|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import json |
|
from io import StringIO |
|
|
|
|
|
def huff_model_probability(df_distances, df_attractiveness, alpha, beta, df_population=None, distance_threshold=None, decay_factor=0.1): |
|
""" |
|
Calculates the probability of choosing among destinations and the adjustment factors for willingness to travel. |
|
""" |
|
if df_population is None: |
|
df_population = pd.Series(np.ones(df_distances.shape[0]), index=df_distances.index) |
|
|
|
adjustment_factors = pd.DataFrame(index=df_distances.index, columns=df_distances.columns) |
|
if distance_threshold is not None and distance_threshold is not "None": |
|
|
|
for destination in df_distances.columns: |
|
adjustment_factors[destination] = df_distances[destination].apply( |
|
lambda x: np.exp(-(max(0, x - distance_threshold)) * decay_factor)) |
|
else: |
|
adjustment_factors[:] = 1 |
|
|
|
adjusted_population = df_population.repeat(df_distances.shape[1]).values.reshape(df_distances.shape) * adjustment_factors |
|
attractiveness_term = df_attractiveness ** alpha |
|
distance_term =np.exp(df_distances * -beta) |
|
|
|
numerator = (attractiveness_term * distance_term).multiply(adjusted_population, axis=0) |
|
denominator = numerator.sum(axis=1) |
|
probabilities = numerator.div(denominator, axis=0).fillna(0) |
|
|
|
return probabilities, adjustment_factors |
|
|
|
def app_function(input_json): |
|
print("Received input") |
|
|
|
try: |
|
inputs = json.loads(input_json) |
|
except json.JSONDecodeError: |
|
inputs = json.loads(input_json.replace("'", '"')) |
|
print("Parsed input keys:", inputs.keys()) |
|
|
|
|
|
inputs = inputs["input"] |
|
|
|
|
|
df_distances = pd.DataFrame(inputs["df_distances"]) |
|
print("df_distances shape:", df_distances.shape) |
|
|
|
|
|
df_attractiveness = pd.Series(inputs["df_attractiveness"]) |
|
print("df_attractiveness shape:", df_attractiveness.shape) |
|
|
|
|
|
alpha = inputs["alpha"] |
|
beta = inputs["beta"] |
|
|
|
|
|
df_population = pd.Series(inputs["df_population"]) if "df_population" in inputs else None |
|
|
|
|
|
distance_threshold = inputs.get("distance_threshold", None) |
|
decay_factor = inputs.get("decay_factor", 0.1) |
|
|
|
|
|
probabilities, adjustment_factors = huff_model_probability( |
|
df_distances=df_distances, |
|
df_attractiveness=df_attractiveness, |
|
alpha=alpha, |
|
beta=beta, |
|
df_population=df_population, |
|
distance_threshold=distance_threshold, |
|
decay_factor=decay_factor |
|
) |
|
|
|
|
|
output = { |
|
"probabilities": probabilities.to_dict(orient='split'), |
|
"adjustment_factors": adjustment_factors.to_dict(orient='split') |
|
} |
|
|
|
return json.dumps(output) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=app_function, |
|
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."), |
|
outputs=gr.JSON(label="Output JSON"), |
|
title="Dynamic Huff Model" |
|
) |
|
|
|
iface.launch() |