import gradio as gr import pandas as pd import numpy as np import json from io import StringIO def huff_model_probability(df_distances, df_attractiveness, alpha, beta, df_population=None, distance_threshold=None, decay_factor=0.1): """ Calculates the probability of choosing among destinations and the adjustment factors for willingness to travel. """ if df_population is None: df_population = pd.Series(np.ones(df_distances.shape[0]), index=df_distances.index) adjustment_factors = pd.DataFrame(index=df_distances.index, columns=df_distances.columns) if distance_threshold is not None: # Calculate adjustment factors for each origin-destination pair for destination in df_distances.columns: adjustment_factors[destination] = df_distances[destination].apply( lambda x: np.exp(-(max(0, x - distance_threshold)) * decay_factor)) else: adjustment_factors[:] = 1 adjusted_population = df_population.repeat(df_distances.shape[1]).values.reshape(df_distances.shape) * adjustment_factors attractiveness_term = df_attractiveness ** alpha distance_term = df_distances ** -beta numerator = (attractiveness_term * distance_term).multiply(adjusted_population, axis=0) denominator = numerator.sum(axis=1) probabilities = numerator.div(denominator, axis=0) return probabilities, adjustment_factors def app_function(input_json): print("Received input") # Parse the input JSON string try: inputs = json.loads(input_json) except json.JSONDecodeError: inputs = json.loads(input_json.replace("'", '"')) print("Parsed input keys:", inputs.keys()) # Assuming the input structure is correctly formatted to include the necessary parameters inputs = inputs["input"] # Convert 'df_distances' from a list of lists into a DataFrame df_distances = pd.DataFrame(inputs["df_distances"]) print("df_distances shape:", df_distances.shape) # Convert 'df_attractiveness' into a Series df_attractiveness = pd.Series(inputs["df_attractiveness"]) print("df_attractiveness shape:", df_attractiveness.shape) # Extract alpha and beta parameters alpha = inputs["alpha"] beta = inputs["beta"] # Check if 'df_population' is provided and convert to Series, else default to None df_population = pd.Series(inputs["df_population"]) if "df_population" in inputs else None # Additional parameters for the updated Huff model distance_threshold = inputs.get("distance_threshold", None) decay_factor = inputs.get("decay_factor", 0.1) # Default decay factor if not provided # Call the updated Huff model function probabilities, adjustment_factors = huff_model_probability( df_distances=df_distances, df_attractiveness=df_attractiveness, alpha=alpha, beta=beta, df_population=df_population, distance_threshold=distance_threshold, decay_factor=decay_factor ) # Prepare the output output = { "probabilities": probabilities.to_json(orient='split'), "adjustment_factors": adjustment_factors.to_json(orient='split') } return output.to_json(orient='split') # Define the Gradio interface with a single JSON input iface = gr.Interface( fn=app_function, inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."), outputs=gr.JSON(label="Output JSON"), title="Dynamic Huff Model" ) iface.launch()