import streamlit as st import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score import joblib # Title and Description of the App st.title("Human vs LLM-Generated Text Differentiator") st.write("This app predicts whether a given text is human-written or generated by a language model (LLM).") # Step 1: Upload Dataset st.header("Step 1: Upload the RoFT Dataset") uploaded_file = st.file_uploader("Upload your roft.csv file", type="csv") if uploaded_file is not None: # Load dataset data = pd.read_csv(uploaded_file) st.write("Dataset Loaded Successfully!") # Display the first few rows of the dataset st.subheader("Sample of the Dataset:") st.dataframe(data.head()) # Preprocessing the data st.header("Step 2: Preprocess the Data") # Combine prompt_body and gen_body to form the complete text data['text'] = data['prompt_body'].fillna('') + ' ' + data['gen_body'].fillna('') data['label'] = data['true_boundary_index'].apply(lambda x: 1 if x == 9 else 0) # 1 = Human, 0 = LLM st.write("Data Preprocessing Complete!") # Show distribution of labels st.subheader("Label Distribution:") st.bar_chart(data['label'].value_counts()) # Feature Extraction st.header("Step 3: Train the Model") st.write("Extracting features using TF-IDF and training a Random Forest classifier.") # TF-IDF Vectorization vectorizer = TfidfVectorizer(max_features=5000) X = vectorizer.fit_transform(data['text']).toarray() y = data['label'] # Train-Test Split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a Random Forest Classifier model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_train, y_train) # Evaluate the model y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) st.write(f"Model Accuracy: {accuracy * 100:.2f}%") # Save the model and vectorizer joblib.dump(model, 'text_classifier.pkl') joblib.dump(vectorizer, 'vectorizer.pkl') st.success("Model Trained and Saved Successfully!") # Step 4: User Input for Prediction st.header("Step 4: Predict Human vs LLM-Generated Text") # Load the trained model and vectorizer model = joblib.load('text_classifier.pkl') vectorizer = joblib.load('vectorizer.pkl') # Input text from the user user_input = st.text_area("Enter the text you want to classify:") if st.button("Predict"): if user_input.strip(): # Vectorize the input text input_vector = vectorizer.transform([user_input]).toarray() # Predict and show the result prediction = model.predict(input_vector) confidence = model.predict_proba(input_vector).max() * 100 if prediction[0] == 1: st.success(f"The text is likely **Human-Written** with a confidence of {confidence:.2f}%.") else: st.warning(f"The text is likely **LLM-Generated** with a confidence of {confidence:.2f}%.") else: st.error("Please enter some text for prediction.")