Spaces:
Runtime error
Runtime error
Switch to pydub audio conversion and implement basic transcription
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import torch
|
|
6 |
from pyannote.audio import Pipeline
|
7 |
from pydub import AudioSegment
|
8 |
from mimetypes import MimeTypes
|
|
|
9 |
|
10 |
load_dotenv()
|
11 |
|
@@ -13,6 +14,7 @@ hg_token = os.getenv("HG_ACCESS_TOKEN")
|
|
13 |
|
14 |
if hg_token != None:
|
15 |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hg_token)
|
|
|
16 |
else:
|
17 |
print('''No hugging face access token set.
|
18 |
You need to set it via an .env or environment variable HG_ACCESS_TOKEN''')
|
@@ -52,15 +54,25 @@ def split_audio(audio_file: tuple[int, np.array], segments):
|
|
52 |
pass
|
53 |
|
54 |
|
55 |
-
def
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
demo = gr.Interface(
|
62 |
fn=transcribe,
|
63 |
-
inputs=gr.Audio(type="
|
64 |
outputs="text",
|
65 |
)
|
66 |
|
|
|
6 |
from pyannote.audio import Pipeline
|
7 |
from pydub import AudioSegment
|
8 |
from mimetypes import MimeTypes
|
9 |
+
import whisper
|
10 |
|
11 |
load_dotenv()
|
12 |
|
|
|
14 |
|
15 |
if hg_token != None:
|
16 |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hg_token)
|
17 |
+
whisper_ml = whisper.load_model("base")
|
18 |
else:
|
19 |
print('''No hugging face access token set.
|
20 |
You need to set it via an .env or environment variable HG_ACCESS_TOKEN''')
|
|
|
54 |
pass
|
55 |
|
56 |
|
57 |
+
def prep_audio(audio_segment):
|
58 |
+
"""
|
59 |
+
This function preps a pydub AudioSegment for a ml model.
|
60 |
+
|
61 |
+
Both pyannote audio and whisper require mono audio with a 16khz rate as float32.
|
62 |
+
"""
|
63 |
+
audio_data = audio_segment.set_channels(1).set_frame_rate(16000)
|
64 |
+
return np.array(audio_data.get_array_of_samples()).flatten().astype(np.float32) / 32768.0
|
65 |
+
|
66 |
+
def transcribe(audio_file: str) -> str:
|
67 |
+
audio = AudioSegment.from_file(audio_file)
|
68 |
+
|
69 |
+
audio_data = prep_audio(audio)
|
70 |
+
return whisper_ml.transcribe(audio_data)['text']
|
71 |
|
72 |
|
73 |
demo = gr.Interface(
|
74 |
fn=transcribe,
|
75 |
+
inputs=gr.Audio(type="filepath"),
|
76 |
outputs="text",
|
77 |
)
|
78 |
|