Spaces:
Sleeping
Sleeping
import os.path | |
import gdown | |
import gradio as gr | |
import torch | |
from Model import TRCaptionNet, clip_transform | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# device = "cpu" | |
preprocess_tasviret = clip_transform(336) | |
model_tasviret = TRCaptionNet({ | |
"max_length": 35, | |
"clip": "ViT-L/14@336px", | |
"bert": "dbmdz/bert-base-turkish-cased", | |
"proj": True, | |
"proj_num_head": 16 | |
}) | |
model_ckpt = "./checkpoints/TRCaptionNet-TasvirEt_L14_334_berturk.pth" | |
model_tasviret.load_state_dict(torch.load(model_ckpt, map_location=device)["model"], strict=True) | |
model_tasviret = model_tasviret.to(device) | |
model_tasviret.eval() | |
preprocess = clip_transform(224) | |
model = TRCaptionNet({ | |
"max_length": 35, | |
"clip": "ViT-L/14", | |
"bert": "dbmdz/bert-base-turkish-cased", | |
"proj": True, | |
"proj_num_head": 16 | |
}) | |
model_ckpt = "./checkpoints/TRCaptionNet_L14_berturk.pth" | |
model.load_state_dict(torch.load(model_ckpt, map_location=device)["model"], strict=True) | |
model = model.to(device) | |
model.eval() | |
def inference(raw_image, min_length, repetition_penalty): | |
batch = preprocess_tasviret(raw_image).unsqueeze(0).to(device) | |
caption_tasviret = model_tasviret.generate(batch, min_length=min_length, repetition_penalty=repetition_penalty)[0] | |
batch = preprocess(raw_image).unsqueeze(0).to(device) | |
caption = model.generate(batch, min_length=min_length, repetition_penalty=repetition_penalty)[0] | |
return [caption, caption_tasviret] | |
inputs = [gr.Image(type='pil', interactive=True,), | |
gr.Slider(minimum=4, maximum=22, value=8, label="MINIMUM CAPTION LENGTH", step=1), | |
gr.Slider(minimum=1, maximum=2, value=1.6, label="REPETITION PENALTY")] | |
outputs = [gr.components.Textbox(label="Caption"), gr.components.Textbox(label="Caption-TasvirEt")] | |
title = "TRCaptionNet-TasvirEt" | |
paper_link = "" | |
github_link = "https://github.com/serdaryildiz/TRCaptionNet" | |
IEEE_link = "https://github.com/serdaryildiz/TRCaptionNet" | |
description = f"<p style='text-align: center'><a href='{IEEE_link}' target='_blank'> SIU2024: Turkish Image Captioning with Vision Transformer Based Encoders and Text Decoders</a> " | |
description += f"<p style='text-align: center'><a href='{github_link}' target='_blank'>TRCaptionNet</a> : A novel and accurate deep Turkish image captioning model with vision transformer based image encoders and deep linguistic text decoders" | |
examples = [ | |
["images/test1.jpg"], | |
["images/test2.jpg"], | |
["images/test3.jpg"], | |
["images/test4.jpg"], | |
["images/test5.jpg"], | |
["images/test6.jpg"], | |
["images/test7.jpg"], | |
["images/test8.jpg"], | |
["images/test9.jpg"], | |
["images/test10.jpg"], | |
["images/test11.jpg"], | |
] | |
article = f"<p style='text-align: center'><a href='{paper_link}' target='_blank'>Paper</a> | <a href='{github_link}' target='_blank'>Github Repo</a></p>" | |
css = ".output-image, .input-image, .image-preview {height: 600px !important}" | |
iface = gr.Interface(fn=inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=description, | |
examples=examples, | |
article=article, | |
css=css) | |
iface.launch() | |