# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # 7 Scenes dataloader # -------------------------------------------------------- import os import kapture import numpy as np import PIL.Image import torch from dust3r.datasets.utils.transforms import ImgNorm from dust3r.utils.geometry import ( depthmap_to_absolute_camera_coordinates, geotrf, xy_grid, ) from dust3r_visloc.datasets.base_dataset import BaseVislocDataset from dust3r_visloc.datasets.utils import ( cam_to_world_from_kapture, get_resize_function, rescale_points3d, ) from kapture.io.csv import kapture_from_dir from kapture.io.records import depth_map_from_file from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file class VislocSevenScenes(BaseVislocDataset): def __init__(self, root, subscene, pairsfile, topk=1): super().__init__() self.root = root self.subscene = subscene self.topk = topk self.num_views = self.topk + 1 self.maxdim = None self.patch_size = None query_path = os.path.join(self.root, subscene, "query") kdata_query = kapture_from_dir(query_path) assert ( kdata_query.records_camera is not None and kdata_query.trajectories is not None and kdata_query.rigs is not None ) kapture.rigs_remove_inplace(kdata_query.trajectories, kdata_query.rigs) kdata_query_searchindex = { kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) for timestamp, sensor_id in kdata_query.records_camera.key_pairs() } self.query_data = { "path": query_path, "kdata": kdata_query, "searchindex": kdata_query_searchindex, } map_path = os.path.join(self.root, subscene, "mapping") kdata_map = kapture_from_dir(map_path) assert ( kdata_map.records_camera is not None and kdata_map.trajectories is not None and kdata_map.rigs is not None ) kapture.rigs_remove_inplace(kdata_map.trajectories, kdata_map.rigs) kdata_map_searchindex = { kdata_map.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) for timestamp, sensor_id in kdata_map.records_camera.key_pairs() } self.map_data = { "path": map_path, "kdata": kdata_map, "searchindex": kdata_map_searchindex, } self.pairs = get_ordered_pairs_from_file( os.path.join(self.root, subscene, "pairfiles/query", pairsfile + ".txt") ) self.scenes = kdata_query.records_camera.data_list() def __len__(self): return len(self.scenes) def __getitem__(self, idx): assert self.maxdim is not None and self.patch_size is not None query_image = self.scenes[idx] map_images = [p[0] for p in self.pairs[query_image][: self.topk]] views = [] dataarray = [(query_image, self.query_data, False)] + [ (map_image, self.map_data, True) for map_image in map_images ] for idx, (imgname, data, should_load_depth) in enumerate(dataarray): imgpath, kdata, searchindex = map( data.get, ["path", "kdata", "searchindex"] ) timestamp, camera_id = searchindex[imgname] # for 7scenes, SIMPLE_PINHOLE camera_params = kdata.sensors[camera_id].camera_params W, H, f, cx, cy = camera_params distortion = [0, 0, 0, 0] intrinsics = np.float32([(f, 0, cx), (0, f, cy), (0, 0, 1)]) cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id) # Load RGB image rgb_image = PIL.Image.open( os.path.join(imgpath, "sensors/records_data", imgname) ).convert("RGB") rgb_image.load() W, H = rgb_image.size resize_func, to_resize, to_orig = get_resize_function( self.maxdim, self.patch_size, H, W ) rgb_tensor = resize_func(ImgNorm(rgb_image)) view = { "intrinsics": intrinsics, "distortion": distortion, "cam_to_world": cam_to_world, "rgb": rgb_image, "rgb_rescaled": rgb_tensor, "to_orig": to_orig, "idx": idx, "image_name": imgname, } # Load depthmap if should_load_depth: depthmap_filename = os.path.join( imgpath, "sensors/records_data", imgname.replace("color.png", "depth.reg"), ) depthmap = depth_map_from_file( depthmap_filename, (int(W), int(H)) ).astype(np.float32) pts3d_full, pts3d_valid = depthmap_to_absolute_camera_coordinates( depthmap, intrinsics, cam_to_world ) pts3d = pts3d_full[pts3d_valid] pts2d_int = xy_grid(W, H)[pts3d_valid] pts2d = pts2d_int.astype(np.float64) # nan => invalid pts3d_full[~pts3d_valid] = np.nan pts3d_full = torch.from_numpy(pts3d_full) view["pts3d"] = pts3d_full view["valid"] = pts3d_full.sum(dim=-1).isfinite() HR, WR = rgb_tensor.shape[1:] _, _, pts3d_rescaled, valid_rescaled = rescale_points3d( pts2d, pts3d, to_resize, HR, WR ) pts3d_rescaled = torch.from_numpy(pts3d_rescaled) valid_rescaled = torch.from_numpy(valid_rescaled) view["pts3d_rescaled"] = pts3d_rescaled view["valid_rescaled"] = valid_rescaled views.append(view) return views