huffModel / app.py
serJD's picture
Update app.py
94ba0ac verified
raw
history blame
5.01 kB
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
def adjust_population_by_distance(df_distances, df_population, distance_threshold, decay_factor):
"""
Adjusts the population of each origin based on the distance to any destination, applying a decay effect for distances beyond the threshold.
Parameters:
- df_distances (pd.DataFrame): DataFrame with distances from origins to destinations.
- df_population (pd.Series): Series with population for each origin.
- distance_threshold (float): Distance beyond which the decay effect is applied.
- decay_factor (float): Factor controlling the rate of decay in willingness to travel beyond the threshold.
Returns:
- pd.Series: Adjusted population for each origin.
"""
# Calculate the minimum distance from each origin to any destination
min_distance = df_distances.min(axis=1)
# Adjust the population based on the minimum distance and the decay factor
def adjustment_factor(distance):
if distance > distance_threshold:
return np.exp(-(distance - distance_threshold) * decay_factor)
else:
return 1
adjustment_factors = min_distance.apply(adjustment_factor)
return df_population * adjustment_factors
def huff_model_probability(df_distances, df_attractiveness, alpha, beta, df_population=None, distance_threshold=None, decay_factor=0.1):
"""
Calculates the probability of choosing among destinations based on an enhanced Huff model that considers a willingness to travel threshold and applies a decay effect for distances beyond this threshold.
Parameters:
- df_distances (pd.DataFrame): DataFrame where rows are origins, columns are destinations, and values are distances.
- df_attractiveness (pd.Series): Series with attractiveness weights for each destination.
- alpha (float): Attractiveness parameter of the Huff model.
- beta (float): Distance decay parameter of the Huff model.
- df_population (pd.Series, optional): Series with population for each origin. Defaults to 1 if not provided.
- distance_threshold (float, optional): Distance beyond which the decay effect on willingness to travel is applied.
- decay_factor (float, optional): Factor controlling the rate of decay in willingness to travel beyond the threshold.
Returns:
- pd.DataFrame: DataFrame with probabilities of choosing each destination from each origin.
"""
if df_population is None:
df_population = pd.Series(np.ones(df_distances.shape[0]), index=df_distances.index)
if distance_threshold is not None:
df_population = adjust_population_by_distance(df_distances, df_population, distance_threshold, decay_factor)
attractiveness_term = df_attractiveness ** alpha
distance_term = df_distances ** -beta
numerator = (attractiveness_term * distance_term).multiply(df_population, axis=0)
denominator = numerator.sum(axis=1)
probabilities = numerator.div(denominator, axis=0)
return probabilities
def app_function(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
print("Parsed input keys:", inputs.keys())
# Assuming the input structure is correctly formatted to include the necessary parameters
inputs = inputs["input"]
# Convert 'df_distances' from a list of lists into a DataFrame
df_distances = pd.DataFrame(inputs["df_distances"])
print("df_distances shape:", df_distances.shape)
# Convert 'df_attractiveness' into a Series
df_attractiveness = pd.Series(inputs["df_attractiveness"])
print("df_attractiveness shape:", df_attractiveness.shape)
# Extract alpha and beta parameters
alpha = inputs["alpha"]
beta = inputs["beta"]
# Check if 'df_population' is provided and convert to Series, else default to None
df_population = pd.Series(inputs["df_population"]) if "df_population" in inputs else None
# Additional parameters for the updated Huff model
distance_threshold = inputs.get("distance_threshold", None)
decay_factor = inputs.get("decay_factor", 0.1) # Default decay factor if not provided
# Call the updated Huff model function
probabilities = huff_model_probability(
df_distances=df_distances,
df_attractiveness=df_attractiveness,
alpha=alpha,
beta=beta,
df_population=df_population,
distance_threshold=distance_threshold,
decay_factor=decay_factor
)
return probabilities.to_json(orient='split')
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=app_function,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="Dynamic Huff Model"
)
iface.launch()