Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import speech_recognition as sr
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
import json
|
7 |
+
|
8 |
+
def process_data(image, audio):
|
9 |
+
# Process image: Resize and convert to base64
|
10 |
+
if image is not None:
|
11 |
+
image = Image.open(image)
|
12 |
+
# Resize image, maintaining aspect ratio, and max width 1024 pixels
|
13 |
+
base_width = 1024
|
14 |
+
w_percent = (base_width / float(image.size[0]))
|
15 |
+
h_size = int((float(image.size[1]) * float(w_percent)))
|
16 |
+
image = image.resize((base_width, h_size), Image.ANTIALIAS)
|
17 |
+
|
18 |
+
# Convert to base64
|
19 |
+
buffered = io.BytesIO()
|
20 |
+
image.save(buffered, format="JPEG")
|
21 |
+
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
22 |
+
else:
|
23 |
+
img_str = ""
|
24 |
+
|
25 |
+
# Process audio: Convert speech to text
|
26 |
+
if audio is not None:
|
27 |
+
recognizer = sr.Recognizer()
|
28 |
+
with sr.AudioFile(audio) as source:
|
29 |
+
audio_data = recognizer.record(source)
|
30 |
+
try:
|
31 |
+
text = recognizer.recognize_google(audio_data)
|
32 |
+
except sr.UnknownValueError:
|
33 |
+
text = "Could not understand audio"
|
34 |
+
except sr.RequestError as e:
|
35 |
+
text = f"Could not request results; {e}"
|
36 |
+
else:
|
37 |
+
text = ""
|
38 |
+
|
39 |
+
# Prepare JSON data
|
40 |
+
data = json.dumps({"image": img_str, "text": text})
|
41 |
+
|
42 |
+
# Here you would add your code to send `data` to the Speckle stream
|
43 |
+
# For now, we'll just return the JSON to display it
|
44 |
+
return data
|
45 |
+
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("### Upload Image and Record Voice Message")
|
48 |
+
with gr.Row():
|
49 |
+
image = gr.Image(type="file", label="Upload Image")
|
50 |
+
audio = gr.Audio(source="microphone", type="file", label="Record Voice")
|
51 |
+
submit_btn = gr.Button("Submit")
|
52 |
+
output = gr.Textbox(label="JSON Output")
|
53 |
+
|
54 |
+
submit_btn.click(fn=process_data, inputs=[image, audio], outputs=output)
|
55 |
+
|
56 |
+
demo.launch()
|