Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,8 @@
|
|
1 |
-
import
|
2 |
-
import random
|
3 |
-
from typing import List, Tuple
|
4 |
-
|
5 |
-
import aiohttp
|
6 |
import panel as pn
|
7 |
-
from
|
8 |
-
from transformers import CLIPModel, CLIPProcessor
|
9 |
|
10 |
-
pn.extension(
|
11 |
|
12 |
ICON_URLS = {
|
13 |
"brand-github": "https://github.com/holoviz/panel",
|
@@ -17,110 +12,57 @@ ICON_URLS = {
|
|
17 |
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
18 |
}
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
pet = random.choice(["cat", "dog"])
|
23 |
-
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
24 |
-
async with aiohttp.ClientSession() as session:
|
25 |
-
async with session.get(api_url) as resp:
|
26 |
-
return (await resp.json())[0]["url"]
|
27 |
-
|
28 |
-
|
29 |
-
@pn.cache
|
30 |
-
def load_processor_model(
|
31 |
-
processor_name: str, model_name: str
|
32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
34 |
-
model = CLIPModel.from_pretrained(model_name)
|
35 |
-
return processor, model
|
36 |
-
|
37 |
-
|
38 |
-
async def open_image_url(image_url: str) -> Image:
|
39 |
-
async with aiohttp.ClientSession() as session:
|
40 |
-
async with session.get(image_url) as resp:
|
41 |
-
return Image.open(io.BytesIO(await resp.read()))
|
42 |
-
|
43 |
-
|
44 |
-
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
|
45 |
-
processor, model = load_processor_model(
|
46 |
-
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
|
47 |
-
)
|
48 |
-
inputs = processor(
|
49 |
-
text=class_items,
|
50 |
-
images=[image],
|
51 |
-
return_tensors="pt", # pytorch tensors
|
52 |
-
)
|
53 |
-
outputs = model(**inputs)
|
54 |
-
logits_per_image = outputs.logits_per_image
|
55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
56 |
-
return class_likelihoods[0]
|
57 |
-
|
58 |
-
|
59 |
-
async def process_inputs(class_names: List[str], image_url: str):
|
60 |
-
"""
|
61 |
-
High level function that takes in the user inputs and returns the
|
62 |
-
classification results as panel objects.
|
63 |
-
"""
|
64 |
try:
|
65 |
main.disabled = True
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
class_items = class_names.split(",")
|
79 |
-
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
80 |
|
81 |
-
# build the results column
|
82 |
-
results = pn.Column("##### π Here are the results!", img)
|
83 |
-
|
84 |
-
for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
85 |
-
row_label = pn.widgets.StaticText(
|
86 |
-
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
87 |
-
)
|
88 |
-
row_bar = pn.indicators.Progress(
|
89 |
-
value=int(class_likelihood * 100),
|
90 |
-
sizing_mode="stretch_width",
|
91 |
-
bar_color="secondary",
|
92 |
-
margin=(0, 10),
|
93 |
-
design=pn.theme.Material,
|
94 |
-
)
|
95 |
-
results.append(pn.Column(row_label, row_bar))
|
96 |
-
yield results
|
97 |
finally:
|
98 |
main.disabled = False
|
99 |
|
100 |
|
101 |
# create widgets
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
value=pn.bind(random_url, randomize_url),
|
107 |
-
)
|
108 |
-
class_names = pn.widgets.TextInput(
|
109 |
-
name="Comma separated class names",
|
110 |
-
placeholder="Enter possible class names, e.g. cat, dog",
|
111 |
-
value="cat, dog, parrot",
|
112 |
)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
#
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
)
|
125 |
|
126 |
# add footer
|
@@ -132,16 +74,14 @@ for icon, url in ICON_URLS.items():
|
|
132 |
footer_row.append(pn.Spacer())
|
133 |
|
134 |
# create dashboard
|
135 |
-
main = pn.
|
136 |
-
|
137 |
-
interactive_result,
|
138 |
footer_row,
|
139 |
)
|
140 |
|
141 |
-
title = "
|
142 |
-
pn.template.
|
143 |
title=title,
|
144 |
main=main,
|
145 |
-
main_max_width="min(50%, 698px)",
|
146 |
header_background="#F08080",
|
147 |
-
).servable(title=title)
|
|
|
1 |
+
import json
|
|
|
|
|
|
|
|
|
2 |
import panel as pn
|
3 |
+
from sentrifyai import api
|
|
|
4 |
|
5 |
+
pn.extension(sizing_mode="stretch_width")
|
6 |
|
7 |
ICON_URLS = {
|
8 |
"brand-github": "https://github.com/holoviz/panel",
|
|
|
12 |
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
13 |
}
|
14 |
|
15 |
+
async def classify_emotion(message: str):
|
16 |
+
emotions = api.Emotions()
|
17 |
+
try:
|
18 |
+
results = emotions.emotion(model_slug='Emotion-1.0', message=message)
|
19 |
+
return results
|
20 |
+
except Exception as e:
|
21 |
+
return {"error": str(e)}
|
22 |
|
23 |
+
def process_inputs(message: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
main.disabled = True
|
26 |
+
|
27 |
+
# Perform emotion classification
|
28 |
+
yield "##### βοΈ Classifying emotions..."
|
29 |
+
results = yield from classify_emotion(message)
|
30 |
+
|
31 |
+
# Display results
|
32 |
+
yield "##### π Emotion Classification Results:"
|
33 |
+
if "error" in results:
|
34 |
+
yield f"Error: {results['error']}"
|
35 |
+
else:
|
36 |
+
for emotion, score in results.items():
|
37 |
+
yield f"{emotion}: {score:.2f}"
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
finally:
|
40 |
main.disabled = False
|
41 |
|
42 |
|
43 |
# create widgets
|
44 |
+
message_input = pn.widgets.TextInput(
|
45 |
+
name="Enter a message for emotion classification",
|
46 |
+
placeholder="Type your message here...",
|
47 |
+
sizing_mode="stretch_width"
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
|
50 |
+
classify_button = pn.widgets.Button(name="Classify Emotion", button_type="primary")
|
51 |
+
|
52 |
+
# define callback function for button click
|
53 |
+
def on_button_click(event):
|
54 |
+
message = message_input.value
|
55 |
+
if message:
|
56 |
+
generator = process_inputs(message)
|
57 |
+
panel_content[:] = generator
|
58 |
+
|
59 |
+
classify_button.on_click(on_button_click)
|
60 |
|
61 |
+
# create main panel content
|
62 |
+
panel_content = pn.Column(
|
63 |
+
"### π Emotion Classification",
|
64 |
+
message_input,
|
65 |
+
classify_button,
|
66 |
)
|
67 |
|
68 |
# add footer
|
|
|
74 |
footer_row.append(pn.Spacer())
|
75 |
|
76 |
# create dashboard
|
77 |
+
main = pn.Column(
|
78 |
+
panel_content,
|
|
|
79 |
footer_row,
|
80 |
)
|
81 |
|
82 |
+
title = "Emotion Classification"
|
83 |
+
pn.template.MaterialTemplate(
|
84 |
title=title,
|
85 |
main=main,
|
|
|
86 |
header_background="#F08080",
|
87 |
+
).servable(title=title)
|