Update app.py
Browse files
app.py
CHANGED
@@ -5,62 +5,31 @@ import json
|
|
5 |
from io import StringIO
|
6 |
|
7 |
|
8 |
-
def adjust_population_by_distance(df_distances, df_population, distance_threshold, decay_factor):
|
9 |
-
"""
|
10 |
-
Adjusts the population of each origin based on the distance to any destination, applying a decay effect for distances beyond the threshold.
|
11 |
-
|
12 |
-
Parameters:
|
13 |
-
- df_distances (pd.DataFrame): DataFrame with distances from origins to destinations.
|
14 |
-
- df_population (pd.Series): Series with population for each origin.
|
15 |
-
- distance_threshold (float): Distance beyond which the decay effect is applied.
|
16 |
-
- decay_factor (float): Factor controlling the rate of decay in willingness to travel beyond the threshold.
|
17 |
-
|
18 |
-
Returns:
|
19 |
-
- pd.Series: Adjusted population for each origin.
|
20 |
-
"""
|
21 |
-
# Calculate the minimum distance from each origin to any destination
|
22 |
-
min_distance = df_distances.min(axis=1)
|
23 |
-
|
24 |
-
# Adjust the population based on the minimum distance and the decay factor
|
25 |
-
def adjustment_factor(distance):
|
26 |
-
if distance > distance_threshold:
|
27 |
-
return np.exp(-(distance - distance_threshold) * decay_factor)
|
28 |
-
else:
|
29 |
-
return 1
|
30 |
-
|
31 |
-
adjustment_factors = min_distance.apply(adjustment_factor)
|
32 |
-
return df_population * adjustment_factors
|
33 |
-
|
34 |
def huff_model_probability(df_distances, df_attractiveness, alpha, beta, df_population=None, distance_threshold=None, decay_factor=0.1):
|
35 |
"""
|
36 |
-
Calculates the probability of choosing among destinations
|
37 |
-
|
38 |
-
Parameters:
|
39 |
-
- df_distances (pd.DataFrame): DataFrame where rows are origins, columns are destinations, and values are distances.
|
40 |
-
- df_attractiveness (pd.Series): Series with attractiveness weights for each destination.
|
41 |
-
- alpha (float): Attractiveness parameter of the Huff model.
|
42 |
-
- beta (float): Distance decay parameter of the Huff model.
|
43 |
-
- df_population (pd.Series, optional): Series with population for each origin. Defaults to 1 if not provided.
|
44 |
-
- distance_threshold (float, optional): Distance beyond which the decay effect on willingness to travel is applied.
|
45 |
-
- decay_factor (float, optional): Factor controlling the rate of decay in willingness to travel beyond the threshold.
|
46 |
-
|
47 |
-
Returns:
|
48 |
-
- pd.DataFrame: DataFrame with probabilities of choosing each destination from each origin.
|
49 |
"""
|
50 |
if df_population is None:
|
51 |
df_population = pd.Series(np.ones(df_distances.shape[0]), index=df_distances.index)
|
52 |
|
|
|
53 |
if distance_threshold is not None:
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
attractiveness_term = df_attractiveness ** alpha
|
57 |
distance_term = df_distances ** -beta
|
58 |
|
59 |
-
numerator = (attractiveness_term * distance_term).multiply(
|
60 |
denominator = numerator.sum(axis=1)
|
61 |
probabilities = numerator.div(denominator, axis=0)
|
62 |
|
63 |
-
return probabilities
|
64 |
|
65 |
def app_function(input_json):
|
66 |
print("Received input")
|
@@ -94,7 +63,7 @@ def app_function(input_json):
|
|
94 |
decay_factor = inputs.get("decay_factor", 0.1) # Default decay factor if not provided
|
95 |
|
96 |
# Call the updated Huff model function
|
97 |
-
probabilities = huff_model_probability(
|
98 |
df_distances=df_distances,
|
99 |
df_attractiveness=df_attractiveness,
|
100 |
alpha=alpha,
|
@@ -104,7 +73,13 @@ def app_function(input_json):
|
|
104 |
decay_factor=decay_factor
|
105 |
)
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# Define the Gradio interface with a single JSON input
|
110 |
iface = gr.Interface(
|
|
|
5 |
from io import StringIO
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def huff_model_probability(df_distances, df_attractiveness, alpha, beta, df_population=None, distance_threshold=None, decay_factor=0.1):
|
9 |
"""
|
10 |
+
Calculates the probability of choosing among destinations and the adjustment factors for willingness to travel.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"""
|
12 |
if df_population is None:
|
13 |
df_population = pd.Series(np.ones(df_distances.shape[0]), index=df_distances.index)
|
14 |
|
15 |
+
adjustment_factors = pd.DataFrame(index=df_distances.index, columns=df_distances.columns)
|
16 |
if distance_threshold is not None:
|
17 |
+
# Calculate adjustment factors for each origin-destination pair
|
18 |
+
for destination in df_distances.columns:
|
19 |
+
adjustment_factors[destination] = df_distances[destination].apply(
|
20 |
+
lambda x: np.exp(-(max(0, x - distance_threshold)) * decay_factor))
|
21 |
+
else:
|
22 |
+
adjustment_factors[:] = 1
|
23 |
+
|
24 |
+
adjusted_population = df_population.repeat(df_distances.shape[1]).values.reshape(df_distances.shape) * adjustment_factors
|
25 |
attractiveness_term = df_attractiveness ** alpha
|
26 |
distance_term = df_distances ** -beta
|
27 |
|
28 |
+
numerator = (attractiveness_term * distance_term).multiply(adjusted_population, axis=0)
|
29 |
denominator = numerator.sum(axis=1)
|
30 |
probabilities = numerator.div(denominator, axis=0)
|
31 |
|
32 |
+
return probabilities, adjustment_factors
|
33 |
|
34 |
def app_function(input_json):
|
35 |
print("Received input")
|
|
|
63 |
decay_factor = inputs.get("decay_factor", 0.1) # Default decay factor if not provided
|
64 |
|
65 |
# Call the updated Huff model function
|
66 |
+
probabilities, adjustment_factors = huff_model_probability(
|
67 |
df_distances=df_distances,
|
68 |
df_attractiveness=df_attractiveness,
|
69 |
alpha=alpha,
|
|
|
73 |
decay_factor=decay_factor
|
74 |
)
|
75 |
|
76 |
+
# Prepare the output
|
77 |
+
output = {
|
78 |
+
"probabilities": probabilities.to_json(orient='split'),
|
79 |
+
"adjustment_factors": adjustment_factors.to_json(orient='split')
|
80 |
+
}
|
81 |
+
|
82 |
+
return output.to_json(orient='split')
|
83 |
|
84 |
# Define the Gradio interface with a single JSON input
|
85 |
iface = gr.Interface(
|