Spaces:
Sleeping
Sleeping
import sys | |
sys.path.append("speckleUtils") | |
import speckle_utils | |
import os | |
import json | |
import pandas as pd | |
import copy | |
from functools import wraps | |
from specklepy.api.client import SpeckleClient | |
from tripGenerationFunc import * | |
import gradio as gr | |
import requests | |
from huggingface_hub import webhook_endpoint, WebhookPayload | |
from fastapi import Request | |
import datetime | |
current_directory = os.path.dirname(os.path.abspath(__file__)) | |
# Path to the config.json file | |
config_file_path = os.path.join(current_directory, "config.json") | |
# Check if the config.json file exists | |
if os.path.exists(config_file_path): | |
# Load the JSON data from config.json | |
with open(config_file_path, 'r') as f: | |
config = json.load(f) | |
# Convert to Python variables with the same names as the keys in the JSON | |
locals().update(config) | |
print("varaibles from json") | |
# Now you can access the variables directly | |
print(STREAM_ID) | |
print(BRANCH_NAME_LAND_USES) | |
print(TARGET_TRIP_RATE) | |
print(ALPHA_LOW) | |
print(F_VALUES_MANUAL) | |
print(distance_matrices_of_interest) | |
print(redistributeTrips) | |
print(DISTANCE_BRACKETS) | |
print(XLS_FILE_PATH) | |
print("==================") | |
else: | |
print("Error: config.json file not found in the current directory.") | |
# checks payload of webhook and runs the main code if webhook was triggered by specified stream + one of the branches | |
listendStreams = [STREAM_ID] | |
listendBranchNames = [BRANCH_NAME_LAND_USES,BRANCH_NAME_DISTANCE_MATRIX,BRANCH_NAME_METRIC_DIST_MATRIX] | |
async def update_streams(request: Request): | |
# Initialize flag | |
should_continue = False | |
# Read the request body as JSON | |
payload = await request.json() | |
# Check if the payload structure matches the expected format | |
if "event" in payload and "data" in payload["event"]: | |
event_data = payload["event"]["data"] | |
# Check if the event type is "commit_create" | |
if "type" in event_data and event_data["type"] == "commit_create": | |
# Check if the stream name matches the specified list | |
if "stream" in event_data and event_data["stream"] in listendStreams: | |
# Check if the branch name matches the specified list | |
if "commit" in event_data and "branchName" in event_data["commit"]: | |
if event_data["commit"]["branchName"] in listendBranchNames: | |
should_continue = True | |
else: | |
print("Branch name not found in payload.") | |
else: | |
print("Stream name not found or not in the specified list.") | |
else: | |
print("Event type is not 'commit_create'.") | |
else: | |
print("Payload structure does not match the expected format.") | |
# If the flag is True, continue running the main part of the code | |
if should_continue: | |
# Your main code logic goes here | |
runAll() | |
else: | |
print("Flag is False. Skipping further execution.") | |
return "Webhook processing complete." | |
def runAll(): | |
# get config file:# Parse JSON | |
speckle_token = os.environ.get("SPECKLE_TOKEN") | |
xls_file_path = os.path.join(current_directory, XLS_FILE_PATH) | |
print("full path", xls_file_path) | |
# fetch speckle data | |
CLIENT = SpeckleClient(host="https://speckle.xyz/") | |
CLIENT.authenticate_with_token(token="52566d1047b881764e16ad238356abeb2fc35d8b42") | |
# get land use stream | |
stream_land_use = speckle_utils.getSpeckleStream(STREAM_ID, | |
BRANCH_NAME_LAND_USES, | |
CLIENT, | |
commit_id = "") | |
# navigate to list with speckle objects of interest | |
stream_data = stream_land_use["@Data"]["@{0}"] | |
# transform stream_data to dataframe (create a backup copy of this dataframe) | |
df_speckle_lu = speckle_utils.get_dataframe(stream_data, return_original_df=False) | |
df_main = df_speckle_lu.copy() | |
# set index column | |
df_main = df_main.set_index("ids", drop=False) | |
# get distance matrix stream | |
stream_distance_matrice = speckle_utils.getSpeckleStream(STREAM_ID, | |
BRANCH_NAME_DISTANCE_MATRIX, | |
CLIENT, | |
commit_id = "") | |
# navigate to list with speckle objects of interest | |
distance_matrices = {} | |
for distM in stream_distance_matrice["@Data"]['@{0}']: | |
for kk in distM.__dict__.keys(): | |
try: | |
if kk.split("+")[1].startswith("distance_matrix"): | |
distance_matrix_dict = json.loads(distM[kk]) | |
origin_ids = distance_matrix_dict["origin_uuid"] | |
destination_ids = distance_matrix_dict["destination_uuid"] | |
distance_matrix = distance_matrix_dict["matrix"] | |
# Convert the distance matrix to a DataFrame | |
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids) | |
# i want to add the index & colum names to dist_m_csv | |
#distance_matrices[kk] = dist_m_csv[kk] | |
distance_matrices[kk] = df_distances | |
except: | |
pass | |
# get metric matrix stream | |
stream_metric_matrice = speckle_utils.getSpeckleStream(STREAM_ID, | |
BRANCH_NAME_METRIC_DIST_MATRIX, | |
CLIENT, | |
commit_id = "") | |
# navigate to list with speckle objects of interest | |
metric_matrices = {} | |
for distM in stream_metric_matrice["@Data"]['@{0}']: | |
print(distM.__dict__.keys()) | |
for kk in distM.__dict__.keys(): | |
try: | |
if kk.split("+")[1].startswith("metric_matrix"): | |
metric_matrix_dict = json.loads(distM[kk]) | |
origin_ids = metric_matrix_dict["origin_uuid"] | |
destination_ids = metric_matrix_dict["destination_uuid"] | |
metric_matrix = metric_matrix_dict["matrix"] | |
# Convert the distance matrix to a DataFrame | |
df_metric_dist = pd.DataFrame(metric_matrix, index=origin_ids, columns=destination_ids) | |
metric_matrices[kk] = df_metric_dist*10 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
print("metric_matrix_dict", metric_matrix_dict.keys()) | |
except: | |
pass | |
metric_matrices = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest) | |
sourceCommits = { | |
"landuseCommitID": stream_land_use.id, | |
"distanceMatrixCommitID": stream_distance_matrice.id, | |
"metricMatrixCommitID": stream_metric_matrice.id | |
} | |
# READ XLS FILE ====================================== | |
# Read Excel file into Pandas DataFrame | |
#Production | |
# Load Excel file separately | |
#xls_file_path = os.path.join(current_directory, XLS_FILE_PATH) | |
if os.path.exists(xls_file_path): | |
# Production | |
df_production = pd.read_excel(xls_file_path, sheet_name='Production') | |
df_production_transposed = df_production.T | |
df_production = preprocess_dataFrame(df_production, headerRow_idx=2, numRowsStart_idx=3) | |
df_production_transposed = preprocess_dataFrame(df_production_transposed, headerRow_idx=0, numRowsStart_idx=4, | |
numColsStart_idx=4, rowNames_idx=2) | |
# Attraction | |
df_attraction = pd.read_excel(xls_file_path, sheet_name='Attraction') | |
df_attraction = preprocess_dataFrame(df_attraction, headerRow_idx=0, numRowsStart_idx=2) | |
# Distribution_Matrix | |
df_distributionMatrix = pd.read_excel(xls_file_path, sheet_name='Distribution_Matrix') | |
df_distributionMatrix = preprocess_dataFrame(df_distributionMatrix, headerRow_idx=0, numRowsStart_idx=2, | |
numRowsEnd_idx=None, numColsStart_idx=2, numColsEnd_idx=None, | |
rowNames_idx=0) | |
# Alphas | |
df_alphas = pd.read_excel(xls_file_path, sheet_name='Alphas') | |
df_alphas.columns = df_alphas.iloc[1] | |
df_alphas = df_alphas.iloc[0, 2:] | |
# Land use | |
df_lu = pd.read_excel(xls_file_path, sheet_name='Example_Land_Use') | |
df_lu = preprocess_dataFrame(df_lu, headerRow_idx=0, numRowsStart_idx=1) | |
df_lu["nameCombined"] = df_lu.iloc[:, 1].astype(str) + "+" + df_lu.iloc[:, 0].astype(str) | |
# Distance Matrix | |
df_distMatrix = pd.read_excel(xls_file_path, sheet_name='Example_Distance_Matrix') | |
df_distMatrix = preprocess_dataFrame(df_distMatrix, headerRow_idx=0, numRowsStart_idx=1, numRowsEnd_idx=None, | |
numColsStart_idx=1, numColsEnd_idx=None, rowNames_idx=0) | |
else: | |
print("Error: Excel file specified in config.json not found.") | |
# Land use strucutre ======= | |
# THIS IS THE DISTANCE MATRIX THATS USED DOWN THE ROAD | |
df_distances_aligned, df_lu_stream_aligned = align_dataframes(distance_matrices[distanceMatrixName], df_main, 'ids') | |
#Create a df with lanuses | |
lu_cols = [col for col in df_lu_stream_aligned.columns if col.startswith("lu+")] | |
df_lu_stream = df_lu_stream_aligned[lu_cols] | |
# Remove "lu+" from the beginning of column names | |
df_lu_stream.columns = df_lu_stream.columns.str.lstrip('lu+') | |
df_lu_stream = df_lu_stream.T | |
df_lu_stream_t = df_lu_stream.T | |
df_lu_stream_with_nameLu_column = df_lu_stream.reset_index(drop=False).rename(columns={'index': 'nameLu'}) | |
#--- | |
df_lu_names_xlsx = pd.concat([df_lu.iloc[:, 0:2], df_lu.iloc[:, -1]], axis=1) | |
df_lu_names_xlsx.index = df_lu_names_xlsx.iloc[:, 1] | |
column_names = ['nameTripType', 'nameLu', 'nameCombined'] | |
df_lu_names_xlsx.columns = column_names | |
print(f"df_lu_names_xlsx shape: {df_lu_names_xlsx.shape}") | |
df_lu_names_xlsx.head() | |
#-- | |
# Merge DataFrames using an outer join | |
merged_df = pd.merge(df_lu_stream_with_nameLu_column, df_lu_names_xlsx, on='nameLu', how='outer') | |
# Get the unique names and their counts from df_lu_names_xlsx | |
name_counts = df_lu_names_xlsx['nameLu'].value_counts() | |
#print(name_counts) | |
# Identify names in df_lu_stream_with_nameLu_column that are not in df_lu_names_xlsx | |
missing_names = df_lu_stream_with_nameLu_column.loc[~df_lu_stream_with_nameLu_column['nameLu'].isin(df_lu_names_xlsx['nameLu'])] | |
# Append missing rows to df_lu_stream_with_nameLu_column | |
df_lu_stream_duplicated = pd.concat([merged_df, missing_names], ignore_index=True) | |
#-- | |
# Find names in df_lu_names_xlsx that are not in df_lu_stream_with_nameLu_column | |
missing_names = df_lu_names_xlsx.loc[~df_lu_names_xlsx['nameLu'].isin(df_lu_stream_with_nameLu_column['nameLu'])] | |
#-- | |
# print existing names (?) | |
df_lu_names_sorted = df_lu_names_xlsx.sort_values(by='nameLu') | |
df_lu_stream_duplicated_sorted = df_lu_stream_duplicated.sort_values(by='nameLu') | |
#-- | |
# Merge DataFrames to get the order of names | |
merged_order = pd.merge(df_lu_names_xlsx[['nameCombined']], df_lu_stream_duplicated[['nameCombined']], on='nameCombined', how='inner') | |
# Sort df_lu_stream_duplicated based on the order of names in df_lu_names_xlsx | |
df_lu_stream_sorted = df_lu_stream_duplicated.sort_values(by='nameCombined', key=lambda x: pd.Categorical(x, categories=merged_order['nameCombined'], ordered=True)) | |
# Reorganize columns | |
column_order = ['nameTripType', 'nameCombined'] + [col for col in df_lu_stream_sorted.columns if col not in ['nameTripType', 'nameCombined']] | |
# Create a new DataFrame with the desired column order | |
df_lu_stream_reordered = df_lu_stream_sorted[column_order] | |
df_lu_stream_reordered_t = df_lu_stream_reordered.T | |
#-- | |
df_lu_stream_with_index = df_lu_stream_reordered_t.reset_index(drop=False).rename(columns={'index': 'ids'}) | |
df_lu_stream_with_index.index = df_lu_stream_reordered_t.index | |
df_lu_num_t_index = df_lu_stream_with_index.iloc[3:] | |
df_distances_aligned_index = df_distances_aligned.reset_index(drop=False).rename(columns={'index': 'ids'}) | |
df_distances_aligned_index.index = df_distances_aligned.index | |
df_lu_namesCombined = df_lu_stream_with_index.loc["nameCombined"].iloc[1:] | |
# Sort df_lu_stream_with_index based on the 'ids' column in df_distances_aligned_index | |
df_lu_stream_sorted = df_lu_stream_with_index.sort_values(by=['ids'], key=lambda x: pd.Categorical(x, categories=df_distances_aligned_index['ids'], ordered=True)) | |
df_lu_num = df_lu_stream_sorted.T.iloc[1:, :-3] | |
df_lu_num.index = df_lu_namesCombined | |
df_distMatrix_speckle = df_distances_aligned | |
df_attraction_num = df_attraction.reset_index().iloc[:-1, 6:] | |
# ============================================================================= | |
# TRIP GENERATION | |
# ATTRACTION & PRODUCTION ====================================================== | |
""" | |
INPUTS | |
df_attraction_num | |
df_lu_num | |
df_production | |
df_lu | |
df_production_transposed | |
""" | |
df_attraction_proNode_sum_total = attraction_proNode_full_iter(df_attraction_num, df_lu_num, True) | |
#Get the sqmProPerson | |
df_sqmProPerson = df_production.iloc[0, 4:].reset_index()[3] | |
#Get the trip rate | |
df_tripRate = copy.deepcopy(df_production) # create a copy ensures df_tripRate doenst point to df_production | |
df_tripRate.index = df_tripRate.iloc[:, 0] #Set the row names | |
df_tripRate = df_tripRate.iloc[1:, 2] | |
#Numerical df from production ============================================== | |
df_production_num = df_production.iloc[1:, 4:] | |
df_production_transposed1 = df_production_num.T | |
df_total_trips_allNodes = production_proNode_total(df_lu, | |
df_sqmProPerson, | |
df_tripRate, | |
df_production_num, | |
df_production_transposed, | |
df_lu_num, printSteps=False) | |
# Convert data types to float | |
df_total_trips_allNodes = df_total_trips_allNodes.astype(float) | |
df_tripRate = df_tripRate.astype(float) | |
df_total_trips_allNodes_sumPerson = df_total_trips_allNodes.div(df_tripRate, axis=0).sum() | |
df_total_trips_allNodes_sumPerson_proCat = df_total_trips_allNodes.div(df_tripRate, axis=0) | |
df_total_trips_allNodes_sumPerson_proCat_t = df_total_trips_allNodes_sumPerson_proCat.T | |
df_total_trips_allNodes_sumPerson_proCat_t_sum = df_total_trips_allNodes_sumPerson_proCat_t.sum() | |
# get total population | |
total_population = df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"] + df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"] | |
# ============================================================================= | |
distance_matrices = extract_distance_matrices(stream_distance_matrice, distance_matrices_of_interest) | |
metric_matrices_ = extract_distance_matrices(stream_metric_matrice, metric_matrices_of_interest) | |
metric_matrices = { k:v*10 for k, v in metric_matrices_.items()} # scale (speckle issue) | |
logs = computeTrips( | |
df_distributionMatrix, | |
df_total_trips_allNodes, | |
df_distMatrix_speckle, | |
df_alphas, | |
df_attraction_proNode_sum_total, | |
df_distances_aligned, | |
TARGET_TRIP_RATE, | |
SCALING_FACTOR, | |
total_population, | |
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_Res"], | |
df_total_trips_allNodes_sumPerson_proCat_t_sum["Tot_tou"], | |
distance_matrices, | |
metric_matrices, | |
redistributeTrips, | |
DISTANCE_BRACKETS, | |
ALPHA_LOW, ALPHA_MED, ALPHA_HIGH, ALPHA, ALPHA_UNIFORM, F_VALUES_MANUAL, | |
CLIENT, | |
STREAM_ID, | |
TARGET_BRANCH_TM, | |
sourceCommits | |
) | |
print(logs) | |