Spaces:
Running
on
T4
Running
on
T4
Tom Aarsen
commited on
Commit
·
6051ae2
1
Parent(s):
ed9320d
Add initial Space
Browse files- .gitignore +3 -0
- app.py +889 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
__pycache__
|
3 |
+
.vscode
|
app.py
ADDED
@@ -0,0 +1,889 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Tuple
|
4 |
+
import gradio as gr
|
5 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from sentence_transformers import (
|
8 |
+
export_dynamic_quantized_onnx_model as st_export_dynamic_quantized_onnx_model,
|
9 |
+
export_optimized_onnx_model as st_export_optimized_onnx_model,
|
10 |
+
export_static_quantized_openvino_model as st_export_static_quantized_openvino_model,
|
11 |
+
)
|
12 |
+
from huggingface_hub import model_info, upload_folder, whoami, get_repo_discussions, list_repo_commits, HfFileSystem
|
13 |
+
from huggingface_hub.errors import RepositoryNotFoundError
|
14 |
+
from optimum.intel import OVQuantizationConfig
|
15 |
+
from tempfile import TemporaryDirectory
|
16 |
+
|
17 |
+
|
18 |
+
class Backend(Enum):
|
19 |
+
# TORCH = "PyTorch"
|
20 |
+
ONNX = "ONNX"
|
21 |
+
ONNX_DYNAMIC_QUANTIZATION = "ONNX (Dynamic Quantization)"
|
22 |
+
ONNX_OPTIMIZATION = "ONNX (Optimization)"
|
23 |
+
OPENVINO = "OpenVINO"
|
24 |
+
OPENVINO_STATIC_QUANTIZATION = "OpenVINO (Static Quantization)"
|
25 |
+
|
26 |
+
def __str__(self):
|
27 |
+
return self.value
|
28 |
+
|
29 |
+
|
30 |
+
backends = [str(backend) for backend in Backend]
|
31 |
+
FILE_SYSTEM = HfFileSystem()
|
32 |
+
|
33 |
+
def is_new_model(model_id: str) -> bool:
|
34 |
+
"""
|
35 |
+
Check if the model ID exists on the Hugging Face Hub. If we get a request error, then we
|
36 |
+
assume the model *does* exist.
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
model_info(model_id)
|
40 |
+
except RepositoryNotFoundError:
|
41 |
+
return True
|
42 |
+
except Exception:
|
43 |
+
pass
|
44 |
+
return False
|
45 |
+
|
46 |
+
|
47 |
+
def is_sentence_transformer_model(model_id: str) -> bool:
|
48 |
+
return "sentence-transformers" in model_info(model_id).tags
|
49 |
+
|
50 |
+
|
51 |
+
def get_last_commit(model_id: str) -> str:
|
52 |
+
"""
|
53 |
+
Get the last commit hash of the model ID.
|
54 |
+
"""
|
55 |
+
return f"https://huggingface.co/{model_id}/commit/{list_repo_commits(model_id)[0].commit_id}"
|
56 |
+
|
57 |
+
def get_last_pr(model_id: str) -> Tuple[str, int]:
|
58 |
+
last_pr = next(get_repo_discussions(model_id))
|
59 |
+
return last_pr.url, last_pr.num
|
60 |
+
|
61 |
+
|
62 |
+
def does_file_glob_exist(repo_id: str, glob: str) -> bool:
|
63 |
+
"""
|
64 |
+
Check if a file glob exists in the repository.
|
65 |
+
"""
|
66 |
+
try:
|
67 |
+
return bool(FILE_SYSTEM.glob(f"{repo_id}/{glob}", detail=False))
|
68 |
+
except FileNotFoundError:
|
69 |
+
return False
|
70 |
+
|
71 |
+
|
72 |
+
def export_to_torch(model_id, create_pr, output_model_id):
|
73 |
+
model = SentenceTransformer(model_id, backend="torch")
|
74 |
+
model.push_to_hub(
|
75 |
+
repo_id=output_model_id,
|
76 |
+
create_pr=create_pr,
|
77 |
+
exist_ok=True,
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def export_to_onnx(model_id: str, create_pr: bool, output_model_id: str):
|
82 |
+
if does_file_glob_exist(output_model_id, "**/model.onnx"):
|
83 |
+
raise FileExistsError("An ONNX model already exists in the repository")
|
84 |
+
|
85 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
86 |
+
|
87 |
+
commit_message = "Add exported 'model.onnx' compatible with Sentence Transformers"
|
88 |
+
|
89 |
+
if is_new_model(output_model_id):
|
90 |
+
model.push_to_hub(
|
91 |
+
repo_id=output_model_id,
|
92 |
+
commit_message=commit_message,
|
93 |
+
create_pr=create_pr,
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
with TemporaryDirectory() as tmp_dir:
|
97 |
+
model.save_pretrained(tmp_dir)
|
98 |
+
|
99 |
+
commit_description = f"""
|
100 |
+
Hello!
|
101 |
+
|
102 |
+
*This pull request has been automatically generated from the [Sentence Transformers backend-export](https://huggingface.co/spaces/sentence-transformers/backend-export) Space.*
|
103 |
+
|
104 |
+
## Pull Request overview
|
105 |
+
* Add exported ONNX model `model.onnx`.
|
106 |
+
|
107 |
+
## Tip:
|
108 |
+
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
109 |
+
```python
|
110 |
+
from sentence_transformers import SentenceTransformer
|
111 |
+
|
112 |
+
# TODO: Fill in the PR number
|
113 |
+
pr_number = 2
|
114 |
+
model = SentenceTransformer(
|
115 |
+
"{output_model_id}",
|
116 |
+
revision=f"refs/pr/{{pr_number}}",
|
117 |
+
backend="onnx",
|
118 |
+
)
|
119 |
+
|
120 |
+
# Verify that everything works as expected
|
121 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
122 |
+
print(embeddings.shape)
|
123 |
+
|
124 |
+
similarities = model.similarity(embeddings, embeddings)
|
125 |
+
print(similarities)
|
126 |
+
```
|
127 |
+
"""
|
128 |
+
|
129 |
+
upload_folder(
|
130 |
+
repo_id=output_model_id,
|
131 |
+
folder_path=Path(tmp_dir) / "onnx",
|
132 |
+
path_in_repo="onnx",
|
133 |
+
commit_message=commit_message,
|
134 |
+
commit_description=commit_description if create_pr else None,
|
135 |
+
create_pr=create_pr,
|
136 |
+
)
|
137 |
+
|
138 |
+
def export_to_onnx_snippet(model_id: str, create_pr: bool, output_model_id: str) -> str:
|
139 |
+
return """\
|
140 |
+
pip install sentence_transformers[onnx-gpu]
|
141 |
+
# or
|
142 |
+
pip install sentence_transformers[onnx]
|
143 |
+
""", f"""\
|
144 |
+
from sentence_transformers import SentenceTransformer
|
145 |
+
|
146 |
+
# 1. Load the model to be exported with the ONNX backend
|
147 |
+
model = SentenceTransformer(
|
148 |
+
"{model_id}",
|
149 |
+
backend="onnx",
|
150 |
+
)
|
151 |
+
|
152 |
+
# 2. Push the model to the Hugging Face Hub
|
153 |
+
{f'model.push_to_hub("{output_model_id}")'
|
154 |
+
if not create_pr
|
155 |
+
else f'''model.push_to_hub(
|
156 |
+
"{output_model_id}",
|
157 |
+
create_pr=True,
|
158 |
+
)'''}
|
159 |
+
""", f"""\
|
160 |
+
from sentence_transformers import SentenceTransformer
|
161 |
+
|
162 |
+
# 1. Load the model from the Hugging Face Hub
|
163 |
+
# (until merged) Use the `revision` argument to load the model from the PR
|
164 |
+
pr_number = 2
|
165 |
+
model = SentenceTransformer(
|
166 |
+
"{output_model_id}",
|
167 |
+
revision=f"refs/pr/{{pr_number}}",
|
168 |
+
backend="onnx",
|
169 |
+
)
|
170 |
+
|
171 |
+
# 2. Inference works as normal
|
172 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
173 |
+
similarities = model.similarity(embeddings, embeddings)
|
174 |
+
"""
|
175 |
+
|
176 |
+
|
177 |
+
def export_to_onnx_dynamic_quantization(
|
178 |
+
model_id: str, create_pr: bool, output_model_id: str, onnx_quantization_config: str
|
179 |
+
) -> None:
|
180 |
+
if does_file_glob_exist(output_model_id, f"onnx/model_qint8_{onnx_quantization_config}.onnx"):
|
181 |
+
raise FileExistsError("The quantized ONNX model already exists in the repository")
|
182 |
+
|
183 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
184 |
+
|
185 |
+
if not create_pr and is_new_model(output_model_id):
|
186 |
+
model.push_to_hub(repo_id=output_model_id)
|
187 |
+
|
188 |
+
try:
|
189 |
+
st_export_dynamic_quantized_onnx_model(
|
190 |
+
model,
|
191 |
+
quantization_config=onnx_quantization_config,
|
192 |
+
model_name_or_path=output_model_id,
|
193 |
+
push_to_hub=True,
|
194 |
+
create_pr=create_pr,
|
195 |
+
)
|
196 |
+
except ValueError:
|
197 |
+
# Currently, quantization with optimum has some issues if there's already an ONNX model in a subfolder
|
198 |
+
model = SentenceTransformer(model_id, backend="onnx", model_kwargs={"export": True})
|
199 |
+
st_export_dynamic_quantized_onnx_model(
|
200 |
+
model,
|
201 |
+
quantization_config=onnx_quantization_config,
|
202 |
+
model_name_or_path=output_model_id,
|
203 |
+
push_to_hub=True,
|
204 |
+
create_pr=create_pr,
|
205 |
+
)
|
206 |
+
|
207 |
+
def export_to_onnx_dynamic_quantization_snippet(
|
208 |
+
model_id: str, create_pr: bool, output_model_id: str, onnx_quantization_config: str
|
209 |
+
) -> str:
|
210 |
+
return """\
|
211 |
+
pip install sentence_transformers[onnx-gpu]
|
212 |
+
# or
|
213 |
+
pip install sentence_transformers[onnx]
|
214 |
+
""", f"""\
|
215 |
+
from sentence_transformers import (
|
216 |
+
SentenceTransformer,
|
217 |
+
export_dynamic_quantized_onnx_model,
|
218 |
+
)
|
219 |
+
|
220 |
+
# 1. Load the model to be quantized with the ONNX backend
|
221 |
+
model = SentenceTransformer(
|
222 |
+
"{model_id}",
|
223 |
+
backend="onnx",
|
224 |
+
)
|
225 |
+
|
226 |
+
# 2. Export the model with {onnx_quantization_config} dynamic quantization
|
227 |
+
export_dynamic_quantized_onnx_model(
|
228 |
+
model,
|
229 |
+
quantization_config="{onnx_quantization_config}",
|
230 |
+
model_name_or_path="{output_model_id}",
|
231 |
+
push_to_hub=True,
|
232 |
+
{''' create_pr=True,
|
233 |
+
''' if create_pr else ''})
|
234 |
+
""", f"""\
|
235 |
+
from sentence_transformers import SentenceTransformer
|
236 |
+
|
237 |
+
# 1. Load the model from the Hugging Face Hub
|
238 |
+
# (until merged) Use the `revision` argument to load the model from the PR
|
239 |
+
pr_number = 2
|
240 |
+
model = SentenceTransformer(
|
241 |
+
"{output_model_id}",
|
242 |
+
revision=f"refs/pr/{{pr_number}}",
|
243 |
+
backend="onnx",
|
244 |
+
model_kwargs={{"file_name": "model_qint8_{onnx_quantization_config}.onnx"}},
|
245 |
+
)
|
246 |
+
|
247 |
+
# 2. Inference works as normal
|
248 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
249 |
+
similarities = model.similarity(embeddings, embeddings)
|
250 |
+
"""
|
251 |
+
|
252 |
+
def export_to_onnx_optimization(model_id: str, create_pr: bool, output_model_id: str, onnx_optimization_config: str) -> None:
|
253 |
+
if does_file_glob_exist(output_model_id, f"onnx/model_{onnx_optimization_config}.onnx"):
|
254 |
+
raise FileExistsError("The optimized ONNX model already exists in the repository")
|
255 |
+
|
256 |
+
model = SentenceTransformer(model_id, backend="onnx")
|
257 |
+
|
258 |
+
if not create_pr and is_new_model(output_model_id):
|
259 |
+
model.push_to_hub(repo_id=output_model_id)
|
260 |
+
|
261 |
+
st_export_optimized_onnx_model(
|
262 |
+
model,
|
263 |
+
optimization_config=onnx_optimization_config,
|
264 |
+
model_name_or_path=output_model_id,
|
265 |
+
push_to_hub=True,
|
266 |
+
create_pr=create_pr,
|
267 |
+
)
|
268 |
+
|
269 |
+
def export_to_onnx_optimization_snippet(model_id: str, create_pr: bool, output_model_id: str, onnx_optimization_config: str) -> str:
|
270 |
+
return """\
|
271 |
+
pip install sentence_transformers[onnx-gpu]
|
272 |
+
# or
|
273 |
+
pip install sentence_transformers[onnx]
|
274 |
+
""", f"""\
|
275 |
+
from sentence_transformers import (
|
276 |
+
SentenceTransformer,
|
277 |
+
export_optimized_onnx_model,
|
278 |
+
)
|
279 |
+
|
280 |
+
# 1. Load the model to be optimized with the ONNX backend
|
281 |
+
model = SentenceTransformer(
|
282 |
+
"{model_id}",
|
283 |
+
backend="onnx",
|
284 |
+
)
|
285 |
+
|
286 |
+
# 2. Export the model with {onnx_optimization_config} optimization level
|
287 |
+
export_optimized_onnx_model(
|
288 |
+
model,
|
289 |
+
optimization_config="{onnx_optimization_config}",
|
290 |
+
model_name_or_path="{output_model_id}",
|
291 |
+
push_to_hub=True,
|
292 |
+
{''' create_pr=True,
|
293 |
+
''' if create_pr else ''})
|
294 |
+
""", f"""\
|
295 |
+
from sentence_transformers import SentenceTransformer
|
296 |
+
|
297 |
+
# 1. Load the model from the Hugging Face Hub
|
298 |
+
# (until merged) Use the `revision` argument to load the model from the PR
|
299 |
+
pr_number = 2
|
300 |
+
model = SentenceTransformer(
|
301 |
+
"{output_model_id}",
|
302 |
+
revision=f"refs/pr/{{pr_number}}",
|
303 |
+
backend="onnx",
|
304 |
+
model_kwargs={{"file_name": "model_{onnx_optimization_config}.onnx"}},
|
305 |
+
)
|
306 |
+
|
307 |
+
# 2. Inference works as normal
|
308 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
309 |
+
similarities = model.similarity(embeddings, embeddings)
|
310 |
+
"""
|
311 |
+
|
312 |
+
|
313 |
+
def export_to_openvino(model_id: str, create_pr: bool, output_model_id: str) -> None:
|
314 |
+
if does_file_glob_exist(output_model_id, "**/openvino_model.xml"):
|
315 |
+
raise FileExistsError("The OpenVINO model already exists in the repository")
|
316 |
+
|
317 |
+
model = SentenceTransformer(model_id, backend="openvino")
|
318 |
+
|
319 |
+
commit_message = "Add exported 'openvino_model.xml' compatible with Sentence Transformers"
|
320 |
+
|
321 |
+
if is_new_model(output_model_id):
|
322 |
+
model.push_to_hub(
|
323 |
+
repo_id=output_model_id,
|
324 |
+
commit_message=commit_message,
|
325 |
+
create_pr=create_pr,
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
with TemporaryDirectory() as tmp_dir:
|
329 |
+
model.save_pretrained(tmp_dir)
|
330 |
+
|
331 |
+
commit_description = f"""
|
332 |
+
Hello!
|
333 |
+
|
334 |
+
*This pull request has been automatically generated from the [Sentence Transformers backend-export](https://huggingface.co/spaces/sentence-transformers/backend-export) Space.*
|
335 |
+
|
336 |
+
## Pull Request overview
|
337 |
+
* Add exported OpenVINO model `openvino_model.xml`.
|
338 |
+
|
339 |
+
## Tip:
|
340 |
+
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
|
341 |
+
```python
|
342 |
+
from sentence_transformers import SentenceTransformer
|
343 |
+
|
344 |
+
# TODO: Fill in the PR number
|
345 |
+
pr_number = 2
|
346 |
+
model = SentenceTransformer(
|
347 |
+
"{output_model_id}",
|
348 |
+
revision=f"refs/pr/{{pr_number}}",
|
349 |
+
backend="openvino",
|
350 |
+
)
|
351 |
+
|
352 |
+
# Verify that everything works as expected
|
353 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
354 |
+
print(embeddings.shape)
|
355 |
+
|
356 |
+
similarities = model.similarity(embeddings, embeddings)
|
357 |
+
print(similarities)
|
358 |
+
```
|
359 |
+
"""
|
360 |
+
|
361 |
+
upload_folder(
|
362 |
+
repo_id=output_model_id,
|
363 |
+
folder_path=Path(tmp_dir) / "openvino",
|
364 |
+
path_in_repo="openvino",
|
365 |
+
commit_message=commit_message,
|
366 |
+
commit_description=commit_description if create_pr else None,
|
367 |
+
create_pr=create_pr,
|
368 |
+
)
|
369 |
+
|
370 |
+
def export_to_openvino_snippet(model_id: str, create_pr: bool, output_model_id: str) -> str:
|
371 |
+
return """\
|
372 |
+
pip install sentence_transformers[openvino]
|
373 |
+
""", f"""\
|
374 |
+
from sentence_transformers import SentenceTransformer
|
375 |
+
|
376 |
+
# 1. Load the model to be exported with the OpenVINO backend
|
377 |
+
model = SentenceTransformer(
|
378 |
+
"{model_id}",
|
379 |
+
backend="openvino",
|
380 |
+
)
|
381 |
+
|
382 |
+
# 2. Push the model to the Hugging Face Hub
|
383 |
+
{f'model.push_to_hub("{output_model_id}")'
|
384 |
+
if not create_pr
|
385 |
+
else f'''model.push_to_hub(
|
386 |
+
"{output_model_id}",
|
387 |
+
create_pr=True,
|
388 |
+
)'''}
|
389 |
+
""", f"""\
|
390 |
+
from sentence_transformers import SentenceTransformer
|
391 |
+
|
392 |
+
# 1. Load the model from the Hugging Face Hub
|
393 |
+
# (until merged) Use the `revision` argument to load the model from the PR
|
394 |
+
pr_number = 2
|
395 |
+
model = SentenceTransformer(
|
396 |
+
"{output_model_id}",
|
397 |
+
revision=f"refs/pr/{{pr_number}}",
|
398 |
+
backend="openvino",
|
399 |
+
)
|
400 |
+
|
401 |
+
# 2. Inference works as normal
|
402 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
403 |
+
similarities = model.similarity(embeddings, embeddings)
|
404 |
+
"""
|
405 |
+
|
406 |
+
def export_to_openvino_static_quantization(
|
407 |
+
model_id: str,
|
408 |
+
create_pr: bool,
|
409 |
+
output_model_id: str,
|
410 |
+
ov_quant_dataset_name: str,
|
411 |
+
ov_quant_dataset_subset: str,
|
412 |
+
ov_quant_dataset_split: str,
|
413 |
+
ov_quant_dataset_column_name: str,
|
414 |
+
ov_quant_dataset_num_samples: int,
|
415 |
+
) -> None:
|
416 |
+
if does_file_glob_exist(output_model_id, "openvino/openvino_model_qint8_quantized.xml"):
|
417 |
+
raise FileExistsError("The quantized OpenVINO model already exists in the repository")
|
418 |
+
|
419 |
+
model = SentenceTransformer(model_id, backend="openvino")
|
420 |
+
|
421 |
+
if not create_pr and is_new_model(output_model_id):
|
422 |
+
model.push_to_hub(repo_id=output_model_id)
|
423 |
+
|
424 |
+
st_export_static_quantized_openvino_model(
|
425 |
+
model,
|
426 |
+
quantization_config=OVQuantizationConfig(
|
427 |
+
num_samples=ov_quant_dataset_num_samples,
|
428 |
+
),
|
429 |
+
model_name_or_path=output_model_id,
|
430 |
+
dataset_name=ov_quant_dataset_name,
|
431 |
+
dataset_config_name=ov_quant_dataset_subset,
|
432 |
+
dataset_split=ov_quant_dataset_split,
|
433 |
+
column_name=ov_quant_dataset_column_name,
|
434 |
+
push_to_hub=True,
|
435 |
+
create_pr=create_pr,
|
436 |
+
)
|
437 |
+
|
438 |
+
def export_to_openvino_static_quantization_snippet(
|
439 |
+
model_id: str,
|
440 |
+
create_pr: bool,
|
441 |
+
output_model_id: str,
|
442 |
+
ov_quant_dataset_name: str,
|
443 |
+
ov_quant_dataset_subset: str,
|
444 |
+
ov_quant_dataset_split: str,
|
445 |
+
ov_quant_dataset_column_name: str,
|
446 |
+
ov_quant_dataset_num_samples: int,
|
447 |
+
) -> str:
|
448 |
+
return """\
|
449 |
+
pip install sentence_transformers[openvino]
|
450 |
+
""", f"""\
|
451 |
+
from sentence_transformers import (
|
452 |
+
SentenceTransformer,
|
453 |
+
export_static_quantized_openvino_model,
|
454 |
+
)
|
455 |
+
from optimum.intel import OVQuantizationConfig
|
456 |
+
|
457 |
+
# 1. Load the model to be quantized with the OpenVINO backend
|
458 |
+
model = SentenceTransformer(
|
459 |
+
"{model_id}",
|
460 |
+
backend="openvino",
|
461 |
+
)
|
462 |
+
|
463 |
+
# 2. Export the model with int8 static quantization
|
464 |
+
export_static_quantized_openvino_model(
|
465 |
+
model,
|
466 |
+
quantization_config=OVQuantizationConfig(
|
467 |
+
num_samples={ov_quant_dataset_num_samples},
|
468 |
+
),
|
469 |
+
model_name_or_path="{output_model_id}",
|
470 |
+
dataset_name="{ov_quant_dataset_name}",
|
471 |
+
dataset_config_name="{ov_quant_dataset_subset}",
|
472 |
+
dataset_split="{ov_quant_dataset_split}",
|
473 |
+
column_name="{ov_quant_dataset_column_name}",
|
474 |
+
push_to_hub=True,
|
475 |
+
{''' create_pr=True,
|
476 |
+
''' if create_pr else ''})
|
477 |
+
""", f"""\
|
478 |
+
from sentence_transformers import SentenceTransformer
|
479 |
+
|
480 |
+
# 1. Load the model from the Hugging Face Hub
|
481 |
+
# (until merged) Use the `revision` argument to load the model from the PR
|
482 |
+
pr_number = 2
|
483 |
+
model = SentenceTransformer(
|
484 |
+
"{output_model_id}",
|
485 |
+
revision=f"refs/pr/{{pr_number}}",
|
486 |
+
backend="openvino",
|
487 |
+
model_kwargs={{"file_name": "openvino_model_qint8_quantized.xml"}},
|
488 |
+
)
|
489 |
+
|
490 |
+
# 2. Inference works as normal
|
491 |
+
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
|
492 |
+
similarities = model.similarity(embeddings, embeddings)
|
493 |
+
"""
|
494 |
+
|
495 |
+
def on_submit(
|
496 |
+
model_id,
|
497 |
+
create_pr,
|
498 |
+
output_model_id,
|
499 |
+
backend,
|
500 |
+
onnx_quantization_config,
|
501 |
+
onnx_optimization_config,
|
502 |
+
ov_quant_dataset_name,
|
503 |
+
ov_quant_dataset_subset,
|
504 |
+
ov_quant_dataset_split,
|
505 |
+
ov_quant_dataset_column_name,
|
506 |
+
ov_quant_dataset_num_samples,
|
507 |
+
inference_snippet: str,
|
508 |
+
):
|
509 |
+
|
510 |
+
if not model_id:
|
511 |
+
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox("Please enter a model ID", visible=True)
|
512 |
+
|
513 |
+
if not is_sentence_transformer_model(model_id):
|
514 |
+
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox("The source model must have a Sentence Transformers tag", visible=True)
|
515 |
+
|
516 |
+
if output_model_id and "/" not in output_model_id:
|
517 |
+
try:
|
518 |
+
output_model_id = f"{whoami()['name']}/{output_model_id}"
|
519 |
+
except Exception:
|
520 |
+
return "Commit or PR url:<br>...", inference_snippet, gr.Textbox("You might be signed in with Hugging Face to use this Space", visible=True)
|
521 |
+
|
522 |
+
output_model_id = output_model_id if not create_pr else model_id
|
523 |
+
|
524 |
+
try:
|
525 |
+
if backend == Backend.ONNX.value:
|
526 |
+
export_to_onnx(model_id, create_pr, output_model_id)
|
527 |
+
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
528 |
+
export_to_onnx_dynamic_quantization(
|
529 |
+
model_id, create_pr, output_model_id, onnx_quantization_config
|
530 |
+
)
|
531 |
+
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
532 |
+
export_to_onnx_optimization(
|
533 |
+
model_id, create_pr, output_model_id, onnx_optimization_config
|
534 |
+
)
|
535 |
+
elif backend == Backend.OPENVINO.value:
|
536 |
+
export_to_openvino(model_id, create_pr, output_model_id)
|
537 |
+
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
538 |
+
export_to_openvino_static_quantization(
|
539 |
+
model_id,
|
540 |
+
create_pr,
|
541 |
+
output_model_id,
|
542 |
+
ov_quant_dataset_name,
|
543 |
+
ov_quant_dataset_subset,
|
544 |
+
ov_quant_dataset_split,
|
545 |
+
ov_quant_dataset_column_name,
|
546 |
+
ov_quant_dataset_num_samples,
|
547 |
+
)
|
548 |
+
except FileExistsError as exc:
|
549 |
+
return "Commit or PR url:<br>...", gr.Textbox(str(exc), visible=True)
|
550 |
+
|
551 |
+
|
552 |
+
if create_pr:
|
553 |
+
url, num = get_last_pr(output_model_id)
|
554 |
+
return f"PR url:<br>{url}", inference_snippet.replace("pr_number = 2", f"pr_number = {num}"), gr.Textbox(visible=False)
|
555 |
+
|
556 |
+
# Remove the lines that refer to the revision argument
|
557 |
+
lines = inference_snippet.splitlines()
|
558 |
+
del lines[7]
|
559 |
+
del lines[4]
|
560 |
+
del lines[3]
|
561 |
+
inference_snippet = "\n".join(lines)
|
562 |
+
return f"Commit url:<br>{get_last_commit(output_model_id)}", inference_snippet, gr.Textbox(visible=False)
|
563 |
+
|
564 |
+
def on_change(
|
565 |
+
model_id,
|
566 |
+
create_pr,
|
567 |
+
output_model_id,
|
568 |
+
backend,
|
569 |
+
onnx_quantization_config,
|
570 |
+
onnx_optimization_config,
|
571 |
+
ov_quant_dataset_name,
|
572 |
+
ov_quant_dataset_subset,
|
573 |
+
ov_quant_dataset_split,
|
574 |
+
ov_quant_dataset_column_name,
|
575 |
+
ov_quant_dataset_num_samples,
|
576 |
+
) -> str:
|
577 |
+
if not model_id:
|
578 |
+
return "", "", "", gr.Textbox("Please enter a model ID", visible=True)
|
579 |
+
|
580 |
+
if output_model_id and "/" not in output_model_id:
|
581 |
+
try:
|
582 |
+
output_model_id = f"{whoami()['name']}/{output_model_id}"
|
583 |
+
except Exception:
|
584 |
+
return "", "", "", gr.Textbox("You might be signed in with Hugging Face to use this Space", visible=True)
|
585 |
+
|
586 |
+
output_model_id = output_model_id if not create_pr else model_id
|
587 |
+
|
588 |
+
if backend == Backend.ONNX.value:
|
589 |
+
snippets = export_to_onnx_snippet(model_id, create_pr, output_model_id)
|
590 |
+
elif backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value:
|
591 |
+
snippets = export_to_onnx_dynamic_quantization_snippet(
|
592 |
+
model_id, create_pr, output_model_id, onnx_quantization_config
|
593 |
+
)
|
594 |
+
elif backend == Backend.ONNX_OPTIMIZATION.value:
|
595 |
+
snippets = export_to_onnx_optimization_snippet(
|
596 |
+
model_id, create_pr, output_model_id, onnx_optimization_config
|
597 |
+
)
|
598 |
+
elif backend == Backend.OPENVINO.value:
|
599 |
+
snippets = export_to_openvino_snippet(model_id, create_pr, output_model_id)
|
600 |
+
elif backend == Backend.OPENVINO_STATIC_QUANTIZATION.value:
|
601 |
+
snippets = export_to_openvino_static_quantization_snippet(
|
602 |
+
model_id,
|
603 |
+
create_pr,
|
604 |
+
output_model_id,
|
605 |
+
ov_quant_dataset_name,
|
606 |
+
ov_quant_dataset_subset,
|
607 |
+
ov_quant_dataset_split,
|
608 |
+
ov_quant_dataset_column_name,
|
609 |
+
ov_quant_dataset_num_samples,
|
610 |
+
)
|
611 |
+
else:
|
612 |
+
return "", "", "", gr.Textbox("Unexpected backend!", visible=True)
|
613 |
+
|
614 |
+
return *snippets, gr.Textbox(visible=False)
|
615 |
+
|
616 |
+
|
617 |
+
css = """
|
618 |
+
.container {
|
619 |
+
padding-left: 0;
|
620 |
+
}
|
621 |
+
|
622 |
+
.text-error {
|
623 |
+
background-color: #85282D;
|
624 |
+
/* background-color: #732E33; */
|
625 |
+
}
|
626 |
+
|
627 |
+
.small-text * {
|
628 |
+
font-size: var(--block-info-text-size);
|
629 |
+
}
|
630 |
+
"""
|
631 |
+
|
632 |
+
with gr.Blocks(
|
633 |
+
css=css,
|
634 |
+
theme=gr.themes.Base(),
|
635 |
+
) as demo:
|
636 |
+
gr.LoginButton(min_width=250)
|
637 |
+
|
638 |
+
with gr.Row():
|
639 |
+
# Left Input Column
|
640 |
+
with gr.Column(scale=2):
|
641 |
+
|
642 |
+
gr.Markdown(
|
643 |
+
value="""\
|
644 |
+
### Export a Sentence Transformer model to accelerated backends
|
645 |
+
|
646 |
+
Sentence Transformers embedding models can be optimized for **faster inference** on CPU and GPU devices by exporting, quantizing, and optimizing them in ONNX and OpenVINO formats.
|
647 |
+
Observe the [Speeding up Inference](https://sbert.net/docs/sentence_transformer/usage/efficiency.html) documentation for more information.
|
648 |
+
|
649 |
+
<details><summary>Click to see performance benchmarks</summary>
|
650 |
+
|
651 |
+
| GPU | CPU |
|
652 |
+
| --- | --- |
|
653 |
+
| ![](https://sbert.net/_images/backends_benchmark_gpu.png) | ![](https://sbert.net/_images/backends_benchmark_cpu.png) |
|
654 |
+
|
655 |
+
* `onnx` refers to the ONNX backend
|
656 |
+
* `onnx-qint8` refers to ONNX (Dynamic Quantization)
|
657 |
+
* `onnx-O1` to `onnx-O4` refers to ONNX (Optimization)
|
658 |
+
* `openvino` refers to the OpenVINO backend
|
659 |
+
* `openvino-qint8` refers to OpenVINO (Static Quantization)
|
660 |
+
|
661 |
+
</details>
|
662 |
+
|
663 |
+
""",
|
664 |
+
label="",
|
665 |
+
container=True,
|
666 |
+
)
|
667 |
+
|
668 |
+
model_id = HuggingfaceHubSearch(
|
669 |
+
label="Hub Model ID",
|
670 |
+
placeholder="Search for Sentence Transformer models on Hugging Face",
|
671 |
+
search_type="model",
|
672 |
+
)
|
673 |
+
create_pr = gr.Checkbox(
|
674 |
+
value=True,
|
675 |
+
label="Create PR",
|
676 |
+
info="Create a pull request instead of pushing directly to the repository",
|
677 |
+
)
|
678 |
+
output_model_id = gr.Textbox(
|
679 |
+
value="",
|
680 |
+
label="Output Model ID",
|
681 |
+
placeholder="Output Model ID",
|
682 |
+
type="text",
|
683 |
+
visible=False,
|
684 |
+
)
|
685 |
+
create_pr.change(
|
686 |
+
lambda create_pr: gr.Textbox(visible=not create_pr),
|
687 |
+
inputs=[create_pr],
|
688 |
+
outputs=[output_model_id],
|
689 |
+
)
|
690 |
+
|
691 |
+
backend = gr.Radio(
|
692 |
+
choices=backends,
|
693 |
+
value=Backend.ONNX,
|
694 |
+
label="Backend",
|
695 |
+
)
|
696 |
+
|
697 |
+
with gr.Group(visible=True) as onnx_group:
|
698 |
+
gr.Markdown(
|
699 |
+
value="[ONNX Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#onnx)",
|
700 |
+
container=True,
|
701 |
+
elem_classes=["small-text"]
|
702 |
+
)
|
703 |
+
with gr.Group(visible=False) as onnx_dynamic_quantization_group:
|
704 |
+
onnx_quantization_config = gr.Radio(
|
705 |
+
choices=["arm64", "avx2", "avx512", "avx512_vnni"],
|
706 |
+
value="avx512_vnni",
|
707 |
+
label="Quantization config",
|
708 |
+
info="[ONNX Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-onnx-models)"
|
709 |
+
)
|
710 |
+
with gr.Group(visible=False) as onnx_optimization_group:
|
711 |
+
onnx_optimization_config = gr.Radio(
|
712 |
+
choices=["O1", "O2", "O3", "O4"],
|
713 |
+
value="O4",
|
714 |
+
label="Optimization config",
|
715 |
+
info="[ONNX Optimization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#optimizing-onnx-models)"
|
716 |
+
)
|
717 |
+
with gr.Group(visible=False) as openvino_group:
|
718 |
+
gr.Markdown(
|
719 |
+
value="[OpenVINO Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#openvino)",
|
720 |
+
container=True,
|
721 |
+
elem_classes=["small-text"]
|
722 |
+
)
|
723 |
+
with gr.Group(visible=False) as openvino_static_quantization_group:
|
724 |
+
gr.Markdown(
|
725 |
+
value="[OpenVINO Quantization Documentation](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#quantizing-openvino-models)",
|
726 |
+
container=True,
|
727 |
+
elem_classes=["small-text"]
|
728 |
+
)
|
729 |
+
ov_quant_dataset_name = HuggingfaceHubSearch(
|
730 |
+
value="nyu-mll/glue",
|
731 |
+
label="Calibration Dataset Name",
|
732 |
+
placeholder="Search for Sentence Transformer datasets on Hugging Face",
|
733 |
+
search_type="dataset",
|
734 |
+
)
|
735 |
+
ov_quant_dataset_subset = gr.Textbox(
|
736 |
+
value="sst2",
|
737 |
+
label="Calibration Dataset Subset",
|
738 |
+
placeholder="Calibration Dataset Subset",
|
739 |
+
type="text",
|
740 |
+
max_lines=1,
|
741 |
+
)
|
742 |
+
ov_quant_dataset_split = gr.Textbox(
|
743 |
+
value="train",
|
744 |
+
label="Calibration Dataset Split",
|
745 |
+
placeholder="Calibration Dataset Split",
|
746 |
+
type="text",
|
747 |
+
max_lines=1,
|
748 |
+
)
|
749 |
+
ov_quant_dataset_column_name = gr.Textbox(
|
750 |
+
value="sentence",
|
751 |
+
label="Calibration Dataset Column Name",
|
752 |
+
placeholder="Calibration Dataset Column Name",
|
753 |
+
type="text",
|
754 |
+
max_lines=1,
|
755 |
+
)
|
756 |
+
ov_quant_dataset_num_samples = gr.Number(
|
757 |
+
value=300,
|
758 |
+
label="Calibration Dataset Num Samples",
|
759 |
+
)
|
760 |
+
|
761 |
+
backend.change(
|
762 |
+
lambda backend: (
|
763 |
+
(
|
764 |
+
gr.Group(visible=True)
|
765 |
+
if backend == Backend.ONNX.value
|
766 |
+
else gr.Group(visible=False)
|
767 |
+
),
|
768 |
+
(
|
769 |
+
gr.Group(visible=True)
|
770 |
+
if backend == Backend.ONNX_DYNAMIC_QUANTIZATION.value
|
771 |
+
else gr.Group(visible=False)
|
772 |
+
),
|
773 |
+
(
|
774 |
+
gr.Group(visible=True)
|
775 |
+
if backend == Backend.ONNX_OPTIMIZATION.value
|
776 |
+
else gr.Group(visible=False)
|
777 |
+
),
|
778 |
+
(
|
779 |
+
gr.Group(visible=True)
|
780 |
+
if backend == Backend.OPENVINO.value
|
781 |
+
else gr.Group(visible=False)
|
782 |
+
),
|
783 |
+
(
|
784 |
+
gr.Group(visible=True)
|
785 |
+
if backend == Backend.OPENVINO_STATIC_QUANTIZATION.value
|
786 |
+
else gr.Group(visible=False)
|
787 |
+
),
|
788 |
+
),
|
789 |
+
inputs=[backend],
|
790 |
+
outputs=[
|
791 |
+
onnx_group,
|
792 |
+
onnx_dynamic_quantization_group,
|
793 |
+
onnx_optimization_group,
|
794 |
+
openvino_group,
|
795 |
+
openvino_static_quantization_group,
|
796 |
+
],
|
797 |
+
)
|
798 |
+
|
799 |
+
submit_button = gr.Button(
|
800 |
+
"Export Model",
|
801 |
+
variant="primary",
|
802 |
+
)
|
803 |
+
|
804 |
+
# Right Input Column
|
805 |
+
with gr.Column(scale=1):
|
806 |
+
error = gr.Textbox(
|
807 |
+
value="",
|
808 |
+
label="Error",
|
809 |
+
type="text",
|
810 |
+
visible=False,
|
811 |
+
max_lines=1,
|
812 |
+
interactive=False,
|
813 |
+
elem_classes=["text-error"],
|
814 |
+
)
|
815 |
+
|
816 |
+
requirements = gr.Code(
|
817 |
+
value="",
|
818 |
+
language="shell",
|
819 |
+
label="Requirements",
|
820 |
+
lines=1,
|
821 |
+
)
|
822 |
+
export_snippet = gr.Code(
|
823 |
+
value="",
|
824 |
+
language="python",
|
825 |
+
label="Export Snippet",
|
826 |
+
)
|
827 |
+
inference_snippet = gr.Code(
|
828 |
+
value="",
|
829 |
+
language="python",
|
830 |
+
label="Inference Snippet",
|
831 |
+
)
|
832 |
+
url = gr.Markdown(
|
833 |
+
value="Commit or PR url:<br>...",
|
834 |
+
label="",
|
835 |
+
container=True,
|
836 |
+
visible=True,
|
837 |
+
)
|
838 |
+
|
839 |
+
submit_button.click(
|
840 |
+
on_submit,
|
841 |
+
inputs=[
|
842 |
+
model_id,
|
843 |
+
create_pr,
|
844 |
+
output_model_id,
|
845 |
+
backend,
|
846 |
+
onnx_quantization_config,
|
847 |
+
onnx_optimization_config,
|
848 |
+
ov_quant_dataset_name,
|
849 |
+
ov_quant_dataset_subset,
|
850 |
+
ov_quant_dataset_split,
|
851 |
+
ov_quant_dataset_column_name,
|
852 |
+
ov_quant_dataset_num_samples,
|
853 |
+
inference_snippet,
|
854 |
+
],
|
855 |
+
outputs=[url, inference_snippet, error],
|
856 |
+
)
|
857 |
+
for input_component in [
|
858 |
+
model_id,
|
859 |
+
create_pr,
|
860 |
+
output_model_id,
|
861 |
+
backend,
|
862 |
+
onnx_quantization_config,
|
863 |
+
onnx_optimization_config,
|
864 |
+
ov_quant_dataset_name,
|
865 |
+
ov_quant_dataset_subset,
|
866 |
+
ov_quant_dataset_split,
|
867 |
+
ov_quant_dataset_column_name,
|
868 |
+
ov_quant_dataset_num_samples,
|
869 |
+
]:
|
870 |
+
input_component.change(
|
871 |
+
on_change,
|
872 |
+
inputs=[
|
873 |
+
model_id,
|
874 |
+
create_pr,
|
875 |
+
output_model_id,
|
876 |
+
backend,
|
877 |
+
onnx_quantization_config,
|
878 |
+
onnx_optimization_config,
|
879 |
+
ov_quant_dataset_name,
|
880 |
+
ov_quant_dataset_subset,
|
881 |
+
ov_quant_dataset_split,
|
882 |
+
ov_quant_dataset_column_name,
|
883 |
+
ov_quant_dataset_num_samples,
|
884 |
+
],
|
885 |
+
outputs=[requirements, export_snippet, inference_snippet, error],
|
886 |
+
)
|
887 |
+
|
888 |
+
if __name__ == "__main__":
|
889 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence_transformers[onnx-gpu,openvino]==3.3.0
|
2 |
+
onnx==1.16.1
|
3 |
+
gradio_huggingfacehub_search==0.0.7
|
4 |
+
gradio[oauth]==5.5.0
|
5 |
+
huggingface_hub==0.26.2
|