts2, self.norm_mode, valid1, valid2 + ) + if self.norm_mode and not self.gt_scale: + gt_pts1, gt_pts2 = normalize_pointcloud( + gt_pts1, gt_pts2, self.norm_mode, valid1, valid2 + ) + + return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, {} + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + ( + gt_pts1, + gt_pts2, + pred_pts1, + pred_pts2, + mask1, + mask2, + monitoring, + ) = self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) + # loss on img1 side + l1 = self.criterion(pred_pts1[mask1], gt_pts1[mask1]) + # loss on gt2 side + l2 = self.criterion(pred_pts2[mask2], gt_pts2[mask2]) + self_name = type(self).__name__ + details = { + self_name + "_pts3d_1": float(l1.mean()), + self_name + "_pts3d_2": float(l2.mean()), + } + return Sum((l1, mask1), (l2, mask2)), (details | monitoring) + + +class ConfLoss(MultiLoss): + """Weighted regression by learned confidence. + Assuming the input pixel_loss is a pixel-level regression loss. + + Principle: + high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10) + low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10) + + alpha: hyperparameter + """ + + def __init__(self, pixel_loss, alpha=1): + super().__init__() + assert alpha > 0 + self.alpha = alpha + self.pixel_loss = pixel_loss.with_reduction("none") + + def get_name(self): + return f"ConfLoss({self.pixel_loss})" + + def get_conf_log(self, x): + return x, torch.log(x) + + def compute_loss(self, gt1, gt2, pred1, pred2, **kw): + # compute per-pixel loss + ((loss1, msk1), (loss2, msk2)), details = self.pixel_loss( + gt1, gt2, pred1, pred2, **kw + ) + if loss1.numel() == 0: + print("NO VALID POINTS in img1", force=True) + if loss2.numel() == 0: + print("NO VALID POINTS in img2", force=True) + + # weight by confidence + conf1, log_conf1 = self.get_conf_log(pred1["conf"][msk1]) + conf2, log_conf2 = self.get_conf_log(pred2["conf"][msk2]) + conf_loss1 = loss1 * conf1 - self.alpha * log_conf1 + conf_loss2 = loss2 * conf2 - self.alpha * log_conf2 + + # average + nan protection (in case of no valid pixels at all) + conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0 + conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0 + + return conf_loss1 + conf_loss2, dict( + conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details + ) + + +class Regr3D_ShiftInv(Regr3D): + """Same than Regr3D but invariant to depth shift.""" + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute unnormalized points + ( + gt_pts1, + gt_pts2, + pred_pts1, + pred_pts2, + mask1, + mask2, + monitoring, + ) = super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # compute median depth + gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] + pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] + gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[ + :, None, None + ] + pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[ + :, None, None + ] + + # subtract the median depth + gt_z1 -= gt_shift_z + gt_z2 -= gt_shift_z + pred_z1 -= pred_shift_z + pred_z2 -= pred_shift_z + + # monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach()) + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring + + +class Regr3D_ScaleInv(Regr3D): + """Same than Regr3D but invariant to depth shift. + if gt_scale == True: enforce the prediction to take the same scale than GT + """ + + def get_all_pts3d(self, gt1, gt2, pred1, pred2): + # compute depth-normalized points + ( + gt_pts1, + gt_pts2, + pred_pts1, + pred_pts2, + mask1, + mask2, + monitoring, + ) = super().get_all_pts3d(gt1, gt2, pred1, pred2) + + # measure scene scale + _, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) + _, pred_scale = get_joint_pointcloud_center_scale( + pred_pts1, pred_pts2, mask1, mask2 + ) + + # prevent predictions to be in a ridiculous range + pred_scale = pred_scale.clip(min=1e-3, max=1e3) + + # subtract the median depth + if self.gt_scale: + pred_pts1 *= gt_scale / pred_scale + pred_pts2 *= gt_scale / pred_scale + # monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean()) + else: + gt_pts1 /= gt_scale + gt_pts2 /= gt_scale + pred_pts1 /= pred_scale + pred_pts2 /= pred_scale + # monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()) + + return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring + + +class Regr3D_ScaleShiftInv(Regr3D_ScaleInv, Regr3D_ShiftInv): + # calls Regr3D_ShiftInv first, then Regr3D_ScaleInv + pass diff --git a/third_party/dust3r/dust3r/model.py b/third_party/dust3r/dust3r/model.py new file mode 100644 index 0000000000000000000000000000000000000000..1933ff96243e181ef4be21f8676ee70288fbd063 --- /dev/null +++ b/third_party/dust3r/dust3r/model.py @@ -0,0 +1,266 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# DUSt3R model class +# -------------------------------------------------------- +import os +from copy import deepcopy + +import dust3r.utils.path_to_croco # noqa: F401 +import huggingface_hub +import torch +from dust3r.patch_embed import get_patch_embed +from models.croco import CroCoNet # noqa +from packaging import version + +from .heads import head_factory +from .utils.misc import ( + fill_default_args, + freeze_all_params, + interleave, + is_symmetrized, + transpose_to_landscape, +) + +inf = float("inf") + +hf_version_number = huggingface_hub.__version__ +assert version.parse(hf_version_number) >= version.parse("0.22.0"), ( + "Outdated huggingface_hub version, " "please reinstall requirements.txt" +) + + +def load_model(model_path, device, verbose=True): + if verbose: + print("... loading model from", model_path) + ckpt = torch.load(model_path, map_location="cpu") + args = ckpt["args"].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R") + if "landscape_only" not in args: + args = args[:-1] + ", landscape_only=False)" + else: + args = args.replace(" ", "").replace( + "landscape_only=True", "landscape_only=False" + ) + assert "landscape_only=False" in args + if verbose: + print(f"instantiating : {args}") + net = eval(args) + s = net.load_state_dict(ckpt["model"], strict=False) + if verbose: + print(s) + return net.to(device) + + +class AsymmetricCroCo3DStereo( + CroCoNet, + huggingface_hub.PyTorchModelHubMixin, + library_name="dust3r", + repo_url="https://github.com/naver/dust3r", + tags=["image-to-3d"], +): + """Two siamese encoders, followed by two decoders. + The goal is to output 3d points directly, both images in view1's frame + (hence the asymmetry). + """ + + def __init__( + self, + output_mode="pts3d", + head_type="linear", + depth_mode=("exp", -inf, inf), + conf_mode=("exp", 1, inf), + freeze="none", + landscape_only=True, + patch_embed_cls="PatchEmbedDust3R", # PatchEmbedDust3R or ManyAR_PatchEmbed + **croco_kwargs, + ): + self.patch_embed_cls = patch_embed_cls + self.croco_args = fill_default_args(croco_kwargs, super().__init__) + super().__init__(**croco_kwargs) + + # dust3r specific initialization + self.dec_blocks2 = deepcopy(self.dec_blocks) + self.set_downstream_head( + output_mode, + head_type, + landscape_only, + depth_mode, + conf_mode, + **croco_kwargs, + ) + self.set_freeze(freeze) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path, **kw): + if os.path.isfile(pretrained_model_name_or_path): + return load_model(pretrained_model_name_or_path, device="cpu") + else: + try: + model = super(AsymmetricCroCo3DStereo, cls).from_pretrained( + pretrained_model_name_or_path, **kw + ) + except TypeError as e: + raise Exception( + f"tried to load {pretrained_model_name_or_path} from huggingface, but failed" + ) + return model + + def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768): + self.patch_embed = get_patch_embed( + self.patch_embed_cls, img_size, patch_size, enc_embed_dim + ) + + def load_state_dict(self, ckpt, **kw): + # duplicate all weights for the second decoder if not present + new_ckpt = dict(ckpt) + if not any(k.startswith("dec_blocks2") for k in ckpt): + for key, value in ckpt.items(): + if key.startswith("dec_blocks"): + new_ckpt[key.replace("dec_blocks", "dec_blocks2")] = value + return super().load_state_dict(new_ckpt, **kw) + + def set_freeze(self, freeze): # this is for use by downstream models + self.freeze = freeze + to_be_frozen = { + "none": [], + "mask": [self.mask_token], + "encoder": [self.mask_token, self.patch_embed, self.enc_blocks], + } + freeze_all_params(to_be_frozen[freeze]) + + def _set_prediction_head(self, *args, **kwargs): + """No prediction head""" + return + + def set_downstream_head( + self, + output_mode, + head_type, + landscape_only, + depth_mode, + conf_mode, + patch_size, + img_size, + **kw, + ): + assert ( + img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0 + ), f"{img_size=} must be multiple of {patch_size=}" + self.output_mode = output_mode + self.head_type = head_type + self.depth_mode = depth_mode + self.conf_mode = conf_mode + # allocate heads + self.downstream_head1 = head_factory( + head_type, output_mode, self, has_conf=bool(conf_mode) + ) + self.downstream_head2 = head_factory( + head_type, output_mode, self, has_conf=bool(conf_mode) + ) + # magic wrapper + self.head1 = transpose_to_landscape( + self.downstream_head1, activate=landscape_only + ) + self.head2 = transpose_to_landscape( + self.downstream_head2, activate=landscape_only + ) + + def _encode_image(self, image, true_shape): + # embed the image into patches (x has size B x Npatches x C) + x, pos = self.patch_embed(image, true_shape=true_shape) + + # add positional embedding without cls token + assert self.enc_pos_embed is None + + # now apply the transformer encoder and normalization + for blk in self.enc_blocks: + x = blk(x, pos) + + x = self.enc_norm(x) + return x, pos, None + + def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2): + if img1.shape[-2:] == img2.shape[-2:]: + out, pos, _ = self._encode_image( + torch.cat((img1, img2), dim=0), + torch.cat((true_shape1, true_shape2), dim=0), + ) + out, out2 = out.chunk(2, dim=0) + pos, pos2 = pos.chunk(2, dim=0) + else: + out, pos, _ = self._encode_image(img1, true_shape1) + out2, pos2, _ = self._encode_image(img2, true_shape2) + return out, out2, pos, pos2 + + def _encode_symmetrized(self, view1, view2): + img1 = view1["img"] + img2 = view2["img"] + B = img1.shape[0] + # Recover true_shape when available, otherwise assume that the img shape is the true one + shape1 = view1.get( + "true_shape", torch.tensor(img1.shape[-2:])[None].repeat(B, 1) + ) + shape2 = view2.get( + "true_shape", torch.tensor(img2.shape[-2:])[None].repeat(B, 1) + ) + # warning! maybe the images have different portrait/landscape orientations + + if is_symmetrized(view1, view2): + # computing half of forward pass!' + feat1, feat2, pos1, pos2 = self._encode_image_pairs( + img1[::2], img2[::2], shape1[::2], shape2[::2] + ) + feat1, feat2 = interleave(feat1, feat2) + pos1, pos2 = interleave(pos1, pos2) + else: + feat1, feat2, pos1, pos2 = self._encode_image_pairs( + img1, img2, shape1, shape2 + ) + + return (shape1, shape2), (feat1, feat2), (pos1, pos2) + + def _decoder(self, f1, pos1, f2, pos2): + final_output = [(f1, f2)] # before projection + + # project to decoder dim + f1 = self.decoder_embed(f1) + f2 = self.decoder_embed(f2) + + final_output.append((f1, f2)) + for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2): + # img1 side + f1, _ = blk1(*final_output[-1][::+1], pos1, pos2) + # img2 side + f2, _ = blk2(*final_output[-1][::-1], pos2, pos1) + # store the result + final_output.append((f1, f2)) + + # normalize last output + del final_output[1] # duplicate with final_output[0] + final_output[-1] = tuple(map(self.dec_norm, final_output[-1])) + return zip(*final_output) + + def _downstream_head(self, head_num, decout, img_shape): + B, S, D = decout[-1].shape + # img_shape = tuple(map(int, img_shape)) + head = getattr(self, f"head{head_num}") + return head(decout, img_shape) + + def forward(self, view1, view2): + # encode the two images --> B,S,D + (shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized( + view1, view2 + ) + + # combine all ref images into object-centric representation + dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2) + + with torch.amp.autocast('cuda', enabled=False): + res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1) + res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2) + + res2["pts3d_in_other_view"] = res2.pop( + "pts3d" + ) # predict view2's pts3d in view1's frame + return res1, res2 diff --git a/third_party/dust3r/dust3r/optim_factory.py b/third_party/dust3r/dust3r/optim_factory.py new file mode 100644 index 0000000000000000000000000000000000000000..9b9c16e0e0fda3fd03c3def61abc1f354f75c584 --- /dev/null +++ b/third_party/dust3r/dust3r/optim_factory.py @@ -0,0 +1,14 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# optimization functions +# -------------------------------------------------------- + + +def adjust_learning_rate_by_lr(optimizer, lr): + for param_group in optimizer.param_groups: + if "lr_scale" in param_group: + param_group["lr"] = lr * param_group["lr_scale"] + else: + param_group["lr"] = lr diff --git a/third_party/dust3r/dust3r/patch_embed.py b/third_party/dust3r/dust3r/patch_embed.py new file mode 100644 index 0000000000000000000000000000000000000000..57085a0bb84218b0b053130174bf645b99a5f3a1 --- /dev/null +++ b/third_party/dust3r/dust3r/patch_embed.py @@ -0,0 +1,96 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# PatchEmbed implementation for DUST3R, +# in particular ManyAR_PatchEmbed that Handle images with non-square aspect ratio +# -------------------------------------------------------- +import dust3r.utils.path_to_croco # noqa: F401 +import torch +from models.blocks import PatchEmbed # noqa + + +def get_patch_embed(patch_embed_cls, img_size, patch_size, enc_embed_dim): + assert patch_embed_cls in ["PatchEmbedDust3R", "ManyAR_PatchEmbed"] + patch_embed = eval(patch_embed_cls)(img_size, patch_size, 3, enc_embed_dim) + return patch_embed + + +class PatchEmbedDust3R(PatchEmbed): + def forward(self, x, **kw): + B, C, H, W = x.shape + assert ( + H % self.patch_size[0] == 0 + ), f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." + assert ( + W % self.patch_size[1] == 0 + ), f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." + x = self.proj(x) + pos = self.position_getter(B, x.size(2), x.size(3), x.device) + if self.flatten: + x = x.flatten(2).transpose(1, 2) # BCHW -> BNC + x = self.norm(x) + return x, pos + + +class ManyAR_PatchEmbed(PatchEmbed): + """Handle images with non-square aspect ratio. + All images in the same batch have the same aspect ratio. + true_shape = [(height, width) ...] indicates the actual shape of each image. + """ + + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + norm_layer=None, + flatten=True, + ): + self.embed_dim = embed_dim + super().__init__(img_size, patch_size, in_chans, embed_dim, norm_layer, flatten) + + def forward(self, img, true_shape): + B, C, H, W = img.shape + assert W >= H, f"img should be in landscape mode, but got {W=} {H=}" + assert ( + H % self.patch_size[0] == 0 + ), f"Input image height ({H}) is not a multiple of patch size ({self.patch_size[0]})." + assert ( + W % self.patch_size[1] == 0 + ), f"Input image width ({W}) is not a multiple of patch size ({self.patch_size[1]})." + assert true_shape.shape == ( + B, + 2, + ), f"true_shape has the wrong shape={true_shape.shape}" + + # size expressed in tokens + W //= self.patch_size[0] + H //= self.patch_size[1] + n_tokens = H * W + + height, width = true_shape.T + is_landscape = width >= height + is_portrait = ~is_landscape + + # allocate result + x = img.new_zeros((B, n_tokens, self.embed_dim)) + pos = img.new_zeros((B, n_tokens, 2), dtype=torch.int64) + + # linear projection, transposed if necessary + x[is_landscape] = ( + self.proj(img[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2).float() + ) + x[is_portrait] = ( + self.proj(img[is_portrait].swapaxes(-1, -2)) + .permute(0, 2, 3, 1) + .flatten(1, 2) + .float() + ) + + pos[is_landscape] = self.position_getter(1, H, W, pos.device) + pos[is_portrait] = self.position_getter(1, W, H, pos.device) + + x = self.norm(x) + return x, pos diff --git a/third_party/dust3r/dust3r/post_process.py b/third_party/dust3r/dust3r/post_process.py new file mode 100644 index 0000000000000000000000000000000000000000..199ac83c4d04d6bbc349c6c03e0301d86c14cfe3 --- /dev/null +++ b/third_party/dust3r/dust3r/post_process.py @@ -0,0 +1,68 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilities for interpreting the DUST3R output +# -------------------------------------------------------- +import numpy as np +import torch +from dust3r.utils.geometry import xy_grid + + +def estimate_focal_knowing_depth( + pts3d, pp, focal_mode="median", min_focal=0.0, max_focal=np.inf +): + """Reprojection method, for when the absolute depth is known: + 1) estimate the camera focal using a robust estimator + 2) reproject points onto true rays, minimizing a certain error + """ + B, H, W, THREE = pts3d.shape + assert THREE == 3 + + # centered pixel grid + pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view( + -1, 1, 2 + ) # B,HW,2 + pts3d = pts3d.flatten(1, 2) # (B, HW, 3) + + if focal_mode == "median": + with torch.no_grad(): + # direct estimation of focal + u, v = pixels.unbind(dim=-1) + x, y, z = pts3d.unbind(dim=-1) + fx_votes = (u * z) / x + fy_votes = (v * z) / y + + # assume square pixels, hence same focal for X and Y + f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) + focal = torch.nanmedian(f_votes, dim=-1).values + + elif focal_mode == "weiszfeld": + # init focal with l2 closed form + # we try to find focal = argmin Sum | pixel - focal * (x,y)/z| + xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num( + posinf=0, neginf=0 + ) # homogeneous (x,y,1) + + dot_xy_px = (xy_over_z * pixels).sum(dim=-1) + dot_xy_xy = xy_over_z.square().sum(dim=-1) + + focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) + + # iterative re-weighted least-squares + for iter in range(10): + # re-weighting by inverse of distance + dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) + # print(dis.nanmean(-1)) + w = dis.clip(min=1e-8).reciprocal() + # update the scaling with the new weights + focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) + else: + raise ValueError(f"bad {focal_mode=}") + + focal_base = max(H, W) / ( + 2 * np.tan(np.deg2rad(60) / 2) + ) # size / 1.1547005383792515 + focal = focal.clip(min=min_focal * focal_base, max=max_focal * focal_base) + # print(focal) + return focal diff --git a/third_party/dust3r/dust3r/training.py b/third_party/dust3r/dust3r/training.py new file mode 100644 index 0000000000000000000000000000000000000000..39af139732d6c96f0a30660465f81adaedef5d02 --- /dev/null +++ b/third_party/dust3r/dust3r/training.py @@ -0,0 +1,540 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# training code for DUSt3R +# -------------------------------------------------------- +# References: +# MAE: https://github.com/facebookresearch/mae +# DeiT: https://github.com/facebookresearch/deit +# BEiT: https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import argparse +import datetime +import json +import math +import os +import sys +import time +from collections import defaultdict +from pathlib import Path +from typing import Sized + +import numpy as np +import torch +import torch.backends.cudnn as cudnn +from torch.utils.tensorboard import SummaryWriter + +torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 + +import croco.utils.misc as misc # noqa +import dust3r.utils.path_to_croco # noqa: F401 +from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler # noqa +from dust3r.datasets import get_data_loader # noqa +from dust3r.inference import loss_of_one_batch # noqa +from dust3r.losses import * # noqa: F401, needed when loading the model +from dust3r.model import ( # noqa: F401, needed when loading the model + AsymmetricCroCo3DStereo, + inf, +) + + +def get_args_parser(): + parser = argparse.ArgumentParser("DUST3R training", add_help=False) + # model and criterion + parser.add_argument( + "--model", + default="AsymmetricCroCo3DStereo(patch_embed_cls='ManyAR_PatchEmbed')", + type=str, + help="string containing the model to build", + ) + parser.add_argument( + "--pretrained", default=None, help="path of a starting checkpoint" + ) + parser.add_argument( + "--train_criterion", + default="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)", + type=str, + help="train criterion", + ) + parser.add_argument( + "--test_criterion", default=None, type=str, help="test criterion" + ) + + # dataset + parser.add_argument("--train_dataset", required=True, type=str, help="training set") + parser.add_argument( + "--test_dataset", default="[None]", type=str, help="testing set" + ) + + # training + parser.add_argument("--seed", default=0, type=int, help="Random seed") + parser.add_argument( + "--batch_size", + default=64, + type=int, + help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus", + ) + parser.add_argument( + "--accum_iter", + default=1, + type=int, + help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)", + ) + parser.add_argument( + "--epochs", + default=800, + type=int, + help="Maximum number of epochs for the scheduler", + ) + + parser.add_argument( + "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" + ) + parser.add_argument( + "--lr", + type=float, + default=None, + metavar="LR", + help="learning rate (absolute lr)", + ) + parser.add_argument( + "--blr", + type=float, + default=1.5e-4, + metavar="LR", + help="base learning rate: absolute_lr = base_lr * total_batch_size / 256", + ) + parser.add_argument( + "--min_lr", + type=float, + default=0.0, + metavar="LR", + help="lower lr bound for cyclic schedulers that hit 0", + ) + parser.add_argument( + "--warmup_epochs", type=int, default=40, metavar="N", help="epochs to warmup LR" + ) + + parser.add_argument( + "--amp", + type=int, + default=0, + choices=[0, 1], + help="Use Automatic Mixed Precision for pretraining", + ) + parser.add_argument( + "--disable_cudnn_benchmark", + action="store_true", + default=False, + help="set cudnn.benchmark = False", + ) + # others + parser.add_argument("--num_workers", default=8, type=int) + parser.add_argument( + "--world_size", default=1, type=int, help="number of distributed processes" + ) + parser.add_argument("--local_rank", default=-1, type=int) + parser.add_argument( + "--dist_url", default="env://", help="url used to set up distributed training" + ) + + parser.add_argument( + "--eval_freq", type=int, default=1, help="Test loss evaluation frequency" + ) + parser.add_argument( + "--save_freq", + default=1, + type=int, + help="frequence (number of epochs) to save checkpoint in checkpoint-last.pth", + ) + parser.add_argument( + "--keep_freq", + default=20, + type=int, + help="frequence (number of epochs) to save checkpoint in checkpoint-%d.pth", + ) + parser.add_argument( + "--print_freq", + default=20, + type=int, + help="frequence (number of iterations) to print infos while training", + ) + + # output dir + parser.add_argument( + "--output_dir", + default="./output/", + type=str, + help="path where to save the output", + ) + return parser + + +def train(args): + misc.init_distributed_mode(args) + global_rank = misc.get_rank() + world_size = misc.get_world_size() + + print("output_dir: " + args.output_dir) + if args.output_dir: + Path(args.output_dir).mkdir(parents=True, exist_ok=True) + + # auto resume + last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth") + args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None + + print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__)))) + print("{}".format(args).replace(", ", ",\n")) + + device = "cuda" if torch.cuda.is_available() else "cpu" + device = torch.device(device) + + # fix the seed + seed = args.seed + misc.get_rank() + torch.manual_seed(seed) + np.random.seed(seed) + + cudnn.benchmark = not args.disable_cudnn_benchmark + + # training dataset and loader + print("Building train dataset {:s}".format(args.train_dataset)) + # dataset and loader + data_loader_train = build_dataset( + args.train_dataset, args.batch_size, args.num_workers, test=False + ) + print("Building test dataset {:s}".format(args.train_dataset)) + data_loader_test = { + dataset.split("(")[0]: build_dataset( + dataset, args.batch_size, args.num_workers, test=True + ) + for dataset in args.test_dataset.split("+") + } + + # model + print("Loading model: {:s}".format(args.model)) + model = eval(args.model) + print(f">> Creating train criterion = {args.train_criterion}") + train_criterion = eval(args.train_criterion).to(device) + print(f">> Creating test criterion = {args.test_criterion or args.train_criterion}") + test_criterion = eval(args.test_criterion or args.criterion).to(device) + + model.to(device) + model_without_ddp = model + print("Model = %s" % str(model_without_ddp)) + + if args.pretrained and not args.resume: + print("Loading pretrained: ", args.pretrained) + ckpt = torch.load(args.pretrained, map_location=device) + print(model.load_state_dict(ckpt["model"], strict=False)) + del ckpt # in case it occupies memory + + eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() + if args.lr is None: # only base_lr is specified + args.lr = args.blr * eff_batch_size / 256 + print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) + print("actual lr: %.2e" % args.lr) + print("accumulate grad iterations: %d" % args.accum_iter) + print("effective batch size: %d" % eff_batch_size) + + if args.distributed: + model = torch.nn.parallel.DistributedDataParallel( + model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True + ) + model_without_ddp = model.module + + # following timm: set wd as 0 for bias and norm layers + param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) + optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) + print(optimizer) + loss_scaler = NativeScaler() + + def write_log_stats(epoch, train_stats, test_stats): + if misc.is_main_process(): + if log_writer is not None: + log_writer.flush() + + log_stats = dict( + epoch=epoch, **{f"train_{k}": v for k, v in train_stats.items()} + ) + for test_name in data_loader_test: + if test_name not in test_stats: + continue + log_stats.update( + {test_name + "_" + k: v for k, v in test_stats[test_name].items()} + ) + + with open( + os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" + ) as f: + f.write(json.dumps(log_stats) + "\n") + + def save_model(epoch, fname, best_so_far): + misc.save_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + epoch=epoch, + fname=fname, + best_so_far=best_so_far, + ) + + best_so_far = misc.load_model( + args=args, + model_without_ddp=model_without_ddp, + optimizer=optimizer, + loss_scaler=loss_scaler, + ) + if best_so_far is None: + best_so_far = float("inf") + if global_rank == 0 and args.output_dir is not None: + log_writer = SummaryWriter(log_dir=args.output_dir) + else: + log_writer = None + + print(f"Start training for {args.epochs} epochs") + start_time = time.time() + train_stats = test_stats = {} + for epoch in range(args.start_epoch, args.epochs + 1): + # Save immediately the last checkpoint + if epoch > args.start_epoch: + if args.save_freq and epoch % args.save_freq == 0 or epoch == args.epochs: + save_model(epoch - 1, "last", best_so_far) + + # Test on multiple datasets + new_best = False + if epoch > 0 and args.eval_freq > 0 and epoch % args.eval_freq == 0: + test_stats = {} + for test_name, testset in data_loader_test.items(): + stats = test_one_epoch( + model, + test_criterion, + testset, + device, + epoch, + log_writer=log_writer, + args=args, + prefix=test_name, + ) + test_stats[test_name] = stats + + # Save best of all + if stats["loss_med"] < best_so_far: + best_so_far = stats["loss_med"] + new_best = True + + # Save more stuff + write_log_stats(epoch, train_stats, test_stats) + + if epoch > args.start_epoch: + if args.keep_freq and epoch % args.keep_freq == 0: + save_model(epoch - 1, str(epoch), best_so_far) + if new_best: + save_model(epoch - 1, "best", best_so_far) + if epoch >= args.epochs: + break # exit after writing last test to disk + + # Train + train_stats = train_one_epoch( + model, + train_criterion, + data_loader_train, + optimizer, + device, + epoch, + loss_scaler, + log_writer=log_writer, + args=args, + ) + + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print("Training time {}".format(total_time_str)) + + save_final_model(args, args.epochs, model_without_ddp, best_so_far=best_so_far) + + +def save_final_model(args, epoch, model_without_ddp, best_so_far=None): + output_dir = Path(args.output_dir) + checkpoint_path = output_dir / "checkpoint-final.pth" + to_save = { + "args": args, + "model": model_without_ddp + if isinstance(model_without_ddp, dict) + else model_without_ddp.cpu().state_dict(), + "epoch": epoch, + } + if best_so_far is not None: + to_save["best_so_far"] = best_so_far + print(f">> Saving model to {checkpoint_path} ...") + misc.save_on_master(to_save, checkpoint_path) + + +def build_dataset(dataset, batch_size, num_workers, test=False): + split = ["Train", "Test"][test] + print(f"Building {split} Data loader for dataset: ", dataset) + loader = get_data_loader( + dataset, + batch_size=batch_size, + num_workers=num_workers, + pin_mem=True, + shuffle=not (test), + drop_last=not (test), + ) + + print(f"{split} dataset length: ", len(loader)) + return loader + + +def train_one_epoch( + model: torch.nn.Module, + criterion: torch.nn.Module, + data_loader: Sized, + optimizer: torch.optim.Optimizer, + device: torch.device, + epoch: int, + loss_scaler, + args, + log_writer=None, +): + assert torch.backends.cuda.matmul.allow_tf32 == True + + model.train(True) + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")) + header = "Epoch: [{}]".format(epoch) + accum_iter = args.accum_iter + + if log_writer is not None: + print("log_dir: {}".format(log_writer.log_dir)) + + if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"): + data_loader.dataset.set_epoch(epoch) + if hasattr(data_loader, "sampler") and hasattr(data_loader.sampler, "set_epoch"): + data_loader.sampler.set_epoch(epoch) + + optimizer.zero_grad() + + for data_iter_step, batch in enumerate( + metric_logger.log_every(data_loader, args.print_freq, header) + ): + epoch_f = epoch + data_iter_step / len(data_loader) + + # we use a per iteration (instead of per epoch) lr scheduler + if data_iter_step % accum_iter == 0: + misc.adjust_learning_rate(optimizer, epoch_f, args) + + loss_tuple = loss_of_one_batch( + batch, + model, + criterion, + device, + symmetrize_batch=True, + use_amp=bool(args.amp), + ret="loss", + ) + loss, loss_details = loss_tuple # criterion returns two values + loss_value = float(loss) + + if not math.isfinite(loss_value): + print("Loss is {}, stopping training".format(loss_value), force=True) + sys.exit(1) + + loss /= accum_iter + loss_scaler( + loss, + optimizer, + parameters=model.parameters(), + update_grad=(data_iter_step + 1) % accum_iter == 0, + ) + if (data_iter_step + 1) % accum_iter == 0: + optimizer.zero_grad() + + del loss + del batch + + lr = optimizer.param_groups[0]["lr"] + metric_logger.update(epoch=epoch_f) + metric_logger.update(lr=lr) + metric_logger.update(loss=loss_value, **loss_details) + + if (data_iter_step + 1) % accum_iter == 0 and ( + (data_iter_step + 1) % (accum_iter * args.print_freq) + ) == 0: + loss_value_reduce = misc.all_reduce_mean( + loss_value + ) # MUST BE EXECUTED BY ALL NODES + if log_writer is None: + continue + """ We use epoch_1000x as the x-axis in tensorboard. + This calibrates different curves when batch size changes. + """ + epoch_1000x = int(epoch_f * 1000) + log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x) + log_writer.add_scalar("train_lr", lr, epoch_1000x) + log_writer.add_scalar("train_iter", epoch_1000x, epoch_1000x) + for name, val in loss_details.items(): + log_writer.add_scalar("train_" + name, val, epoch_1000x) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + return {k: meter.global_avg for k, meter in metric_logger.meters.items()} + + +@torch.no_grad() +def test_one_epoch( + model: torch.nn.Module, + criterion: torch.nn.Module, + data_loader: Sized, + device: torch.device, + epoch: int, + args, + log_writer=None, + prefix="test", +): + model.eval() + metric_logger = misc.MetricLogger(delimiter=" ") + metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9)) + header = "Test Epoch: [{}]".format(epoch) + + if log_writer is not None: + print("log_dir: {}".format(log_writer.log_dir)) + + if hasattr(data_loader, "dataset") and hasattr(data_loader.dataset, "set_epoch"): + data_loader.dataset.set_epoch(epoch) + if hasattr(data_loader, "sampler") and hasattr(data_loader.sampler, "set_epoch"): + data_loader.sampler.set_epoch(epoch) + + for _, batch in enumerate( + metric_logger.log_every(data_loader, args.print_freq, header) + ): + loss_tuple = loss_of_one_batch( + batch, + model, + criterion, + device, + symmetrize_batch=True, + use_amp=bool(args.amp), + ret="loss", + ) + loss_value, loss_details = loss_tuple # criterion returns two values + metric_logger.update(loss=float(loss_value), **loss_details) + + # gather the stats from all processes + metric_logger.synchronize_between_processes() + print("Averaged stats:", metric_logger) + + aggs = [("avg", "global_avg"), ("med", "median")] + results = { + f"{k}_{tag}": getattr(meter, attr) + for k, meter in metric_logger.meters.items() + for tag, attr in aggs + } + + if log_writer is not None: + for name, val in results.items(): + log_writer.add_scalar(prefix + "_" + name, val, 1000 * epoch) + + return results diff --git a/third_party/dust3r/dust3r/utils/__init__.py b/third_party/dust3r/dust3r/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/third_party/dust3r/dust3r/utils/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/third_party/dust3r/dust3r/utils/device.py b/third_party/dust3r/dust3r/utils/device.py new file mode 100644 index 0000000000000000000000000000000000000000..3e4cee9b9da6a3a6c4c06d0ac20acc257c025c9a --- /dev/null +++ b/third_party/dust3r/dust3r/utils/device.py @@ -0,0 +1,89 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for DUSt3R +# -------------------------------------------------------- +import numpy as np +import torch + + +def todevice(batch, device, callback=None, non_blocking=False): + """Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy). + + batch: list, tuple, dict of tensors or other things + device: pytorch device or 'numpy' + callback: function that would be called on every sub-elements. + """ + if callback: + batch = callback(batch) + + if isinstance(batch, dict): + return {k: todevice(v, device) for k, v in batch.items()} + + if isinstance(batch, (tuple, list)): + return type(batch)(todevice(x, device) for x in batch) + + x = batch + if device == "numpy": + if isinstance(x, torch.Tensor): + x = x.detach().cpu().numpy() + elif x is not None: + if isinstance(x, np.ndarray): + x = torch.from_numpy(x) + if torch.is_tensor(x): + x = x.to(device, non_blocking=non_blocking) + return x + + +to_device = todevice # alias + + +def to_numpy(x): + return todevice(x, "numpy") + + +def to_cpu(x): + return todevice(x, "cpu") + + +def to_cuda(x): + return todevice(x, "cuda") + + +def collate_with_cat(whatever, lists=False): + if isinstance(whatever, dict): + return {k: collate_with_cat(vals, lists=lists) for k, vals in whatever.items()} + + elif isinstance(whatever, (tuple, list)): + if len(whatever) == 0: + return whatever + elem = whatever[0] + T = type(whatever) + + if elem is None: + return None + if isinstance(elem, (bool, float, int, str)): + return whatever + if isinstance(elem, tuple): + return T(collate_with_cat(x, lists=lists) for x in zip(*whatever)) + if isinstance(elem, dict): + return { + k: collate_with_cat([e[k] for e in whatever], lists=lists) for k in elem + } + + if isinstance(elem, torch.Tensor): + return listify(whatever) if lists else torch.cat(whatever) + if isinstance(elem, np.ndarray): + return ( + listify(whatever) + if lists + else torch.cat([torch.from_numpy(x) for x in whatever]) + ) + + # otherwise, we just chain lists + return sum(whatever, T()) + + +def listify(elems): + return [x for e in elems for x in e] diff --git a/third_party/dust3r/dust3r/utils/geometry.py b/third_party/dust3r/dust3r/utils/geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..d95799d1326634bfe761116aed0840f6456debd8 --- /dev/null +++ b/third_party/dust3r/dust3r/utils/geometry.py @@ -0,0 +1,403 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# geometry utilitary functions +# -------------------------------------------------------- +import numpy as np +import torch +from dust3r.utils.device import to_numpy +from dust3r.utils.misc import invalid_to_nans, invalid_to_zeros +from scipy.spatial import cKDTree as KDTree + + +def xy_grid( + W, + H, + device=None, + origin=(0, 0), + unsqueeze=None, + cat_dim=-1, + homogeneous=False, + **arange_kw, +): + """Output a (H,W,2) array of int32 + with output[j,i,0] = i + origin[0] + output[j,i,1] = j + origin[1] + """ + if device is None: + # numpy + arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones + else: + # torch + arange = lambda *a, **kw: torch.arange(*a, device=device, **kw) + meshgrid, stack = torch.meshgrid, torch.stack + ones = lambda *a: torch.ones(*a, device=device) + + tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)] + grid = meshgrid(tw, th, indexing="xy") + if homogeneous: + grid = grid + (ones((H, W)),) + if unsqueeze is not None: + grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze)) + if cat_dim is not None: + grid = stack(grid, cat_dim) + return grid + + +def geotrf(Trf, pts, ncol=None, norm=False): + """Apply a geometric transformation to a list of 3-D points. + + H: 3x3 or 4x4 projection matrix (typically a Homography) + p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3) + + ncol: int. number of columns of the result (2 or 3) + norm: float. if != 0, the resut is projected on the z=norm plane. + + Returns an array of projected 2d points. + """ + assert Trf.ndim >= 2 + if isinstance(Trf, np.ndarray): + pts = np.asarray(pts) + elif isinstance(Trf, torch.Tensor): + pts = torch.as_tensor(pts, dtype=Trf.dtype) + + # adapt shape if necessary + output_reshape = pts.shape[:-1] + ncol = ncol or pts.shape[-1] + + # optimized code + if ( + isinstance(Trf, torch.Tensor) + and isinstance(pts, torch.Tensor) + and Trf.ndim == 3 + and pts.ndim == 4 + ): + d = pts.shape[3] + if Trf.shape[-1] == d: + pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts) + elif Trf.shape[-1] == d + 1: + pts = ( + torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + + Trf[:, None, None, :d, d] + ) + else: + raise ValueError(f"bad shape, not ending with 3 or 4, for {pts.shape=}") + else: + if Trf.ndim >= 3: + n = Trf.ndim - 2 + assert Trf.shape[:n] == pts.shape[:n], "batch size does not match" + Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1]) + + if pts.ndim > Trf.ndim: + # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d) + pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1]) + elif pts.ndim == 2: + # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d) + pts = pts[:, None, :] + + if pts.shape[-1] + 1 == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :] + elif pts.shape[-1] == Trf.shape[-1]: + Trf = Trf.swapaxes(-1, -2) # transpose Trf + pts = pts @ Trf + else: + pts = Trf @ pts.T + if pts.ndim >= 2: + pts = pts.swapaxes(-1, -2) + + if norm: + pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG + if norm != 1: + pts *= norm + + res = pts[..., :ncol].reshape(*output_reshape, ncol) + return res + + +def inv(mat): + """Invert a torch or numpy matrix""" + if isinstance(mat, torch.Tensor): + return torch.linalg.inv(mat) + if isinstance(mat, np.ndarray): + return np.linalg.inv(mat) + raise ValueError(f"bad matrix type = {type(mat)}") + + +def depthmap_to_pts3d(depth, pseudo_focal, pp=None, **_): + """ + Args: + - depthmap (BxHxW array): + - pseudo_focal: [B,H,W] ; [B,2,H,W] or [B,1,H,W] + Returns: + pointmap of absolute coordinates (BxHxWx3 array) + """ + + if len(depth.shape) == 4: + B, H, W, n = depth.shape + else: + B, H, W = depth.shape + n = None + + if len(pseudo_focal.shape) == 3: # [B,H,W] + pseudo_focalx = pseudo_focaly = pseudo_focal + elif len(pseudo_focal.shape) == 4: # [B,2,H,W] or [B,1,H,W] + pseudo_focalx = pseudo_focal[:, 0] + if pseudo_focal.shape[1] == 2: + pseudo_focaly = pseudo_focal[:, 1] + else: + pseudo_focaly = pseudo_focalx + else: + raise NotImplementedError("Error, unknown input focal shape format.") + + assert pseudo_focalx.shape == depth.shape[:3] + assert pseudo_focaly.shape == depth.shape[:3] + grid_x, grid_y = xy_grid(W, H, cat_dim=0, device=depth.device)[:, None] + + # set principal point + if pp is None: + grid_x = grid_x - (W - 1) / 2 + grid_y = grid_y - (H - 1) / 2 + else: + grid_x = grid_x.expand(B, -1, -1) - pp[:, 0, None, None] + grid_y = grid_y.expand(B, -1, -1) - pp[:, 1, None, None] + + if n is None: + pts3d = torch.empty((B, H, W, 3), device=depth.device) + pts3d[..., 0] = depth * grid_x / pseudo_focalx + pts3d[..., 1] = depth * grid_y / pseudo_focaly + pts3d[..., 2] = depth + else: + pts3d = torch.empty((B, H, W, 3, n), device=depth.device) + pts3d[..., 0, :] = depth * (grid_x / pseudo_focalx)[..., None] + pts3d[..., 1, :] = depth * (grid_y / pseudo_focaly)[..., None] + pts3d[..., 2, :] = depth + return pts3d + + +def depthmap_to_camera_coordinates(depthmap, camera_intrinsics, pseudo_focal=None): + """ + Args: + - depthmap (HxW array): + - camera_intrinsics: a 3x3 matrix + Returns: + pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels. + """ + camera_intrinsics = np.float32(camera_intrinsics) + H, W = depthmap.shape + + # Compute 3D ray associated with each pixel + # Strong assumption: there are no skew terms + assert camera_intrinsics[0, 1] == 0.0 + assert camera_intrinsics[1, 0] == 0.0 + if pseudo_focal is None: + fu = camera_intrinsics[0, 0] + fv = camera_intrinsics[1, 1] + else: + assert pseudo_focal.shape == (H, W) + fu = fv = pseudo_focal + cu = camera_intrinsics[0, 2] + cv = camera_intrinsics[1, 2] + + u, v = np.meshgrid(np.arange(W), np.arange(H)) + z_cam = depthmap + x_cam = (u - cu) * z_cam / fu + y_cam = (v - cv) * z_cam / fv + X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32) + + # Mask for valid coordinates + valid_mask = depthmap > 0.0 + return X_cam, valid_mask + + +def depthmap_to_absolute_camera_coordinates( + depthmap, camera_intrinsics, camera_pose, **kw +): + """ + Args: + - depthmap (HxW array): + - camera_intrinsics: a 3x3 matrix + - camera_pose: a 4x3 or 4x4 cam2world matrix + Returns: + pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels. + """ + X_cam, valid_mask = depthmap_to_camera_coordinates(depthmap, camera_intrinsics) + + X_world = X_cam # default + if camera_pose is not None: + # R_cam2world = np.float32(camera_params["R_cam2world"]) + # t_cam2world = np.float32(camera_params["t_cam2world"]).squeeze() + R_cam2world = camera_pose[:3, :3] + t_cam2world = camera_pose[:3, 3] + + # Express in absolute coordinates (invalid depth values) + X_world = ( + np.einsum("ik, vuk -> vui", R_cam2world, X_cam) + t_cam2world[None, None, :] + ) + + return X_world, valid_mask + + +def colmap_to_opencv_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] -= 0.5 + K[1, 2] -= 0.5 + return K + + +def opencv_to_colmap_intrinsics(K): + """ + Modify camera intrinsics to follow a different convention. + Coordinates of the center of the top-left pixels are by default: + - (0.5, 0.5) in Colmap + - (0,0) in OpenCV + """ + K = K.copy() + K[0, 2] += 0.5 + K[1, 2] += 0.5 + return K + + +def normalize_pointcloud( + pts1, pts2, norm_mode="avg_dis", valid1=None, valid2=None, ret_factor=False +): + """renorm pointmaps pts1, pts2 with norm_mode""" + assert pts1.ndim >= 3 and pts1.shape[-1] == 3 + assert pts2 is None or (pts2.ndim >= 3 and pts2.shape[-1] == 3) + norm_mode, dis_mode = norm_mode.split("_") + + if norm_mode == "avg": + # gather all points together (joint normalization) + nan_pts1, nnz1 = invalid_to_zeros(pts1, valid1, ndim=3) + nan_pts2, nnz2 = ( + invalid_to_zeros(pts2, valid2, ndim=3) if pts2 is not None else (None, 0) + ) + all_pts = ( + torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1 + ) + + # compute distance to origin + all_dis = all_pts.norm(dim=-1) + if dis_mode == "dis": + pass # do nothing + elif dis_mode == "log1p": + all_dis = torch.log1p(all_dis) + elif dis_mode == "warp-log1p": + # actually warp input points before normalizing them + log_dis = torch.log1p(all_dis) + warp_factor = log_dis / all_dis.clip(min=1e-8) + H1, W1 = pts1.shape[1:-1] + pts1 = pts1 * warp_factor[:, : W1 * H1].view(-1, H1, W1, 1) + if pts2 is not None: + H2, W2 = pts2.shape[1:-1] + pts2 = pts2 * warp_factor[:, W1 * H1 :].view(-1, H2, W2, 1) + all_dis = log_dis # this is their true distance afterwards + else: + raise ValueError(f"bad {dis_mode=}") + + norm_factor = all_dis.sum(dim=1) / (nnz1 + nnz2 + 1e-8) + else: + # gather all points together (joint normalization) + nan_pts1 = invalid_to_nans(pts1, valid1, ndim=3) + nan_pts2 = invalid_to_nans(pts2, valid2, ndim=3) if pts2 is not None else None + all_pts = ( + torch.cat((nan_pts1, nan_pts2), dim=1) if pts2 is not None else nan_pts1 + ) + + # compute distance to origin + all_dis = all_pts.norm(dim=-1) + + if norm_mode == "avg": + norm_factor = all_dis.nanmean(dim=1) + elif norm_mode == "median": + norm_factor = all_dis.nanmedian(dim=1).values.detach() + elif norm_mode == "sqrt": + norm_factor = all_dis.sqrt().nanmean(dim=1) ** 2 + else: + raise ValueError(f"bad {norm_mode=}") + + norm_factor = norm_factor.clip(min=1e-8) + while norm_factor.ndim < pts1.ndim: + norm_factor.unsqueeze_(-1) + + res = pts1 / norm_factor + if pts2 is not None: + res = (res, pts2 / norm_factor) + if ret_factor: + res = res + (norm_factor,) + return res + + +@torch.no_grad() +def get_joint_pointcloud_depth(z1, z2, valid_mask1, valid_mask2=None, quantile=0.5): + # set invalid points to NaN + _z1 = invalid_to_nans(z1, valid_mask1).reshape(len(z1), -1) + _z2 = ( + invalid_to_nans(z2, valid_mask2).reshape(len(z2), -1) + if z2 is not None + else None + ) + _z = torch.cat((_z1, _z2), dim=-1) if z2 is not None else _z1 + + # compute median depth overall (ignoring nans) + if quantile == 0.5: + shift_z = torch.nanmedian(_z, dim=-1).values + else: + shift_z = torch.nanquantile(_z, quantile, dim=-1) + return shift_z # (B,) + + +@torch.no_grad() +def get_joint_pointcloud_center_scale( + pts1, pts2, valid_mask1=None, valid_mask2=None, z_only=False, center=True +): + # set invalid points to NaN + _pts1 = invalid_to_nans(pts1, valid_mask1).reshape(len(pts1), -1, 3) + _pts2 = ( + invalid_to_nans(pts2, valid_mask2).reshape(len(pts2), -1, 3) + if pts2 is not None + else None + ) + _pts = torch.cat((_pts1, _pts2), dim=1) if pts2 is not None else _pts1 + + # compute median center + _center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3) + if z_only: + _center[..., :2] = 0 # do not center X and Y + + # compute median norm + _norm = ((_pts - _center) if center else _pts).norm(dim=-1) + scale = torch.nanmedian(_norm, dim=1).values + return _center[:, None, :, :], scale[:, None, None, None] + + +def find_reciprocal_matches(P1, P2): + """ + returns 3 values: + 1 - reciprocal_in_P2: a boolean array of size P2.shape[0], a "True" value indicates a match + 2 - nn2_in_P1: a int array of size P2.shape[0], it contains the indexes of the closest points in P1 + 3 - reciprocal_in_P2.sum(): the number of matches + """ + tree1 = KDTree(P1) + tree2 = KDTree(P2) + + _, nn1_in_P2 = tree2.query(P1, workers=8) + _, nn2_in_P1 = tree1.query(P2, workers=8) + + reciprocal_in_P1 = nn2_in_P1[nn1_in_P2] == np.arange(len(nn1_in_P2)) + reciprocal_in_P2 = nn1_in_P2[nn2_in_P1] == np.arange(len(nn2_in_P1)) + assert reciprocal_in_P1.sum() == reciprocal_in_P2.sum() + return reciprocal_in_P2, nn2_in_P1, reciprocal_in_P2.sum() + + +def get_med_dist_between_poses(poses): + from scipy.spatial.distance import pdist + + return np.median(pdist([to_numpy(p[:3, 3]) for p in poses])) diff --git a/third_party/dust3r/dust3r/utils/image.py b/third_party/dust3r/dust3r/utils/image.py new file mode 100644 index 0000000000000000000000000000000000000000..9dde90e2e99cf57b0665981ce048ded966fc69bb --- /dev/null +++ b/third_party/dust3r/dust3r/utils/image.py @@ -0,0 +1,134 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions about images (loading/converting...) +# -------------------------------------------------------- +import os + +import numpy as np +import PIL.Image +import torch +import torchvision.transforms as tvf +from PIL.ImageOps import exif_transpose + +os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" +import cv2 # noqa + +try: + from pillow_heif import register_heif_opener # noqa + + register_heif_opener() + heif_support_enabled = True +except ImportError: + heif_support_enabled = False + +ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + + +def img_to_arr(img): + if isinstance(img, str): + img = imread_cv2(img) + return img + + +def imread_cv2(path, options=cv2.IMREAD_COLOR): + """Open an image or a depthmap with opencv-python.""" + if path.endswith((".exr", "EXR")): + options = cv2.IMREAD_ANYDEPTH + img = cv2.imread(path, options) + if img is None: + raise IOError(f"Could not load image={path} with {options=}") + if img.ndim == 3: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + return img + + +def rgb(ftensor, true_shape=None): + if isinstance(ftensor, list): + return [rgb(x, true_shape=true_shape) for x in ftensor] + if isinstance(ftensor, torch.Tensor): + ftensor = ftensor.detach().cpu().numpy() # H,W,3 + if ftensor.ndim == 3 and ftensor.shape[0] == 3: + ftensor = ftensor.transpose(1, 2, 0) + elif ftensor.ndim == 4 and ftensor.shape[1] == 3: + ftensor = ftensor.transpose(0, 2, 3, 1) + if true_shape is not None: + H, W = true_shape + ftensor = ftensor[:H, :W] + if ftensor.dtype == np.uint8: + img = np.float32(ftensor) / 255 + else: + img = (ftensor * 0.5) + 0.5 + return img.clip(min=0, max=1) + + +def _resize_pil_image(img, long_edge_size): + S = max(img.size) + if S > long_edge_size: + interp = PIL.Image.LANCZOS + elif S <= long_edge_size: + interp = PIL.Image.BICUBIC + new_size = tuple(int(round(x * long_edge_size / S)) for x in img.size) + return img.resize(new_size, interp) + + +def load_images(folder_or_list, size, square_ok=False, verbose=True): + """open and convert all images in a list or folder to proper input format for DUSt3R""" + if isinstance(folder_or_list, str): + if verbose: + print(f">> Loading images from {folder_or_list}") + root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list)) + + elif isinstance(folder_or_list, list): + if verbose: + print(f">> Loading a list of {len(folder_or_list)} images") + root, folder_content = "", folder_or_list + + else: + raise ValueError(f"bad {folder_or_list=} ({type(folder_or_list)})") + + supported_images_extensions = [".jpg", ".jpeg", ".png"] + if heif_support_enabled: + supported_images_extensions += [".heic", ".heif"] + supported_images_extensions = tuple(supported_images_extensions) + + imgs = [] + for path in folder_content: + if not path.lower().endswith(supported_images_extensions): + continue + img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert("RGB") + W1, H1 = img.size + if size == 224: + # resize short side to 224 (then crop) + img = _resize_pil_image(img, round(size * max(W1 / H1, H1 / W1))) + else: + # resize long side to 512 + img = _resize_pil_image(img, size) + W, H = img.size + cx, cy = W // 2, H // 2 + if size == 224: + half = min(cx, cy) + img = img.crop((cx - half, cy - half, cx + half, cy + half)) + else: + halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8 + if not (square_ok) and W == H: + halfh = 3 * halfw / 4 + img = img.crop((cx - halfw, cy - halfh, cx + halfw, cy + halfh)) + + W2, H2 = img.size + if verbose: + print(f" - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}") + imgs.append( + dict( + img=ImgNorm(img)[None], + true_shape=np.int32([img.size[::-1]]), + idx=len(imgs), + instance=str(len(imgs)), + ) + ) + + assert imgs, "no images foud at " + root + if verbose: + print(f" (Found {len(imgs)} images)") + return imgs diff --git a/third_party/dust3r/dust3r/utils/misc.py b/third_party/dust3r/dust3r/utils/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..540d9c42e6c6f28cb2fcdaf5b696ee3f89220c12 --- /dev/null +++ b/third_party/dust3r/dust3r/utils/misc.py @@ -0,0 +1,125 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for DUSt3R +# -------------------------------------------------------- +import torch + + +def fill_default_args(kwargs, func): + import inspect # a bit hacky but it works reliably + + signature = inspect.signature(func) + + for k, v in signature.parameters.items(): + if v.default is inspect.Parameter.empty: + continue + kwargs.setdefault(k, v.default) + + return kwargs + + +def freeze_all_params(modules): + for module in modules: + try: + for n, param in module.named_parameters(): + param.requires_grad = False + except AttributeError: + # module is directly a parameter + module.requires_grad = False + + +def is_symmetrized(gt1, gt2): + x = gt1["instance"] + y = gt2["instance"] + if len(x) == len(y) and len(x) == 1: + return False # special case of batchsize 1 + ok = True + for i in range(0, len(x), 2): + ok = ok and (x[i] == y[i + 1]) and (x[i + 1] == y[i]) + return ok + + +def flip(tensor): + """flip so that tensor[0::2] <=> tensor[1::2]""" + return torch.stack((tensor[1::2], tensor[0::2]), dim=1).flatten(0, 1) + + +def interleave(tensor1, tensor2): + res1 = torch.stack((tensor1, tensor2), dim=1).flatten(0, 1) + res2 = torch.stack((tensor2, tensor1), dim=1).flatten(0, 1) + return res1, res2 + + +def transpose_to_landscape(head, activate=True): + """Predict in the correct aspect-ratio, + then transpose the result in landscape + and stack everything back together. + """ + + def wrapper_no(decout, true_shape): + B = len(true_shape) + assert true_shape[0:1].allclose(true_shape), "true_shape must be all identical" + H, W = true_shape[0].cpu().tolist() + res = head(decout, (H, W)) + return res + + def wrapper_yes(decout, true_shape): + B = len(true_shape) + # by definition, the batch is in landscape mode so W >= H + H, W = int(true_shape.min()), int(true_shape.max()) + + height, width = true_shape.T + is_landscape = width >= height + is_portrait = ~is_landscape + + # true_shape = true_shape.cpu() + if is_landscape.all(): + return head(decout, (H, W)) + if is_portrait.all(): + return transposed(head(decout, (W, H))) + + # batch is a mix of both portraint & landscape + def selout(ar): + return [d[ar] for d in decout] + + l_result = head(selout(is_landscape), (H, W)) + p_result = transposed(head(selout(is_portrait), (W, H))) + + # allocate full result + result = {} + for k in l_result | p_result: + x = l_result[k].new(B, *l_result[k].shape[1:]) + x[is_landscape] = l_result[k] + x[is_portrait] = p_result[k] + result[k] = x + + return result + + return wrapper_yes if activate else wrapper_no + + +def transposed(dic): + return {k: v.swapaxes(1, 2) for k, v in dic.items()} + + +def invalid_to_nans(arr, valid_mask, ndim=999): + if valid_mask is not None: + arr = arr.clone() + arr[~valid_mask] = float("nan") + if arr.ndim > ndim: + arr = arr.flatten(-2 - (arr.ndim - ndim), -2) + return arr + + +def invalid_to_zeros(arr, valid_mask, ndim=999): + if valid_mask is not None: + arr = arr.clone() + arr[~valid_mask] = 0 + nnz = valid_mask.view(len(valid_mask), -1).sum(1) + else: + nnz = arr.numel() // len(arr) if len(arr) else 0 # number of point per image + if arr.ndim > ndim: + arr = arr.flatten(-2 - (arr.ndim - ndim), -2) + return arr, nnz diff --git a/third_party/dust3r/dust3r/utils/parallel.py b/third_party/dust3r/dust3r/utils/parallel.py new file mode 100644 index 0000000000000000000000000000000000000000..754c2134fecb2b73e7db26efc4da40a2d7fa5af2 --- /dev/null +++ b/third_party/dust3r/dust3r/utils/parallel.py @@ -0,0 +1,91 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# utilitary functions for multiprocessing +# -------------------------------------------------------- +from multiprocessing import cpu_count +from multiprocessing.dummy import Pool as ThreadPool + +from tqdm import tqdm + + +def parallel_threads( + function, + args, + workers=0, + star_args=False, + kw_args=False, + front_num=1, + Pool=ThreadPool, + **tqdm_kw +): + """tqdm but with parallel execution. + + Will essentially return + res = [ function(arg) # default + function(*arg) # if star_args is True + function(**arg) # if kw_args is True + for arg in args] + + Note: + the first elements of args will not be parallelized. + This can be useful for debugging. + """ + while workers <= 0: + workers += cpu_count() + if workers == 1: + front_num = float("inf") + + # convert into an iterable + try: + n_args_parallel = len(args) - front_num + except TypeError: + n_args_parallel = None + args = iter(args) + + # sequential execution first + front = [] + while len(front) < front_num: + try: + a = next(args) + except StopIteration: + return front # end of the iterable + front.append( + function(*a) if star_args else function(**a) if kw_args else function(a) + ) + + # then parallel execution + out = [] + with Pool(workers) as pool: + # Pass the elements of args into function + if star_args: + futures = pool.imap(starcall, [(function, a) for a in args]) + elif kw_args: + futures = pool.imap(starstarcall, [(function, a) for a in args]) + else: + futures = pool.imap(function, args) + # Print out the progress as tasks complete + for f in tqdm(futures, total=n_args_parallel, **tqdm_kw): + out.append(f) + return front + out + + +def parallel_processes(*args, **kwargs): + """Same as parallel_threads, with processes""" + import multiprocessing as mp + + kwargs["Pool"] = mp.Pool + return parallel_threads(*args, **kwargs) + + +def starcall(args): + """convenient wrapper for Process.Pool""" + function, args = args + return function(*args) + + +def starstarcall(args): + """convenient wrapper for Process.Pool""" + function, args = args + return function(**args) diff --git a/third_party/dust3r/dust3r/utils/path_to_croco.py b/third_party/dust3r/dust3r/utils/path_to_croco.py new file mode 100644 index 0000000000000000000000000000000000000000..e3331ca0c49c223634c7934ab7803f5b22eee3cd --- /dev/null +++ b/third_party/dust3r/dust3r/utils/path_to_croco.py @@ -0,0 +1,22 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# CroCo submodule import +# -------------------------------------------------------- + +import os.path as path +import sys + +HERE_PATH = path.normpath(path.dirname(__file__)) +CROCO_REPO_PATH = path.normpath(path.join(HERE_PATH, "../../croco")) +CROCO_MODELS_PATH = path.join(CROCO_REPO_PATH, "models") +# check the presence of models directory in repo to be sure its cloned +if path.isdir(CROCO_MODELS_PATH): + # workaround for sibling import + sys.path.insert(0, CROCO_REPO_PATH) +else: + raise ImportError( + f"croco is not initialized, could not find: {CROCO_MODELS_PATH}.\n " + "Did you forget to run 'git submodule update --init --recursive' ?" + ) diff --git a/third_party/dust3r/dust3r/viz.py b/third_party/dust3r/dust3r/viz.py new file mode 100644 index 0000000000000000000000000000000000000000..53acb42e58e9b88514b76d46d2635a2061797a2d --- /dev/null +++ b/third_party/dust3r/dust3r/viz.py @@ -0,0 +1,459 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Visualization utilities using trimesh +# -------------------------------------------------------- +import numpy as np +import PIL.Image +import torch +from dust3r.utils.device import to_numpy +from dust3r.utils.geometry import ( + depthmap_to_absolute_camera_coordinates, + geotrf, + get_med_dist_between_poses, +) +from dust3r.utils.image import img_to_arr, rgb +from scipy.spatial.transform import Rotation + +try: + import trimesh +except ImportError: + print("/!\\ module trimesh is not installed, cannot visualize results /!\\") + + +def cat_3d(vecs): + if isinstance(vecs, (np.ndarray, torch.Tensor)): + vecs = [vecs] + return np.concatenate([p.reshape(-1, 3) for p in to_numpy(vecs)]) + + +def show_raw_pointcloud(pts3d, colors, point_size=2): + scene = trimesh.Scene() + + pct = trimesh.PointCloud(cat_3d(pts3d), colors=cat_3d(colors)) + scene.add_geometry(pct) + + scene.show(line_settings={"point_size": point_size}) + + +def pts3d_to_trimesh(img, pts3d, valid=None): + H, W, THREE = img.shape + assert THREE == 3 + assert img.shape == pts3d.shape + + vertices = pts3d.reshape(-1, 3) + + # make squares: each pixel == 2 triangles + idx = np.arange(len(vertices)).reshape(H, W) + idx1 = idx[:-1, :-1].ravel() # top-left corner + idx2 = idx[:-1, +1:].ravel() # right-left corner + idx3 = idx[+1:, :-1].ravel() # bottom-left corner + idx4 = idx[+1:, +1:].ravel() # bottom-right corner + faces = np.concatenate( + ( + np.c_[idx1, idx2, idx3], + np.c_[ + idx3, idx2, idx1 + ], # same triangle, but backward (cheap solution to cancel face culling) + np.c_[idx2, idx3, idx4], + np.c_[ + idx4, idx3, idx2 + ], # same triangle, but backward (cheap solution to cancel face culling) + ), + axis=0, + ) + + # prepare triangle colors + face_colors = np.concatenate( + ( + img[:-1, :-1].reshape(-1, 3), + img[:-1, :-1].reshape(-1, 3), + img[+1:, +1:].reshape(-1, 3), + img[+1:, +1:].reshape(-1, 3), + ), + axis=0, + ) + + # remove invalid faces + if valid is not None: + assert valid.shape == (H, W) + valid_idxs = valid.ravel() + valid_faces = valid_idxs[faces].all(axis=-1) + faces = faces[valid_faces] + face_colors = face_colors[valid_faces] + + assert len(faces) == len(face_colors) + return dict(vertices=vertices, face_colors=face_colors, faces=faces) + + +def cat_meshes(meshes): + vertices, faces, colors = zip( + *[(m["vertices"], m["faces"], m["face_colors"]) for m in meshes] + ) + n_vertices = np.cumsum([0] + [len(v) for v in vertices]) + for i in range(len(faces)): + faces[i][:] += n_vertices[i] + + vertices = np.concatenate(vertices) + colors = np.concatenate(colors) + faces = np.concatenate(faces) + return dict(vertices=vertices, face_colors=colors, faces=faces) + + +def show_duster_pairs(view1, view2, pred1, pred2): + import matplotlib.pyplot as pl + + pl.ion() + + for e in range(len(view1["instance"])): + i = view1["idx"][e] + j = view2["idx"][e] + img1 = rgb(view1["img"][e]) + img2 = rgb(view2["img"][e]) + conf1 = pred1["conf"][e].squeeze() + conf2 = pred2["conf"][e].squeeze() + score = conf1.mean() * conf2.mean() + print(f">> Showing pair #{e} {i}-{j} {score=:g}") + pl.clf() + pl.subplot(221).imshow(img1) + pl.subplot(223).imshow(img2) + pl.subplot(222).imshow(conf1, vmin=1, vmax=30) + pl.subplot(224).imshow(conf2, vmin=1, vmax=30) + pts1 = pred1["pts3d"][e] + pts2 = pred2["pts3d_in_other_view"][e] + pl.subplots_adjust(0, 0, 1, 1, 0, 0) + if input("show pointcloud? (y/n) ") == "y": + show_raw_pointcloud(cat(pts1, pts2), cat(img1, img2), point_size=5) + + +def auto_cam_size(im_poses): + return 0.1 * get_med_dist_between_poses(im_poses) + + +class SceneViz: + def __init__(self): + self.scene = trimesh.Scene() + + def add_rgbd( + self, image, depth, intrinsics=None, cam2world=None, zfar=np.inf, mask=None + ): + image = img_to_arr(image) + + # make up some intrinsics + if intrinsics is None: + H, W, THREE = image.shape + focal = max(H, W) + intrinsics = np.float32([[focal, 0, W / 2], [0, focal, H / 2], [0, 0, 1]]) + + # compute 3d points + pts3d = depthmap_to_pts3d(depth, intrinsics, cam2world=cam2world) + + return self.add_pointcloud( + pts3d, image, mask=(depth < zfar) if mask is None else mask + ) + + def add_pointcloud(self, pts3d, color=(0, 0, 0), mask=None, denoise=False): + pts3d = to_numpy(pts3d) + mask = to_numpy(mask) + if not isinstance(pts3d, list): + pts3d = [pts3d.reshape(-1, 3)] + if mask is not None: + mask = [mask.ravel()] + if not isinstance(color, (tuple, list)): + color = [color.reshape(-1, 3)] + if mask is None: + mask = [slice(None)] * len(pts3d) + + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + pct = trimesh.PointCloud(pts) + + if isinstance(color, (list, np.ndarray, torch.Tensor)): + color = to_numpy(color) + col = np.concatenate([p[m] for p, m in zip(color, mask)]) + assert col.shape == pts.shape, bb() + pct.visual.vertex_colors = uint8(col.reshape(-1, 3)) + else: + assert len(color) == 3 + pct.visual.vertex_colors = np.broadcast_to(uint8(color), pts.shape) + + if denoise: + # remove points which are noisy + centroid = np.median(pct.vertices, axis=0) + dist_to_centroid = np.linalg.norm(pct.vertices - centroid, axis=-1) + dist_thr = np.quantile(dist_to_centroid, 0.99) + valid = dist_to_centroid < dist_thr + # new cleaned pointcloud + pct = trimesh.PointCloud( + pct.vertices[valid], color=pct.visual.vertex_colors[valid] + ) + + self.scene.add_geometry(pct) + return self + + def add_rgbd( + self, image, depth, intrinsics=None, cam2world=None, zfar=np.inf, mask=None + ): + # make up some intrinsics + if intrinsics is None: + H, W, THREE = image.shape + focal = max(H, W) + intrinsics = np.float32([[focal, 0, W / 2], [0, focal, H / 2], [0, 0, 1]]) + + # compute 3d points + pts3d, mask2 = depthmap_to_absolute_camera_coordinates( + depth, intrinsics, cam2world + ) + mask2 &= depth < zfar + + # combine with provided mask if any + if mask is not None: + mask2 &= mask + + return self.add_pointcloud(pts3d, image, mask=mask2) + + def add_camera( + self, + pose_c2w, + focal=None, + color=(0, 0, 0), + image=None, + imsize=None, + cam_size=0.03, + ): + pose_c2w, focal, color, image = to_numpy((pose_c2w, focal, color, image)) + image = img_to_arr(image) + if isinstance(focal, np.ndarray) and focal.shape == (3, 3): + intrinsics = focal + focal = (intrinsics[0, 0] * intrinsics[1, 1]) ** 0.5 + if imsize is None: + imsize = (2 * intrinsics[0, 2], 2 * intrinsics[1, 2]) + + add_scene_cam( + self.scene, + pose_c2w, + color, + image, + focal, + imsize=imsize, + screen_width=cam_size, + marker=None, + ) + return self + + def add_cameras( + self, poses, focals=None, images=None, imsizes=None, colors=None, **kw + ): + get = lambda arr, idx: None if arr is None else arr[idx] + for i, pose_c2w in enumerate(poses): + self.add_camera( + pose_c2w, + get(focals, i), + image=get(images, i), + color=get(colors, i), + imsize=get(imsizes, i), + **kw, + ) + return self + + def show(self, point_size=2): + self.scene.show(line_settings={"point_size": point_size}) + + +def show_raw_pointcloud_with_cams( + imgs, pts3d, mask, focals, cams2world, point_size=2, cam_size=0.05, cam_color=None +): + """Visualization of a pointcloud with cameras + imgs = (N, H, W, 3) or N-size list of [(H,W,3), ...] + pts3d = (N, H, W, 3) or N-size list of [(H,W,3), ...] + focals = (N,) or N-size list of [focal, ...] + cams2world = (N,4,4) or N-size list of [(4,4), ...] + """ + assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) + pts3d = to_numpy(pts3d) + imgs = to_numpy(imgs) + focals = to_numpy(focals) + cams2world = to_numpy(cams2world) + + scene = trimesh.Scene() + + # full pointcloud + pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) + col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) + pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) + scene.add_geometry(pct) + + # add each camera + for i, pose_c2w in enumerate(cams2world): + if isinstance(cam_color, list): + camera_edge_color = cam_color[i] + else: + camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] + add_scene_cam( + scene, + pose_c2w, + camera_edge_color, + imgs[i] if i < len(imgs) else None, + focals[i], + screen_width=cam_size, + ) + + scene.show(line_settings={"point_size": point_size}) + + +def add_scene_cam( + scene, + pose_c2w, + edge_color, + image=None, + focal=None, + imsize=None, + screen_width=0.03, + marker=None, +): + if image is not None: + image = np.asarray(image) + H, W, THREE = image.shape + assert THREE == 3 + if image.dtype != np.uint8: + image = np.uint8(255 * image) + elif imsize is not None: + W, H = imsize + elif focal is not None: + H = W = focal / 1.1 + else: + H = W = 1 + + if isinstance(focal, np.ndarray): + focal = focal[0] + if not focal: + focal = min(H, W) * 1.1 # default value + + # create fake camera + height = max(screen_width / 10, focal * screen_width / H) + width = screen_width * 0.5**0.5 + rot45 = np.eye(4) + rot45[:3, :3] = Rotation.from_euler("z", np.deg2rad(45)).as_matrix() + rot45[2, 3] = -height # set the tip of the cone = optical center + aspect_ratio = np.eye(4) + aspect_ratio[0, 0] = W / H + transform = pose_c2w @ OPENGL @ aspect_ratio @ rot45 + cam = trimesh.creation.cone(width, height, sections=4) # , transform=transform) + + # this is the image + if image is not None: + vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]]) + faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]]) + img = trimesh.Trimesh(vertices=vertices, faces=faces) + uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]]) + img.visual = trimesh.visual.TextureVisuals( + uv_coords, image=PIL.Image.fromarray(image) + ) + scene.add_geometry(img) + + # this is the camera mesh + rot2 = np.eye(4) + rot2[:3, :3] = Rotation.from_euler("z", np.deg2rad(2)).as_matrix() + vertices = np.r_[cam.vertices, 0.95 * cam.vertices, geotrf(rot2, cam.vertices)] + vertices = geotrf(transform, vertices) + faces = [] + for face in cam.faces: + if 0 in face: + continue + a, b, c = face + a2, b2, c2 = face + len(cam.vertices) + a3, b3, c3 = face + 2 * len(cam.vertices) + + # add 3 pseudo-edges + faces.append((a, b, b2)) + faces.append((a, a2, c)) + faces.append((c2, b, c)) + + faces.append((a, b, b3)) + faces.append((a, a3, c)) + faces.append((c3, b, c)) + + # no culling + faces += [(c, b, a) for a, b, c in faces] + + cam = trimesh.Trimesh(vertices=vertices, faces=faces) + cam.visual.face_colors[:, :3] = edge_color + scene.add_geometry(cam) + + if marker == "o": + marker = trimesh.creation.icosphere(3, radius=screen_width / 4) + marker.vertices += pose_c2w[:3, 3] + marker.visual.face_colors[:, :3] = edge_color + scene.add_geometry(marker) + + +def cat(a, b): + return np.concatenate((a.reshape(-1, 3), b.reshape(-1, 3))) + + +OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) + + +CAM_COLORS = [ + (255, 0, 0), + (0, 0, 255), + (0, 255, 0), + (255, 0, 255), + (255, 204, 0), + (0, 204, 204), + (128, 255, 255), + (255, 128, 255), + (255, 255, 128), + (0, 0, 0), + (128, 128, 128), +] + + +def uint8(colors): + if not isinstance(colors, np.ndarray): + colors = np.array(colors) + if np.issubdtype(colors.dtype, np.floating): + colors *= 255 + assert 0 <= colors.min() and colors.max() < 256 + return np.uint8(colors) + + +def segment_sky(image): + import cv2 + from scipy import ndimage + + # Convert to HSV + image = to_numpy(image) + if np.issubdtype(image.dtype, np.floating): + image = np.uint8(255 * image.clip(min=0, max=1)) + hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) + + # Define range for blue color and create mask + lower_blue = np.array([0, 0, 100]) + upper_blue = np.array([30, 255, 255]) + mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool) + + # add luminous gray + mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150) + mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180) + mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220) + + # Morphological operations + kernel = np.ones((5, 5), np.uint8) + mask2 = ndimage.binary_opening(mask, structure=kernel) + + # keep only largest CC + _, labels, stats, _ = cv2.connectedComponentsWithStats( + mask2.view(np.uint8), connectivity=8 + ) + cc_sizes = stats[1:, cv2.CC_STAT_AREA] + order = cc_sizes.argsort()[::-1] # bigger first + i = 0 + selection = [] + while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2: + selection.append(1 + order[i]) + i += 1 + mask3 = np.in1d(labels, selection).reshape(labels.shape) + + # Apply mask + return torch.from_numpy(mask3) diff --git a/third_party/dust3r/dust3r_visloc/README.md b/third_party/dust3r/dust3r_visloc/README.md new file mode 100644 index 0000000000000000000000000000000000000000..37754df8fa5f04840457883354da7856ff843957 --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/README.md @@ -0,0 +1,93 @@ +# Visual Localization with DUSt3R + +## Dataset preparation + +### CambridgeLandmarks + +Each subscene should look like this: + +``` +Cambridge_Landmarks +├─ mapping +│ ├─ GreatCourt +│ │ └─ colmap/reconstruction +│ │ ├─ cameras.txt +│ │ ├─ images.txt +│ │ └─ points3D.txt +├─ kapture +│ ├─ GreatCourt +│ │ └─ query # https://github.com/naver/kapture/blob/main/doc/datasets.adoc#cambridge-landmarks +│ ... +├─ GreatCourt +│ ├─ pairsfile/query +│ │ └─ AP-GeM-LM18_top50.txt # https://github.com/naver/deep-image-retrieval/blob/master/dirtorch/extract_kapture.py followed by https://github.com/naver/kapture-localization/blob/main/tools/kapture_compute_image_pairs.py +│ ├─ seq1 +│ ... +... +``` + +### 7Scenes +Each subscene should look like this: + +``` +7-scenes +├─ chess +│ ├─ mapping/ # https://github.com/naver/kapture/blob/main/doc/datasets.adoc#1-7-scenes +│ ├─ query/ # https://github.com/naver/kapture/blob/main/doc/datasets.adoc#1-7-scenes +│ └─ pairsfile/query/ +│ └─ APGeM-LM18_top20.txt # https://github.com/naver/deep-image-retrieval/blob/master/dirtorch/extract_kapture.py followed by https://github.com/naver/kapture-localization/blob/main/tools/kapture_compute_image_pairs.py +... +``` + +### Aachen-Day-Night + +``` +Aachen-Day-Night-v1.1 +├─ mapping +│ ├─ colmap/reconstruction +│ │ ├─ cameras.txt +│ │ ├─ images.txt +│ │ └─ points3D.txt +├─ kapture +│ └─ query # https://github.com/naver/kapture/blob/main/doc/datasets.adoc#2-aachen-day-night-v11 +├─ images +│ ├─ db +│ ├─ query +│ └─ sequences +└─ pairsfile/query + └─ fire_top50.txt # https://github.com/naver/fire/blob/main/kapture_compute_pairs.py +``` + +### InLoc + +``` +InLoc +├─ mapping # https://github.com/naver/kapture/blob/main/doc/datasets.adoc#6-inloc +├─ query # https://github.com/naver/kapture/blob/main/doc/datasets.adoc#6-inloc +└─ pairsfile/query + └─ pairs-query-netvlad40-temporal.txt # https://github.com/cvg/Hierarchical-Localization/blob/master/pairs/inloc/pairs-query-netvlad40-temporal.txt +``` + +## Example Commands + +With `visloc.py` you can run our visual localization experiments on Aachen-Day-Night, InLoc, Cambridge Landmarks and 7 Scenes. + +```bash +# Aachen-Day-Night-v1.1: +# scene in 'day' 'night' +# scene can also be 'all' +python3 visloc.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt --dataset "VislocAachenDayNight('/path/to/prepared/Aachen-Day-Night-v1.1/', subscene='${scene}', pairsfile='fire_top50', topk=20)" --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Aachen-Day-Night-v1.1/${scene}/loc + +# InLoc +python3 visloc.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt --dataset "VislocInLoc('/path/to/prepared/InLoc/', pairsfile='pairs-query-netvlad40-temporal', topk=20)" --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/InLoc/loc + + +# 7-scenes: +# scene in 'chess' 'fire' 'heads' 'office' 'pumpkin' 'redkitchen' 'stairs' +python3 visloc.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt --dataset "VislocSevenScenes('/path/to/prepared/7-scenes/', subscene='${scene}', pairsfile='APGeM-LM18_top20', topk=1)" --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/7-scenes/${scene}/loc + +# Cambridge Landmarks: +# scene in 'ShopFacade' 'GreatCourt' 'KingsCollege' 'OldHospital' 'StMarysChurch' +python3 visloc.py --model_name DUSt3R_ViTLarge_BaseDecoder_512_dpt --dataset "VislocCambridgeLandmarks('/path/to/prepared/Cambridge_Landmarks/', subscene='${scene}', pairsfile='APGeM-LM18_top50', topk=20)" --pnp_mode poselib --reprojection_error_diag_ratio 0.008 --output_dir /path/to/output/Cambridge_Landmarks/${scene}/loc + +``` diff --git a/third_party/dust3r/dust3r_visloc/__init__.py b/third_party/dust3r/dust3r_visloc/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a32692113d830ddc4af4e6ed608f222fbe062e6e --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/__init__.py @@ -0,0 +1,2 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). diff --git a/third_party/dust3r/dust3r_visloc/datasets/__init__.py b/third_party/dust3r/dust3r_visloc/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d5aa2eb78ff1df27aac5c47b2682f8dd090f4f15 --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/__init__.py @@ -0,0 +1,6 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +from .aachen_day_night import VislocAachenDayNight +from .cambridge_landmarks import VislocCambridgeLandmarks +from .inloc import VislocInLoc +from .sevenscenes import VislocSevenScenes diff --git a/third_party/dust3r/dust3r_visloc/datasets/aachen_day_night.py b/third_party/dust3r/dust3r_visloc/datasets/aachen_day_night.py new file mode 100644 index 0000000000000000000000000000000000000000..f7365ee1b6044976e94b56786b10bb7469845aca --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/aachen_day_night.py @@ -0,0 +1,32 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# AachenDayNight dataloader +# -------------------------------------------------------- +import os + +from dust3r_visloc.datasets.base_colmap import BaseVislocColmapDataset + + +class VislocAachenDayNight(BaseVislocColmapDataset): + def __init__(self, root, subscene, pairsfile, topk=1, cache_sfm=False): + assert subscene in [None, "", "day", "night", "all"] + self.subscene = subscene + image_path = os.path.join(root, "images") + map_path = os.path.join(root, "mapping/colmap/reconstruction") + query_path = os.path.join(root, "kapture", "query") + pairsfile_path = os.path.join(root, "pairsfile/query", pairsfile + ".txt") + super().__init__( + image_path=image_path, + map_path=map_path, + query_path=query_path, + pairsfile_path=pairsfile_path, + topk=topk, + cache_sfm=cache_sfm, + ) + self.scenes = [filename for filename in self.scenes if filename in self.pairs] + if self.subscene == "day" or self.subscene == "night": + self.scenes = [ + filename for filename in self.scenes if self.subscene in filename + ] diff --git a/third_party/dust3r/dust3r_visloc/datasets/base_colmap.py b/third_party/dust3r/dust3r_visloc/datasets/base_colmap.py new file mode 100644 index 0000000000000000000000000000000000000000..3046b4afbb1a565fa485018e9cf1309713dae074 --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/base_colmap.py @@ -0,0 +1,306 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Base class for colmap / kapture +# -------------------------------------------------------- +import collections +import os +import pickle + +import numpy as np +import PIL.Image +import torch +import torchvision.transforms as tvf +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import colmap_to_opencv_intrinsics +from dust3r_visloc.datasets.base_dataset import BaseVislocDataset +from dust3r_visloc.datasets.utils import ( + cam_to_world_from_kapture, + get_resize_function, + rescale_points3d, +) +from kapture.core import CameraType +from kapture.io.csv import kapture_from_dir +from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file +from scipy.spatial.transform import Rotation +from tqdm import tqdm + +KaptureSensor = collections.namedtuple("Sensor", "sensor_params camera_params") + + +def kapture_to_opencv_intrinsics(sensor): + """ + Convert from Kapture to OpenCV parameters. + Warning: we assume that the camera and pixel coordinates follow Colmap conventions here. + Args: + sensor: Kapture sensor + """ + sensor_type = sensor.sensor_params[0] + if sensor_type == "SIMPLE_PINHOLE": + # Simple pinhole model. + # We still call OpenCV undistorsion however for code simplicity. + w, h, f, cx, cy = sensor.camera_params + k1 = 0 + k2 = 0 + p1 = 0 + p2 = 0 + fx = fy = f + elif sensor_type == "PINHOLE": + w, h, fx, fy, cx, cy = sensor.camera_params + k1 = 0 + k2 = 0 + p1 = 0 + p2 = 0 + elif sensor_type == "SIMPLE_RADIAL": + w, h, f, cx, cy, k1 = sensor.camera_params + k2 = 0 + p1 = 0 + p2 = 0 + fx = fy = f + elif sensor_type == "RADIAL": + w, h, f, cx, cy, k1, k2 = sensor.camera_params + p1 = 0 + p2 = 0 + fx = fy = f + elif sensor_type == "OPENCV": + w, h, fx, fy, cx, cy, k1, k2, p1, p2 = sensor.camera_params + else: + raise NotImplementedError(f"Sensor type {sensor_type} is not supported yet.") + + cameraMatrix = np.asarray([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32) + + # We assume that Kapture data comes from Colmap: the origin is different. + cameraMatrix = colmap_to_opencv_intrinsics(cameraMatrix) + + distCoeffs = np.asarray([k1, k2, p1, p2], dtype=np.float32) + return cameraMatrix, distCoeffs, (w, h) + + +def K_from_colmap(elems): + sensor = KaptureSensor(elems, tuple(map(float, elems[1:]))) + cameraMatrix, distCoeffs, (w, h) = kapture_to_opencv_intrinsics(sensor) + res = dict(resolution=(w, h), intrinsics=cameraMatrix, distortion=distCoeffs) + return res + + +def pose_from_qwxyz_txyz(elems): + qw, qx, qy, qz, tx, ty, tz = map(float, elems) + pose = np.eye(4) + pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix() + pose[:3, 3] = (tx, ty, tz) + return np.linalg.inv(pose) # returns cam2world + + +class BaseVislocColmapDataset(BaseVislocDataset): + def __init__( + self, image_path, map_path, query_path, pairsfile_path, topk=1, cache_sfm=False + ): + super().__init__() + self.topk = topk + self.num_views = self.topk + 1 + self.image_path = image_path + self.cache_sfm = cache_sfm + + self._load_sfm(map_path) + + kdata_query = kapture_from_dir(query_path) + assert ( + kdata_query.records_camera is not None + and kdata_query.trajectories is not None + ) + + kdata_query_searchindex = { + kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) + for timestamp, sensor_id in kdata_query.records_camera.key_pairs() + } + self.query_data = {"kdata": kdata_query, "searchindex": kdata_query_searchindex} + + self.pairs = get_ordered_pairs_from_file(pairsfile_path) + self.scenes = kdata_query.records_camera.data_list() + + def _load_sfm(self, sfm_dir): + sfm_cache_path = os.path.join(sfm_dir, "dust3r_cache.pkl") + if os.path.isfile(sfm_cache_path) and self.cache_sfm: + with open(sfm_cache_path, "rb") as f: + data = pickle.load(f) + self.img_infos = data["img_infos"] + self.points3D = data["points3D"] + return + + # load cameras + with open(os.path.join(sfm_dir, "cameras.txt"), "r") as f: + raw = f.read().splitlines()[3:] # skip header + + intrinsics = {} + for camera in tqdm(raw): + camera = camera.split(" ") + intrinsics[int(camera[0])] = K_from_colmap(camera[1:]) + + # load images + with open(os.path.join(sfm_dir, "images.txt"), "r") as f: + raw = f.read().splitlines() + raw = [line for line in raw if not line.startswith("#")] # skip header + + self.img_infos = {} + for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2): + image = image.split(" ") + points = points.split(" ") + + img_name = image[-1] + current_points2D = { + int(i): (float(x), float(y)) + for i, x, y in zip(points[2::3], points[0::3], points[1::3]) + if i != "-1" + } + self.img_infos[img_name] = dict( + intrinsics[int(image[-2])], + path=img_name, + camera_pose=pose_from_qwxyz_txyz(image[1:-2]), + sparse_pts2d=current_points2D, + ) + + # load 3D points + with open(os.path.join(sfm_dir, "points3D.txt"), "r") as f: + raw = f.read().splitlines() + raw = [line for line in raw if not line.startswith("#")] # skip header + + self.points3D = {} + for point in tqdm(raw): + point = point.split() + self.points3D[int(point[0])] = tuple(map(float, point[1:4])) + + if self.cache_sfm: + to_save = {"img_infos": self.img_infos, "points3D": self.points3D} + with open(sfm_cache_path, "wb") as f: + pickle.dump(to_save, f) + + def __len__(self): + return len(self.scenes) + + def _get_view_query(self, imgname): + kdata, searchindex = map(self.query_data.get, ["kdata", "searchindex"]) + + timestamp, camera_id = searchindex[imgname] + + camera_params = kdata.sensors[camera_id].camera_params + if kdata.sensors[camera_id].camera_type == CameraType.SIMPLE_PINHOLE: + W, H, f, cx, cy = camera_params + k1 = 0 + fx = fy = f + elif kdata.sensors[camera_id].camera_type == CameraType.SIMPLE_RADIAL: + W, H, f, cx, cy, k1 = camera_params + fx = fy = f + else: + raise NotImplementedError("not implemented") + + W, H = int(W), int(H) + intrinsics = np.float32([(fx, 0, cx), (0, fy, cy), (0, 0, 1)]) + intrinsics = colmap_to_opencv_intrinsics(intrinsics) + distortion = [k1, 0, 0, 0] + + if ( + kdata.trajectories is not None + and (timestamp, camera_id) in kdata.trajectories + ): + cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id) + else: + cam_to_world = np.eye(4, dtype=np.float32) + + # Load RGB image + rgb_image = PIL.Image.open(os.path.join(self.image_path, imgname)).convert( + "RGB" + ) + rgb_image.load() + resize_func, _, to_orig = get_resize_function( + self.maxdim, self.patch_size, H, W + ) + rgb_tensor = resize_func(ImgNorm(rgb_image)) + + view = { + "intrinsics": intrinsics, + "distortion": distortion, + "cam_to_world": cam_to_world, + "rgb": rgb_image, + "rgb_rescaled": rgb_tensor, + "to_orig": to_orig, + "idx": 0, + "image_name": imgname, + } + return view + + def _get_view_map(self, imgname, idx): + infos = self.img_infos[imgname] + + rgb_image = PIL.Image.open( + os.path.join(self.image_path, infos["path"]) + ).convert("RGB") + rgb_image.load() + W, H = rgb_image.size + intrinsics = infos["intrinsics"] + intrinsics = colmap_to_opencv_intrinsics(intrinsics) + distortion_coefs = infos["distortion"] + + pts2d = infos["sparse_pts2d"] + sparse_pos2d = np.float32(list(pts2d.values())).reshape( + (-1, 2) + ) # pts2d from colmap + sparse_pts3d = np.float32([self.points3D[i] for i in pts2d]).reshape((-1, 3)) + + # store full resolution 2D->3D + sparse_pos2d_cv2 = sparse_pos2d.copy() + sparse_pos2d_cv2[:, 0] -= 0.5 + sparse_pos2d_cv2[:, 1] -= 0.5 + sparse_pos2d_int = sparse_pos2d_cv2.round().astype(np.int64) + valid = ( + (sparse_pos2d_int[:, 0] >= 0) + & (sparse_pos2d_int[:, 0] < W) + & (sparse_pos2d_int[:, 1] >= 0) + & (sparse_pos2d_int[:, 1] < H) + ) + sparse_pos2d_int = sparse_pos2d_int[valid] + # nan => invalid + pts3d = np.full((H, W, 3), np.nan, dtype=np.float32) + pts3d[sparse_pos2d_int[:, 1], sparse_pos2d_int[:, 0]] = sparse_pts3d[valid] + pts3d = torch.from_numpy(pts3d) + + cam_to_world = infos["camera_pose"] # cam2world + + # also store resized resolution 2D->3D + resize_func, to_resize, to_orig = get_resize_function( + self.maxdim, self.patch_size, H, W + ) + rgb_tensor = resize_func(ImgNorm(rgb_image)) + + HR, WR = rgb_tensor.shape[1:] + _, _, pts3d_rescaled, valid_rescaled = rescale_points3d( + sparse_pos2d_cv2, sparse_pts3d, to_resize, HR, WR + ) + pts3d_rescaled = torch.from_numpy(pts3d_rescaled) + valid_rescaled = torch.from_numpy(valid_rescaled) + + view = { + "intrinsics": intrinsics, + "distortion": distortion_coefs, + "cam_to_world": cam_to_world, + "rgb": rgb_image, + "pts3d": pts3d, + "valid": pts3d.sum(dim=-1).isfinite(), + "rgb_rescaled": rgb_tensor, + "pts3d_rescaled": pts3d_rescaled, + "valid_rescaled": valid_rescaled, + "to_orig": to_orig, + "idx": idx, + "image_name": imgname, + } + return view + + def __getitem__(self, idx): + assert self.maxdim is not None and self.patch_size is not None + query_image = self.scenes[idx] + map_images = [p[0] for p in self.pairs[query_image][: self.topk]] + views = [] + views.append(self._get_view_query(query_image)) + for idx, map_image in enumerate(map_images): + views.append(self._get_view_map(map_image, idx + 1)) + return views diff --git a/third_party/dust3r/dust3r_visloc/datasets/base_dataset.py b/third_party/dust3r/dust3r_visloc/datasets/base_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..ed535ddf16d9167529db6ab1814159015a356ea8 --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/base_dataset.py @@ -0,0 +1,19 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Base class +# -------------------------------------------------------- +class BaseVislocDataset: + def __init__(self): + pass + + def set_resolution(self, model): + self.maxdim = max(model.patch_embed.img_size) + self.patch_size = model.patch_embed.patch_size + + def __len__(self): + raise NotImplementedError() + + def __getitem__(self, idx): + raise NotImplementedError() diff --git a/third_party/dust3r/dust3r_visloc/datasets/cambridge_landmarks.py b/third_party/dust3r/dust3r_visloc/datasets/cambridge_landmarks.py new file mode 100644 index 0000000000000000000000000000000000000000..b1f8c617800f3180647d70c9de25fbc630643f4a --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/cambridge_landmarks.py @@ -0,0 +1,27 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Cambridge Landmarks dataloader +# -------------------------------------------------------- +import os + +from dust3r_visloc.datasets.base_colmap import BaseVislocColmapDataset + + +class VislocCambridgeLandmarks(BaseVislocColmapDataset): + def __init__(self, root, subscene, pairsfile, topk=1, cache_sfm=False): + image_path = os.path.join(root, subscene) + map_path = os.path.join(root, "mapping", subscene, "colmap/reconstruction") + query_path = os.path.join(root, "kapture", subscene, "query") + pairsfile_path = os.path.join( + root, subscene, "pairsfile/query", pairsfile + ".txt" + ) + super().__init__( + image_path=image_path, + map_path=map_path, + query_path=query_path, + pairsfile_path=pairsfile_path, + topk=topk, + cache_sfm=cache_sfm, + ) diff --git a/third_party/dust3r/dust3r_visloc/datasets/inloc.py b/third_party/dust3r/dust3r_visloc/datasets/inloc.py new file mode 100644 index 0000000000000000000000000000000000000000..31fd7a65ad4dad2309eb781f97b2e3dfa4b675b0 --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/inloc.py @@ -0,0 +1,204 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# InLoc dataloader +# -------------------------------------------------------- +import os + +import kapture +import numpy as np +import PIL.Image +import scipy.io +import torch +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import geotrf, xy_grid +from dust3r_visloc.datasets.base_dataset import BaseVislocDataset +from dust3r_visloc.datasets.utils import ( + cam_to_world_from_kapture, + get_resize_function, + rescale_points3d, +) +from kapture.io.csv import kapture_from_dir +from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file + + +def read_alignments(path_to_alignment): + aligns = {} + with open(path_to_alignment, "r") as fid: + while True: + line = fid.readline() + if not line: + break + if len(line) == 4: + trans_nr = line[:-1] + while line != "After general icp:\n": + line = fid.readline() + line = fid.readline() + p = [] + for i in range(4): + elems = line.split(" ") + line = fid.readline() + for e in elems: + if len(e) != 0: + p.append(float(e)) + P = np.array(p).reshape(4, 4) + aligns[trans_nr] = P + return aligns + + +class VislocInLoc(BaseVislocDataset): + def __init__(self, root, pairsfile, topk=1): + super().__init__() + self.root = root + self.topk = topk + self.num_views = self.topk + 1 + self.maxdim = None + self.patch_size = None + + query_path = os.path.join(self.root, "query") + kdata_query = kapture_from_dir(query_path) + assert kdata_query.records_camera is not None + kdata_query_searchindex = { + kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) + for timestamp, sensor_id in kdata_query.records_camera.key_pairs() + } + self.query_data = { + "path": query_path, + "kdata": kdata_query, + "searchindex": kdata_query_searchindex, + } + + map_path = os.path.join(self.root, "mapping") + kdata_map = kapture_from_dir(map_path) + assert ( + kdata_map.records_camera is not None and kdata_map.trajectories is not None + ) + kdata_map_searchindex = { + kdata_map.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) + for timestamp, sensor_id in kdata_map.records_camera.key_pairs() + } + self.map_data = { + "path": map_path, + "kdata": kdata_map, + "searchindex": kdata_map_searchindex, + } + + try: + self.pairs = get_ordered_pairs_from_file( + os.path.join(self.root, "pairfiles/query", pairsfile + ".txt") + ) + except Exception as e: + # if using pairs from hloc + self.pairs = {} + with open( + os.path.join(self.root, "pairfiles/query", pairsfile + ".txt"), "r" + ) as fid: + lines = fid.readlines() + for line in lines: + splits = line.rstrip("\n\r").split(" ") + self.pairs.setdefault(splits[0].replace("query/", ""), []).append( + (splits[1].replace("database/cutouts/", ""), 1.0) + ) + + self.scenes = kdata_query.records_camera.data_list() + + self.aligns_DUC1 = read_alignments( + os.path.join(self.root, "mapping/DUC1_alignment/all_transformations.txt") + ) + self.aligns_DUC2 = read_alignments( + os.path.join(self.root, "mapping/DUC2_alignment/all_transformations.txt") + ) + + def __len__(self): + return len(self.scenes) + + def __getitem__(self, idx): + assert self.maxdim is not None and self.patch_size is not None + query_image = self.scenes[idx] + map_images = [p[0] for p in self.pairs[query_image][: self.topk]] + views = [] + dataarray = [(query_image, self.query_data, False)] + [ + (map_image, self.map_data, True) for map_image in map_images + ] + for idx, (imgname, data, should_load_depth) in enumerate(dataarray): + imgpath, kdata, searchindex = map( + data.get, ["path", "kdata", "searchindex"] + ) + + timestamp, camera_id = searchindex[imgname] + + # for InLoc, SIMPLE_PINHOLE + camera_params = kdata.sensors[camera_id].camera_params + W, H, f, cx, cy = camera_params + distortion = [0, 0, 0, 0] + intrinsics = np.float32([(f, 0, cx), (0, f, cy), (0, 0, 1)]) + + if ( + kdata.trajectories is not None + and (timestamp, camera_id) in kdata.trajectories + ): + cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id) + else: + cam_to_world = np.eye(4, dtype=np.float32) + + # Load RGB image + rgb_image = PIL.Image.open( + os.path.join(imgpath, "sensors/records_data", imgname) + ).convert("RGB") + rgb_image.load() + + W, H = rgb_image.size + resize_func, to_resize, to_orig = get_resize_function( + self.maxdim, self.patch_size, H, W + ) + + rgb_tensor = resize_func(ImgNorm(rgb_image)) + + view = { + "intrinsics": intrinsics, + "distortion": distortion, + "cam_to_world": cam_to_world, + "rgb": rgb_image, + "rgb_rescaled": rgb_tensor, + "to_orig": to_orig, + "idx": idx, + "image_name": imgname, + } + + # Load depthmap + if should_load_depth: + depthmap_filename = os.path.join( + imgpath, "sensors/records_data", imgname + ".mat" + ) + depthmap = scipy.io.loadmat(depthmap_filename) + + pt3d_cut = depthmap["XYZcut"] + scene_id = imgname.replace("\\", "/").split("/")[1] + if imgname.startswith("DUC1"): + pts3d_full = geotrf(self.aligns_DUC1[scene_id], pt3d_cut) + else: + pts3d_full = geotrf(self.aligns_DUC2[scene_id], pt3d_cut) + + pts3d_valid = np.isfinite(pts3d_full.sum(axis=-1)) + + pts3d = pts3d_full[pts3d_valid] + pts2d_int = xy_grid(W, H)[pts3d_valid] + pts2d = pts2d_int.astype(np.float64) + + # nan => invalid + pts3d_full[~pts3d_valid] = np.nan + pts3d_full = torch.from_numpy(pts3d_full) + view["pts3d"] = pts3d_full + view["valid"] = pts3d_full.sum(dim=-1).isfinite() + + HR, WR = rgb_tensor.shape[1:] + _, _, pts3d_rescaled, valid_rescaled = rescale_points3d( + pts2d, pts3d, to_resize, HR, WR + ) + pts3d_rescaled = torch.from_numpy(pts3d_rescaled) + valid_rescaled = torch.from_numpy(valid_rescaled) + view["pts3d_rescaled"] = pts3d_rescaled + view["valid_rescaled"] = valid_rescaled + views.append(view) + return views diff --git a/third_party/dust3r/dust3r_visloc/datasets/sevenscenes.py b/third_party/dust3r/dust3r_visloc/datasets/sevenscenes.py new file mode 100644 index 0000000000000000000000000000000000000000..a6892b858471f04fdf81bc0aed4354b534ee1bab --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/sevenscenes.py @@ -0,0 +1,164 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# 7 Scenes dataloader +# -------------------------------------------------------- +import os + +import kapture +import numpy as np +import PIL.Image +import torch +from dust3r.datasets.utils.transforms import ImgNorm +from dust3r.utils.geometry import ( + depthmap_to_absolute_camera_coordinates, + geotrf, + xy_grid, +) +from dust3r_visloc.datasets.base_dataset import BaseVislocDataset +from dust3r_visloc.datasets.utils import ( + cam_to_world_from_kapture, + get_resize_function, + rescale_points3d, +) +from kapture.io.csv import kapture_from_dir +from kapture.io.records import depth_map_from_file +from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file + + +class VislocSevenScenes(BaseVislocDataset): + def __init__(self, root, subscene, pairsfile, topk=1): + super().__init__() + self.root = root + self.subscene = subscene + self.topk = topk + self.num_views = self.topk + 1 + self.maxdim = None + self.patch_size = None + + query_path = os.path.join(self.root, subscene, "query") + kdata_query = kapture_from_dir(query_path) + assert ( + kdata_query.records_camera is not None + and kdata_query.trajectories is not None + and kdata_query.rigs is not None + ) + kapture.rigs_remove_inplace(kdata_query.trajectories, kdata_query.rigs) + kdata_query_searchindex = { + kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) + for timestamp, sensor_id in kdata_query.records_camera.key_pairs() + } + self.query_data = { + "path": query_path, + "kdata": kdata_query, + "searchindex": kdata_query_searchindex, + } + + map_path = os.path.join(self.root, subscene, "mapping") + kdata_map = kapture_from_dir(map_path) + assert ( + kdata_map.records_camera is not None + and kdata_map.trajectories is not None + and kdata_map.rigs is not None + ) + kapture.rigs_remove_inplace(kdata_map.trajectories, kdata_map.rigs) + kdata_map_searchindex = { + kdata_map.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) + for timestamp, sensor_id in kdata_map.records_camera.key_pairs() + } + self.map_data = { + "path": map_path, + "kdata": kdata_map, + "searchindex": kdata_map_searchindex, + } + + self.pairs = get_ordered_pairs_from_file( + os.path.join(self.root, subscene, "pairfiles/query", pairsfile + ".txt") + ) + self.scenes = kdata_query.records_camera.data_list() + + def __len__(self): + return len(self.scenes) + + def __getitem__(self, idx): + assert self.maxdim is not None and self.patch_size is not None + query_image = self.scenes[idx] + map_images = [p[0] for p in self.pairs[query_image][: self.topk]] + views = [] + dataarray = [(query_image, self.query_data, False)] + [ + (map_image, self.map_data, True) for map_image in map_images + ] + for idx, (imgname, data, should_load_depth) in enumerate(dataarray): + imgpath, kdata, searchindex = map( + data.get, ["path", "kdata", "searchindex"] + ) + + timestamp, camera_id = searchindex[imgname] + + # for 7scenes, SIMPLE_PINHOLE + camera_params = kdata.sensors[camera_id].camera_params + W, H, f, cx, cy = camera_params + distortion = [0, 0, 0, 0] + intrinsics = np.float32([(f, 0, cx), (0, f, cy), (0, 0, 1)]) + + cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id) + + # Load RGB image + rgb_image = PIL.Image.open( + os.path.join(imgpath, "sensors/records_data", imgname) + ).convert("RGB") + rgb_image.load() + + W, H = rgb_image.size + resize_func, to_resize, to_orig = get_resize_function( + self.maxdim, self.patch_size, H, W + ) + + rgb_tensor = resize_func(ImgNorm(rgb_image)) + + view = { + "intrinsics": intrinsics, + "distortion": distortion, + "cam_to_world": cam_to_world, + "rgb": rgb_image, + "rgb_rescaled": rgb_tensor, + "to_orig": to_orig, + "idx": idx, + "image_name": imgname, + } + + # Load depthmap + if should_load_depth: + depthmap_filename = os.path.join( + imgpath, + "sensors/records_data", + imgname.replace("color.png", "depth.reg"), + ) + depthmap = depth_map_from_file( + depthmap_filename, (int(W), int(H)) + ).astype(np.float32) + pts3d_full, pts3d_valid = depthmap_to_absolute_camera_coordinates( + depthmap, intrinsics, cam_to_world + ) + + pts3d = pts3d_full[pts3d_valid] + pts2d_int = xy_grid(W, H)[pts3d_valid] + pts2d = pts2d_int.astype(np.float64) + + # nan => invalid + pts3d_full[~pts3d_valid] = np.nan + pts3d_full = torch.from_numpy(pts3d_full) + view["pts3d"] = pts3d_full + view["valid"] = pts3d_full.sum(dim=-1).isfinite() + + HR, WR = rgb_tensor.shape[1:] + _, _, pts3d_rescaled, valid_rescaled = rescale_points3d( + pts2d, pts3d, to_resize, HR, WR + ) + pts3d_rescaled = torch.from_numpy(pts3d_rescaled) + valid_rescaled = torch.from_numpy(valid_rescaled) + view["pts3d_rescaled"] = pts3d_rescaled + view["valid_rescaled"] = valid_rescaled + views.append(view) + return views diff --git a/third_party/dust3r/dust3r_visloc/datasets/utils.py b/third_party/dust3r/dust3r_visloc/datasets/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4eb9ee79e586b58a9400434f33f3899ae5da015f --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/datasets/utils.py @@ -0,0 +1,144 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# dataset utilities +# -------------------------------------------------------- +import numpy as np +import quaternion +import torchvision.transforms as tvf +from dust3r.utils.geometry import geotrf + + +def cam_to_world_from_kapture(kdata, timestamp, camera_id): + camera_to_world = kdata.trajectories[timestamp, camera_id].inverse() + camera_pose = np.eye(4, dtype=np.float32) + camera_pose[:3, :3] = quaternion.as_rotation_matrix(camera_to_world.r) + camera_pose[:3, 3] = camera_to_world.t_raw + return camera_pose + + +ratios_resolutions = { + 224: {1.0: [224, 224]}, + 512: { + 4 / 3: [512, 384], + 32 / 21: [512, 336], + 16 / 9: [512, 288], + 2 / 1: [512, 256], + 16 / 5: [512, 160], + }, +} + + +def get_HW_resolution(H, W, maxdim, patchsize=16): + assert ( + maxdim in ratios_resolutions + ), "Error, maxdim can only be 224 or 512 for now. Other maxdims not implemented yet." + ratios_resolutions_maxdim = ratios_resolutions[maxdim] + mindims = set([min(res) for res in ratios_resolutions_maxdim.values()]) + ratio = W / H + ref_ratios = np.array([*(ratios_resolutions_maxdim.keys())]) + islandscape = W >= H + if islandscape: + diff = np.abs(ratio - ref_ratios) + else: + diff = np.abs(ratio - (1 / ref_ratios)) + selkey = ref_ratios[np.argmin(diff)] + res = ratios_resolutions_maxdim[selkey] + # check patchsize and make sure output resolution is a multiple of patchsize + if isinstance(patchsize, tuple): + assert ( + len(patchsize) == 2 + and isinstance(patchsize[0], int) + and isinstance(patchsize[1], int) + ), "What is your patchsize format? Expected a single int or a tuple of two ints." + assert patchsize[0] == patchsize[1], "Error, non square patches not managed" + patchsize = patchsize[0] + assert max(res) == maxdim + assert min(res) in mindims + return res[::-1] if islandscape else res # return HW + + +def get_resize_function(maxdim, patch_size, H, W, is_mask=False): + if [max(H, W), min(H, W)] in ratios_resolutions[maxdim].values(): + return lambda x: x, np.eye(3), np.eye(3) + else: + target_HW = get_HW_resolution(H, W, maxdim=maxdim, patchsize=patch_size) + + ratio = W / H + target_ratio = target_HW[1] / target_HW[0] + to_orig_crop = np.eye(3) + to_rescaled_crop = np.eye(3) + if abs(ratio - target_ratio) < np.finfo(np.float32).eps: + crop_W = W + crop_H = H + elif ratio - target_ratio < 0: + crop_W = W + crop_H = int(W / target_ratio) + to_orig_crop[1, 2] = (H - crop_H) / 2.0 + to_rescaled_crop[1, 2] = -(H - crop_H) / 2.0 + else: + crop_W = int(H * target_ratio) + crop_H = H + to_orig_crop[0, 2] = (W - crop_W) / 2.0 + to_rescaled_crop[0, 2] = -(W - crop_W) / 2.0 + + crop_op = tvf.CenterCrop([crop_H, crop_W]) + + if is_mask: + resize_op = tvf.Resize( + size=target_HW, interpolation=tvf.InterpolationMode.NEAREST_EXACT + ) + else: + resize_op = tvf.Resize(size=target_HW) + to_orig_resize = np.array( + [[crop_W / target_HW[1], 0, 0], [0, crop_H / target_HW[0], 0], [0, 0, 1]] + ) + to_rescaled_resize = np.array( + [[target_HW[1] / crop_W, 0, 0], [0, target_HW[0] / crop_H, 0], [0, 0, 1]] + ) + + op = tvf.Compose([crop_op, resize_op]) + + return op, to_rescaled_resize @ to_rescaled_crop, to_orig_crop @ to_orig_resize + + +def rescale_points3d(pts2d, pts3d, to_resize, HR, WR): + # rescale pts2d as floats + # to colmap, so that the image is in [0, D] -> [0, NewD] + pts2d = pts2d.copy() + pts2d[:, 0] += 0.5 + pts2d[:, 1] += 0.5 + + pts2d_rescaled = geotrf(to_resize, pts2d, norm=True) + + pts2d_rescaled_int = pts2d_rescaled.copy() + # convert back to cv2 before round [-0.5, 0.5] -> pixel 0 + pts2d_rescaled_int[:, 0] -= 0.5 + pts2d_rescaled_int[:, 1] -= 0.5 + pts2d_rescaled_int = pts2d_rescaled_int.round().astype(np.int64) + + # update valid (remove cropped regions) + valid_rescaled = ( + (pts2d_rescaled_int[:, 0] >= 0) + & (pts2d_rescaled_int[:, 0] < WR) + & (pts2d_rescaled_int[:, 1] >= 0) + & (pts2d_rescaled_int[:, 1] < HR) + ) + + pts2d_rescaled_int = pts2d_rescaled_int[valid_rescaled] + + # rebuild pts3d from rescaled ps2d poses + pts3d_rescaled = np.full( + (HR, WR, 3), np.nan, dtype=np.float32 + ) # pts3d in 512 x something + pts3d_rescaled[pts2d_rescaled_int[:, 1], pts2d_rescaled_int[:, 0]] = pts3d[ + valid_rescaled + ] + + return ( + pts2d_rescaled, + pts2d_rescaled_int, + pts3d_rescaled, + np.isfinite(pts3d_rescaled.sum(axis=-1)), + ) diff --git a/third_party/dust3r/dust3r_visloc/evaluation.py b/third_party/dust3r/dust3r_visloc/evaluation.py new file mode 100644 index 0000000000000000000000000000000000000000..a96a719424f495d83253a5924415297c78e6033b --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/evaluation.py @@ -0,0 +1,82 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# evaluation utilities +# -------------------------------------------------------- +import collections +import os + +import numpy as np +import quaternion +import roma +import torch + + +def aggregate_stats(info_str, pose_errors, angular_errors): + stats = collections.Counter() + median_pos_error = np.median(pose_errors) + median_angular_error = np.median(angular_errors) + out_str = f"{info_str}: {len(pose_errors)} images - {median_pos_error=}, {median_angular_error=}" + + for trl_thr, ang_thr in [(0.1, 1), (0.25, 2), (0.5, 5), (5, 10)]: + for pose_error, angular_error in zip(pose_errors, angular_errors): + correct_for_this_threshold = (pose_error < trl_thr) and ( + angular_error < ang_thr + ) + stats[trl_thr, ang_thr] += correct_for_this_threshold + stats = { + f"acc@{key[0]:g}m,{key[1]}deg": 100 * val / len(pose_errors) + for key, val in stats.items() + } + for metric, perf in stats.items(): + out_str += f" - {metric:12s}={float(perf):.3f}" + return out_str + + +def get_pose_error(pr_camtoworld, gt_cam_to_world): + abs_transl_error = torch.linalg.norm( + torch.tensor(pr_camtoworld[:3, 3]) - torch.tensor(gt_cam_to_world[:3, 3]) + ) + abs_angular_error = ( + roma.rotmat_geodesic_distance( + torch.tensor(pr_camtoworld[:3, :3]), torch.tensor(gt_cam_to_world[:3, :3]) + ) + * 180 + / np.pi + ) + return abs_transl_error, abs_angular_error + + +def export_results(output_dir, xp_label, query_names, poses_pred): + if output_dir is not None: + os.makedirs(output_dir, exist_ok=True) + + lines = "" + lines_ltvl = "" + for query_name, pr_querycam_to_world in zip(query_names, poses_pred): + if pr_querycam_to_world is None: + pr_world_to_querycam = np.eye(4) + else: + pr_world_to_querycam = np.linalg.inv(pr_querycam_to_world) + query_shortname = os.path.basename(query_name) + pr_world_to_querycam_q = quaternion.from_rotation_matrix( + pr_world_to_querycam[:3, :3] + ) + pr_world_to_querycam_t = pr_world_to_querycam[:3, 3] + + line_pose = ( + quaternion.as_float_array(pr_world_to_querycam_q).tolist() + + pr_world_to_querycam_t.flatten().tolist() + ) + + line_content = [query_name] + line_pose + lines += " ".join(str(v) for v in line_content) + "\n" + + line_content_ltvl = [query_shortname] + line_pose + lines_ltvl += " ".join(str(v) for v in line_content_ltvl) + "\n" + + with open(os.path.join(output_dir, xp_label + "_results.txt"), "wt") as f: + f.write(lines) + with open(os.path.join(output_dir, xp_label + "_ltvl.txt"), "wt") as f: + f.write(lines_ltvl) diff --git a/third_party/dust3r/dust3r_visloc/localization.py b/third_party/dust3r/dust3r_visloc/localization.py new file mode 100644 index 0000000000000000000000000000000000000000..9d5cd12231805ac71044cc4a1267d6e8bfe4ec86 --- /dev/null +++ b/third_party/dust3r/dust3r_visloc/localization.py @@ -0,0 +1,194 @@ +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# main pnp code +# -------------------------------------------------------- +import cv2 +import numpy as np +import quaternion +from dust3r.utils.geometry import opencv_to_colmap_intrinsics +from packaging import version + +try: + import poselib # noqa + + HAS_POSELIB = True +except Exception as e: + HAS_POSELIB = False + +try: + import pycolmap # noqa + + version_number = pycolmap.__version__ + if version.parse(version_number) < version.parse("0.5.0"): + HAS_PYCOLMAP = False + else: + HAS_PYCOLMAP = True +except Exception as e: + HAS_PYCOLMAP = False + + +def run_pnp( + pts2D, pts3D, K, distortion=None, mode="cv2", reprojectionError=5, img_size=None +): + """ + use OPENCV model for distortion (4 values) + """ + assert mode in ["cv2", "poselib", "pycolmap"] + try: + if len(pts2D) > 4 and mode == "cv2": + confidence = 0.9999 + iterationsCount = 10_000 + if distortion is not None: + cv2_pts2ds = np.copy(pts2D) + cv2_pts2ds = cv2.undistortPoints( + cv2_pts2ds, K, np.array(distortion), R=None, P=K + ) + pts2D = cv2_pts2ds.reshape((-1, 2)) + + success, r_pose, t_pose, _ = cv2.solvePnPRansac( + pts3D, + pts2D, + K, + None, + flags=cv2.SOLVEPNP_SQPNP, + iterationsCount=iterationsCount, + reprojectionError=reprojectionError, + confidence=confidence, + ) + if not success: + return False, None + r_pose = cv2.Rodrigues(r_pose)[0] # world2cam == world2cam2 + RT = np.r_[np.c_[r_pose, t_pose], [(0, 0, 0, 1)]] # world2cam2 + return True, np.linalg.inv(RT) # cam2toworld + elif len(pts2D) > 4 and mode == "poselib": + assert HAS_POSELIB + confidence = 0.9999 + iterationsCount = 10_000 + # NOTE: `Camera` struct currently contains `width`/`height` fields, + # however these are not used anywhere in the code-base and are provided simply to be consistent with COLMAP. + # so we put garbage in there + colmap_intrinsics = opencv_to_colmap_intrinsics(K) + fx = colmap_intrinsics[0, 0] + fy = colmap_intrinsics[1, 1] + cx = colmap_intrinsics[0, 2] + cy = colmap_intrinsics[1, 2] + width = img_size[0] if img_size is not None else int(cx * 2) + height = img_size[1] if img_size is not None else int(cy * 2) + + if distortion is None: + camera = { + "model": "PINHOLE", + "width": width, + "height": height, + "params": [fx, fy, cx, cy], + } + else: + camera = { + "model": "OPENCV", + "width": width, + "height": height, + "params": [fx, fy, cx, cy] + distortion, + } + + pts2D = np.copy(pts2D) + pts2D[:, 0] += 0.5 + pts2D[:, 1] += 0.5 + pose, _ = poselib.estimate_absolute_pose( + pts2D, + pts3D, + camera, + { + "max_reproj_error": reprojectionError, + "max_iterations": iterationsCount, + "success_prob": confidence, + }, + {}, + ) + if pose is None: + return False, None + RT = pose.Rt # (3x4) + RT = np.r_[RT, [(0, 0, 0, 1)]] # world2cam + return True, np.linalg.inv(RT) # cam2toworld + elif len(pts2D) > 4 and mode == "pycolmap": + assert HAS_PYCOLMAP + assert img_size is not None + + pts2D = np.copy(pts2D) + pts2D[:, 0] += 0.5 + pts2D[:, 1] += 0.5 + colmap_intrinsics = opencv_to_colmap_intrinsics(K) + fx = colmap_intrinsics[0, 0] + fy = colmap_intrinsics[1, 1] + cx = colmap_intrinsics[0, 2] + cy = colmap_intrinsics[1, 2] + width = img_size[0] + height = img_size[1] + if distortion is None: + camera_dict = { + "model": "PINHOLE", + "width": width, + "height": height, + "params": [fx, fy, cx, cy], + } + else: + camera_dict = { + "model": "OPENCV", + "width": width, + "height": height, + "params": [fx, fy, cx, cy] + distortion, + } + + pycolmap_camera = pycolmap.Camera( + model=camera_dict["model"], + width=camera_dict["width"], + height=camera_dict["height"], + params=camera_dict["params"], + ) + + pycolmap_estimation_options = dict( + ransac=dict( + max_error=reprojectionError, + min_inlier_ratio=0.01, + min_num_trials=1000, + max_num_trials=100000, + confidence=0.9999, + ) + ) + pycolmap_refinement_options = dict( + refine_focal_length=False, refine_extra_params=False + ) + ret = pycolmap.absolute_pose_estimation( + pts2D, + pts3D, + pycolmap_camera, + estimation_options=pycolmap_estimation_options, + refinement_options=pycolmap_refinement_options, + ) + if ret is None: + ret = {"success": False} + else: + ret["success"] = True + if callable(ret["cam_from_world"].matrix): + retmat = ret["cam_from_world"].matrix() + else: + retmat = ret["cam_from_world"].matrix + ret["qvec"] = quaternion.from_rotation_matrix(retmat[:3, :3]) + ret["tvec"] = retmat[:3, 3] + + if not (ret["success"] and ret["num_inliers"] > 0): + success = False + pose = None + else: + success = True + pr_world_to_querycam = np.r_[ + ret["cam_from_world"].matrix(), [(0, 0, 0, 1)] + ] + pose = np.linalg.inv(pr_world_to_querycam) + return success, pose + else: + return False, None + except Exception as e: + print(f"error during pnp: {e}") + return False, None diff --git a/third_party/dust3r/requirements.txt b/third_party/dust3r/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d2bf20ed439b43b0604f12985288d8b8d6b55f8f --- /dev/null +++ b/third_party/dust3r/requirements.txt @@ -0,0 +1,13 @@ +torch +torchvision +roma +gradio +matplotlib +tqdm +opencv-python +scipy +einops +trimesh +tensorboard +pyglet<2 +huggingface-hub[torch]>=0.22 \ No newline at end of file diff --git a/third_party/dust3r/requirements_optional.txt b/third_party/dust3r/requirements_optional.txt new file mode 100644 index 0000000000000000000000000000000000000000..d42662c0e87c6ce4ac990f2afedecc96cdea7f06 --- /dev/null +++ b/third_party/dust3r/requirements_optional.txt @@ -0,0 +1,7 @@ +pillow-heif # add heif/heic image support +pyrender # for rendering depths in scannetpp +kapture # for visloc data loading +kapture-localization +numpy-quaternion +pycolmap # for pnp +poselib # for pnp diff --git a/third_party/dust3r/train.py b/third_party/dust3r/train.py new file mode 100644 index 0000000000000000000000000000000000000000..6884d6b879831c90462d89d731bad8035ed0ae41 --- /dev/null +++ b/third_party/dust3r/train.py @@ -0,0 +1,13 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# training executable for DUSt3R +# -------------------------------------------------------- +from dust3r.training import get_args_parser, train + +if __name__ == "__main__": + args = get_args_parser() + args = args.parse_args() + train(args) diff --git a/third_party/dust3r/visloc.py b/third_party/dust3r/visloc.py new file mode 100644 index 0000000000000000000000000000000000000000..64b54acaacf5f74d9de5e68f8fb099732afeb3ff --- /dev/null +++ b/third_party/dust3r/visloc.py @@ -0,0 +1,271 @@ +#!/usr/bin/env python3 +# Copyright (C) 2024-present Naver Corporation. All rights reserved. +# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). +# +# -------------------------------------------------------- +# Simple visloc script +# -------------------------------------------------------- +import argparse +import math +import random + +import numpy as np +from dust3r.inference import inference +from dust3r.model import AsymmetricCroCo3DStereo +from dust3r.utils.geometry import find_reciprocal_matches, geotrf, xy_grid +from dust3r_visloc.datasets import * +from dust3r_visloc.evaluation import aggregate_stats, export_results, get_pose_error +from dust3r_visloc.localization import run_pnp +from tqdm import tqdm + + +def get_args_parser(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--dataset", type=str, required=True, help="visloc dataset to eval" + ) + parser_weights = parser.add_mutually_exclusive_group(required=True) + parser_weights.add_argument( + "--weights", type=str, help="path to the model weights", default=None + ) + parser_weights.add_argument( + "--model_name", + type=str, + help="name of the model weights", + choices=[ + "DUSt3R_ViTLarge_BaseDecoder_512_dpt", + "DUSt3R_ViTLarge_BaseDecoder_512_linear", + "DUSt3R_ViTLarge_BaseDecoder_224_linear", + ], + ) + parser.add_argument( + "--confidence_threshold", + type=float, + default=3.0, + help="confidence values higher than threshold are invalid", + ) + parser.add_argument("--device", type=str, default="cuda", help="pytorch device") + parser.add_argument( + "--pnp_mode", + type=str, + default="cv2", + choices=["cv2", "poselib", "pycolmap"], + help="pnp lib to use", + ) + parser_reproj = parser.add_mutually_exclusive_group() + parser_reproj.add_argument( + "--reprojection_error", type=float, default=5.0, help="pnp reprojection error" + ) + parser_reproj.add_argument( + "--reprojection_error_diag_ratio", + type=float, + default=None, + help="pnp reprojection error as a ratio of the diagonal of the image", + ) + + parser.add_argument( + "--pnp_max_points", + type=int, + default=100_000, + help="pnp maximum number of points kept", + ) + parser.add_argument("--viz_matches", type=int, default=0, help="debug matches") + + parser.add_argument("--output_dir", type=str, default=None, help="output path") + parser.add_argument( + "--output_label", type=str, default="", help="prefix for results files" + ) + return parser + + +if __name__ == "__main__": + parser = get_args_parser() + args = parser.parse_args() + conf_thr = args.confidence_threshold + device = args.device + pnp_mode = args.pnp_mode + reprojection_error = args.reprojection_error + reprojection_error_diag_ratio = args.reprojection_error_diag_ratio + pnp_max_points = args.pnp_max_points + viz_matches = args.viz_matches + + if args.weights is not None: + weights_path = args.weights + else: + weights_path = "naver/" + args.model_name + model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device) + + dataset = eval(args.dataset) + dataset.set_resolution(model) + + query_names = [] + poses_pred = [] + pose_errors = [] + angular_errors = [] + for idx in tqdm(range(len(dataset))): + views = dataset[(idx)] # 0 is the query + query_view = views[0] + map_views = views[1:] + query_names.append(query_view["image_name"]) + + query_pts2d = [] + query_pts3d = [] + for map_view in map_views: + # prepare batch + imgs = [] + for idx, img in enumerate( + [query_view["rgb_rescaled"], map_view["rgb_rescaled"]] + ): + imgs.append( + dict( + img=img.unsqueeze(0), + true_shape=np.int32([img.shape[1:]]), + idx=idx, + instance=str(idx), + ) + ) + output = inference( + [tuple(imgs)], model, device, batch_size=1, verbose=False + ) + pred1, pred2 = output["pred1"], output["pred2"] + confidence_masks = [ + pred1["conf"].squeeze(0) >= conf_thr, + (pred2["conf"].squeeze(0) >= conf_thr) & map_view["valid_rescaled"], + ] + pts3d = [pred1["pts3d"].squeeze(0), pred2["pts3d_in_other_view"].squeeze(0)] + + # find 2D-2D matches between the two images + pts2d_list, pts3d_list = [], [] + for i in range(2): + conf_i = confidence_masks[i].cpu().numpy() + true_shape_i = imgs[i]["true_shape"][0] + pts2d_list.append(xy_grid(true_shape_i[1], true_shape_i[0])[conf_i]) + pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i]) + + PQ, PM = pts3d_list[0], pts3d_list[1] + if len(PQ) == 0 or len(PM) == 0: + continue + reciprocal_in_PM, nnM_in_PQ, num_matches = find_reciprocal_matches(PQ, PM) + if viz_matches > 0: + print(f"found {num_matches} matches") + matches_im1 = pts2d_list[1][reciprocal_in_PM] + matches_im0 = pts2d_list[0][nnM_in_PQ][reciprocal_in_PM] + valid_pts3d = map_view["pts3d_rescaled"][ + matches_im1[:, 1], matches_im1[:, 0] + ] + + # from cv2 to colmap + matches_im0 = matches_im0.astype(np.float64) + matches_im1 = matches_im1.astype(np.float64) + matches_im0[:, 0] += 0.5 + matches_im0[:, 1] += 0.5 + matches_im1[:, 0] += 0.5 + matches_im1[:, 1] += 0.5 + # rescale coordinates + matches_im0 = geotrf(query_view["to_orig"], matches_im0, norm=True) + matches_im1 = geotrf(query_view["to_orig"], matches_im1, norm=True) + # from colmap back to cv2 + matches_im0[:, 0] -= 0.5 + matches_im0[:, 1] -= 0.5 + matches_im1[:, 0] -= 0.5 + matches_im1[:, 1] -= 0.5 + + # visualize a few matches + if viz_matches > 0: + viz_imgs = [np.array(query_view["rgb"]), np.array(map_view["rgb"])] + from matplotlib import pyplot as pl + + n_viz = viz_matches + match_idx_to_viz = np.round( + np.linspace(0, num_matches - 1, n_viz) + ).astype(int) + viz_matches_im0, viz_matches_im1 = ( + matches_im0[match_idx_to_viz], + matches_im1[match_idx_to_viz], + ) + + H0, W0, H1, W1 = *viz_imgs[0].shape[:2], *viz_imgs[1].shape[:2] + img0 = np.pad( + viz_imgs[0], + ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), + "constant", + constant_values=0, + ) + img1 = np.pad( + viz_imgs[1], + ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), + "constant", + constant_values=0, + ) + img = np.concatenate((img0, img1), axis=1) + pl.figure() + pl.imshow(img) + cmap = pl.get_cmap("jet") + for i in range(n_viz): + (x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T + pl.plot( + [x0, x1 + W0], + [y0, y1], + "-+", + color=cmap(i / (n_viz - 1)), + scalex=False, + scaley=False, + ) + pl.show(block=True) + + if len(valid_pts3d) == 0: + pass + else: + query_pts3d.append(valid_pts3d.cpu().numpy()) + query_pts2d.append(matches_im0) + + if len(query_pts2d) == 0: + success = False + pr_querycam_to_world = None + else: + query_pts2d = np.concatenate(query_pts2d, axis=0).astype(np.float32) + query_pts3d = np.concatenate(query_pts3d, axis=0) + if len(query_pts2d) > pnp_max_points: + idxs = random.sample(range(len(query_pts2d)), pnp_max_points) + query_pts3d = query_pts3d[idxs] + query_pts2d = query_pts2d[idxs] + + W, H = query_view["rgb"].size + if reprojection_error_diag_ratio is not None: + reprojection_error_img = reprojection_error_diag_ratio * math.sqrt( + W**2 + H**2 + ) + else: + reprojection_error_img = reprojection_error + success, pr_querycam_to_world = run_pnp( + query_pts2d, + query_pts3d, + query_view["intrinsics"], + query_view["distortion"], + pnp_mode, + reprojection_error_img, + img_size=[W, H], + ) + + if not success: + abs_transl_error = float("inf") + abs_angular_error = float("inf") + else: + abs_transl_error, abs_angular_error = get_pose_error( + pr_querycam_to_world, query_view["cam_to_world"] + ) + + pose_errors.append(abs_transl_error) + angular_errors.append(abs_angular_error) + poses_pred.append(pr_querycam_to_world) + + xp_label = f"tol_conf_{conf_thr}" + if args.output_label: + xp_label = args.output_label + "_" + xp_label + if reprojection_error_diag_ratio is not None: + xp_label = xp_label + f"_reproj_diag_{reprojection_error_diag_ratio}" + else: + xp_label = xp_label + f"_reproj_err_{reprojection_error}" + export_results(args.output_dir, xp_label, query_names, poses_pred) + out_string = aggregate_stats(f"{args.dataset}", pose_errors, angular_errors) + print(out_string)