Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from sklearn.metrics import accuracy_score
|
8 |
+
import joblib
|
9 |
+
|
10 |
+
# Title and Description of the App
|
11 |
+
st.title("Human vs LLM-Generated Text Differentiator")
|
12 |
+
st.write("This app predicts whether a given text is human-written or generated by a language model (LLM).")
|
13 |
+
|
14 |
+
# Step 1: Upload Dataset
|
15 |
+
st.header("Step 1: Upload the RoFT Dataset")
|
16 |
+
uploaded_file = st.file_uploader("Upload your roft.csv file", type="csv")
|
17 |
+
|
18 |
+
if uploaded_file is not None:
|
19 |
+
# Load dataset
|
20 |
+
data = pd.read_csv(uploaded_file)
|
21 |
+
st.write("Dataset Loaded Successfully!")
|
22 |
+
|
23 |
+
# Display the first few rows of the dataset
|
24 |
+
st.subheader("Sample of the Dataset:")
|
25 |
+
st.dataframe(data.head())
|
26 |
+
|
27 |
+
# Preprocessing the data
|
28 |
+
st.header("Step 2: Preprocess the Data")
|
29 |
+
|
30 |
+
# Combine prompt_body and gen_body to form the complete text
|
31 |
+
data['text'] = data['prompt_body'].fillna('') + ' ' + data['gen_body'].fillna('')
|
32 |
+
data['label'] = data['true_boundary_index'].apply(lambda x: 1 if x == 9 else 0) # 1 = Human, 0 = LLM
|
33 |
+
|
34 |
+
st.write("Data Preprocessing Complete!")
|
35 |
+
|
36 |
+
# Show distribution of labels
|
37 |
+
st.subheader("Label Distribution:")
|
38 |
+
st.bar_chart(data['label'].value_counts())
|
39 |
+
|
40 |
+
# Feature Extraction
|
41 |
+
st.header("Step 3: Train the Model")
|
42 |
+
st.write("Extracting features using TF-IDF and training a Random Forest classifier.")
|
43 |
+
|
44 |
+
# TF-IDF Vectorization
|
45 |
+
vectorizer = TfidfVectorizer(max_features=5000)
|
46 |
+
X = vectorizer.fit_transform(data['text']).toarray()
|
47 |
+
y = data['label']
|
48 |
+
|
49 |
+
# Train-Test Split
|
50 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
51 |
+
|
52 |
+
# Train a Random Forest Classifier
|
53 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
54 |
+
model.fit(X_train, y_train)
|
55 |
+
|
56 |
+
# Evaluate the model
|
57 |
+
y_pred = model.predict(X_test)
|
58 |
+
accuracy = accuracy_score(y_test, y_pred)
|
59 |
+
st.write(f"Model Accuracy: {accuracy * 100:.2f}%")
|
60 |
+
|
61 |
+
# Save the model and vectorizer
|
62 |
+
joblib.dump(model, 'text_classifier.pkl')
|
63 |
+
joblib.dump(vectorizer, 'vectorizer.pkl')
|
64 |
+
st.success("Model Trained and Saved Successfully!")
|
65 |
+
|
66 |
+
# Step 4: User Input for Prediction
|
67 |
+
st.header("Step 4: Predict Human vs LLM-Generated Text")
|
68 |
+
|
69 |
+
# Load the trained model and vectorizer
|
70 |
+
model = joblib.load('text_classifier.pkl')
|
71 |
+
vectorizer = joblib.load('vectorizer.pkl')
|
72 |
+
|
73 |
+
# Input text from the user
|
74 |
+
user_input = st.text_area("Enter the text you want to classify:")
|
75 |
+
|
76 |
+
if st.button("Predict"):
|
77 |
+
if user_input.strip():
|
78 |
+
# Vectorize the input text
|
79 |
+
input_vector = vectorizer.transform([user_input]).toarray()
|
80 |
+
|
81 |
+
# Predict and show the result
|
82 |
+
prediction = model.predict(input_vector)
|
83 |
+
confidence = model.predict_proba(input_vector).max() * 100
|
84 |
+
|
85 |
+
if prediction[0] == 1:
|
86 |
+
st.success(f"The text is likely **Human-Written** with a confidence of {confidence:.2f}%.")
|
87 |
+
else:
|
88 |
+
st.warning(f"The text is likely **LLM-Generated** with a confidence of {confidence:.2f}%.")
|
89 |
+
else:
|
90 |
+
st.error("Please enter some text for prediction.")
|