Spaces:
Sleeping
Sleeping
File size: 19,510 Bytes
fa7dd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import csv
from pathlib import Path
from shutil import rmtree
from typing import List, Tuple, Dict, Union, Optional, Any, Iterable
from tqdm import tqdm
import psutil
import requests
from requests.exceptions import MissingSchema
import torch
import gradio as gr
from llama_cpp import Llama
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
from huggingface_hub import hf_hub_download, list_repo_tree, list_repo_files, repo_info, repo_exists, snapshot_download
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
# imports for annotations
from langchain.docstore.document import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from config import (
LLM_MODELS_PATH,
EMBED_MODELS_PATH,
GENERATE_KWARGS,
LOADER_CLASSES,
CONTEXT_TEMPLATE,
)
# type annotations
CHAT_HISTORY = List[Tuple[Optional[str], Optional[str]]]
LLM_MODEL_DICT = Dict[str, Llama]
EMBED_MODEL_DICT = Dict[str, Embeddings]
# ===================== ADDITIONAL FUNCS =======================
# getting the amount of free memory on disk, CPU and GPU
def get_memory_usage() -> str:
print_memory = ''
memory_type = 'Disk'
psutil_stats = psutil.disk_usage('.')
memory_total = psutil_stats.total / 1024**3
memory_usage = psutil_stats.used / 1024**3
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'
memory_type = 'CPU'
psutil_stats = psutil.virtual_memory()
memory_total = psutil_stats.total / 1024**3
memory_usage = memory_total - (psutil_stats.available / 1024**3)
print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n'
if torch.cuda.is_available():
memory_type = 'GPU'
memory_free, memory_total = torch.cuda.mem_get_info()
memory_usage = memory_total - memory_free
print_memory += f'{memory_type} Menory Usage: {memory_usage / 1024**3:.2f} / {memory_total:.2f} GB\n'
print_memory = f'---------------\n{print_memory}---------------'
return print_memory
# clearing the list of documents
def clear_documents(documents: Iterable[Document]) -> Iterable[Document]:
def clear_text(text: str) -> str:
lines = text.split('\n')
lines = [line for line in lines if len(line.strip()) > 2]
text = '\n'.join(lines).strip()
return text
output_documents = []
for document in documents:
text = clear_text(document.page_content)
if len(text) > 10:
document.page_content = text
output_documents.append(document)
return output_documents
# ===================== INTERFACE FUNCS =============================
# ------------- LLM AND EMBEDDING MODELS LOADING ------------------------
# функция для загрузки файла по URL ссылке и отображением прогресс баров tqdm и gradio
def download_file(file_url: str, file_path: Union[str, Path]) -> None:
response = requests.get(file_url, stream=True)
if response.status_code != 200:
raise Exception(f'The file is not available for download at the link: {file_url}')
total_size = int(response.headers.get('content-length', 0))
progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True)
progress_gradio = gr.Progress()
completed_size = 0
with open(file_path, 'wb') as file:
for data in response.iter_content(chunk_size=4096):
size = file.write(data)
progress_tqdm.update(size)
completed_size += size
desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB'
progress_gradio(completed_size/total_size, desc=desc)
# loading and initializing the GGUF model
def load_llm_model(model_repo: str, model_file: str) -> Tuple[LLM_MODEL_DICT, str, str]:
llm_model = None
load_log = ''
support_system_role = False
if isinstance(model_file, list):
load_log += 'No model selected\n'
return llm_model, load_log
if '(' in model_file:
model_file = model_file.split('(')[0].rstrip()
progress = gr.Progress()
progress(0.3, desc='Step 1/2: Download the GGUF file')
model_path = LLM_MODELS_PATH / model_file
if model_path.is_file():
load_log += f'Model {model_file} already loaded, reinitializing\n'
else:
try:
gguf_url = f'https://huggingface.co/{model_repo}/resolve/main/{model_file}'
download_file(gguf_url, model_path)
load_log += f'Model {model_file} loaded\n'
except Exception as ex:
model_path = ''
load_log += f'Error loading model, error code:\n{ex}\n'
if model_path:
progress(0.7, desc='Step 2/2: Initialize the model')
try:
llm_model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=False)
support_system_role = 'System role not supported' not in llm_model.metadata['tokenizer.chat_template']
load_log += f'Model {model_file} initialized, max context size is {llm_model.n_ctx()} tokens\n'
except Exception as ex:
load_log += f'Error initializing model, error code:\n{ex}\n'
llm_model = {'model': llm_model}
return llm_model, support_system_role, load_log
# loading and initializing the embedding model
def load_embed_model(model_repo: str) -> Tuple[Dict[str, HuggingFaceEmbeddings], str]:
embed_model = None
load_log = ''
if isinstance(model_repo, list):
load_log = 'No model selected'
return embed_model, load_log
progress = gr.Progress()
folder_name = model_repo.replace('/', '_')
folder_path = EMBED_MODELS_PATH / folder_name
if Path(folder_path).is_dir():
load_log += f'Reinitializing model {model_repo} \n'
else:
progress(0.5, desc='Step 1/2: Download model repository')
snapshot_download(
repo_id=model_repo,
local_dir=folder_path,
ignore_patterns='*.h5',
)
load_log += f'Model {model_repo} loaded\n'
progress(0.7, desc='Шаг 2/2: Инициализация модели')
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
embed_model = HuggingFaceEmbeddings(
model_name=str(folder_path),
model_kwargs=model_kwargs,
# encode_kwargs={'normalize_embeddings': True},
)
load_log += f'Embeddings model {model_repo} initialized\n'
load_log += f'Please upload documents and initialize database again\n'
embed_model = {'embed_model': embed_model}
return embed_model, load_log
# adding a new HF repository new_model_repo to the current list of model_repos
def add_new_model_repo(new_model_repo: str, model_repos: List[str]) -> Tuple[gr.Dropdown, str]:
load_log = ''
repo = new_model_repo.strip()
if repo:
repo = repo.split('/')[-2:]
if len(repo) == 2:
repo = '/'.join(repo).split('?')[0]
if repo_exists(repo) and repo not in model_repos:
model_repos.insert(0, repo)
load_log += f'Model repository {repo} successfully added\n'
else:
load_log += 'Invalid HF repository name or model already in the list\n'
else:
load_log += 'Invalid link to HF repository\n'
else:
load_log += 'Empty line in HF repository field\n'
model_repo_dropdown = gr.Dropdown(choices=model_repos, value=model_repos[0])
return model_repo_dropdown, load_log
# get list of GGUF models from HF repository
def get_gguf_model_names(model_repo: str) -> gr.Dropdown:
repo_files = list(list_repo_tree(model_repo))
repo_files = [file for file in repo_files if file.path.endswith('.gguf')]
model_paths = [f'{file.path} ({file.size / 1000 ** 3:.2f}G)' for file in repo_files]
model_paths_dropdown = gr.Dropdown(
choices=model_paths,
value=model_paths[0],
label='GGUF model file',
)
return model_paths_dropdown
# delete model files and folders to clear space except for the current model gguf_filename
def clear_llm_folder(gguf_filename: str) -> None:
if gguf_filename is None:
gr.Info(f'The name of the model file that does not need to be deleted is not selected.')
return
if '(' in gguf_filename:
gguf_filename = gguf_filename.split('(')[0].rstrip()
for path in LLM_MODELS_PATH.iterdir():
if path.name == gguf_filename:
continue
if path.is_file():
path.unlink(missing_ok=True)
gr.Info(f'All files removed from directory {LLM_MODELS_PATH} except {gguf_filename}')
# delete model folders to clear space except for the current model model_folder_name
def clear_embed_folder(model_repo: str) -> None:
if model_repo is None:
gr.Info(f'The name of the model that does not need to be deleted is not selected.')
return
model_folder_name = model_repo.replace('/', '_')
for path in EMBED_MODELS_PATH.iterdir():
if path.name == model_folder_name:
continue
if path.is_dir():
rmtree(path, ignore_errors=True)
gr.Info(f'All directories have been removed from the {EMBED_MODELS_PATH} directory except {model_folder_name}')
# ------------------------ YOUTUBE ------------------------
# function to check availability of subtitles, if manual or automatic are available - returns True and logs
# if subtitles are not available - returns False and logs
def check_subtitles_available(yt_video_link: str, target_lang: str) -> Tuple[bool, str]:
video_id = yt_video_link.split('watch?v=')[-1].split('&')[0]
load_log = ''
available = True
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
try:
transcript = transcript_list.find_transcript([target_lang])
if transcript.is_generated:
load_log += f'Automatic subtitles will be loaded, manual ones are not available for video {yt_video_link}\n'
else:
load_log += f'Manual subtitles will be downloaded for the video {yt_video_link}\n'
except NoTranscriptFound:
load_log += f'Subtitle language {target_lang} is not available for video {yt_video_link}\n'
available = False
except TranscriptsDisabled:
load_log += f'No subtitles for video {yt_video_link}\n'
available = False
return available, load_log
# ------------- UPLOADING DOCUMENTS FOR RAG ------------------------
# extract documents (in langchain Documents format) from downloaded files
def load_documents_from_files(upload_files: List[str]) -> Tuple[List[Document], str]:
load_log = ''
documents = []
for upload_file in upload_files:
file_extension = f".{upload_file.split('.')[-1]}"
if file_extension in LOADER_CLASSES:
loader_class = LOADER_CLASSES[file_extension]
loader_kwargs = {}
if file_extension == '.csv':
with open(upload_file) as csvfile:
delimiter = csv.Sniffer().sniff(csvfile.read(4096)).delimiter
loader_kwargs = {'csv_args': {'delimiter': delimiter}}
try:
load_documents = loader_class(upload_file, **loader_kwargs).load()
documents.extend(load_documents)
except Exception as ex:
load_log += f'Error uploading file {upload_file}\n'
load_log += f'Error code: {ex}\n'
continue
else:
load_log += f'Unsupported file format {upload_file}\n'
continue
return documents, load_log
# extracting documents (in langchain Documents format) from WEB links
def load_documents_from_links(
web_links: str,
subtitles_lang: str,
) -> Tuple[List[Document], str]:
load_log = ''
documents = []
loader_class_kwargs = {}
web_links = [web_link.strip() for web_link in web_links.split('\n') if web_link.strip()]
for web_link in web_links:
if 'youtube.com' in web_link:
available, log = check_subtitles_available(web_link, subtitles_lang)
load_log += log
if not available:
continue
loader_class = LOADER_CLASSES['youtube'].from_youtube_url
loader_class_kwargs = {'language': subtitles_lang}
else:
loader_class = LOADER_CLASSES['web']
try:
if requests.get(web_link).status_code != 200:
load_log += f'Ссылка недоступна для Python requests: {web_link}\n'
continue
load_documents = loader_class(web_link, **loader_class_kwargs).load()
if len(load_documents) == 0:
load_log += f'No text chunks were found at the link: {web_link}\n'
continue
documents.extend(load_documents)
except MissingSchema:
load_log += f'Invalid link: {web_link}\n'
continue
except Exception as ex:
load_log += f'Error loading data by web loader at link: {web_link}\n'
load_log += f'Error code: {ex}\n'
continue
return documents, load_log
# uploading files and generating documents and databases
def load_documents_and_create_db(
upload_files: Optional[List[str]],
web_links: str,
subtitles_lang: str,
chunk_size: int,
chunk_overlap: int,
embed_model_dict: EMBED_MODEL_DICT,
) -> Tuple[List[Document], Optional[VectorStore], str]:
load_log = ''
all_documents = []
db = None
progress = gr.Progress()
embed_model = embed_model_dict.get('embed_model')
if embed_model is None:
load_log += 'Embeddings model not initialized, DB cannot be created'
return all_documents, db, load_log
if upload_files is None and not web_links:
load_log = 'No files or links selected'
return all_documents, db, load_log
if upload_files is not None:
progress(0.3, desc='Step 1/2: Upload documents from files')
docs, log = load_documents_from_files(upload_files)
all_documents.extend(docs)
load_log += log
if web_links:
progress(0.3 if upload_files is None else 0.5, desc='Step 1/2: Upload documents via links')
docs, log = load_documents_from_links(web_links, subtitles_lang)
all_documents.extend(docs)
load_log += log
if len(all_documents) == 0:
load_log += 'Download was interrupted because no documents were extracted\n'
load_log += 'RAG mode cannot be activated'
return all_documents, db, load_log
load_log += f'Documents loaded: {len(all_documents)}\n'
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
)
documents = text_splitter.split_documents(all_documents)
documents = clear_documents(documents)
load_log += f'Documents are divided, number of text chunks: {len(documents)}\n'
progress(0.7, desc='Step 2/2: Initialize DB')
db = FAISS.from_documents(documents=documents, embedding=embed_model)
load_log += 'DB is initialized, RAG mode is activated and can be activated in the Chatbot tab'
return documents, db, load_log
# ------------------ ФУНКЦИИ ЧАТ БОТА ------------------------
# adding a user message to the chat bot window
def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]:
chatbot.append([user_message, None])
return '', chatbot
# formatting prompt with adding context if DB is available and RAG mode is enabled
def update_user_message_with_context(
chatbot: CHAT_HISTORY,
rag_mode: bool,
db: VectorStore,
k: Union[int, str],
score_threshold: float,
) -> Tuple[str, CHAT_HISTORY]:
user_message = chatbot[-1][0]
user_message_with_context = ''
if db is not None and rag_mode and user_message.strip():
if k == 'all':
k = len(db.docstore._dict)
docs_and_distances = db.similarity_search_with_relevance_scores(
user_message,
k=k,
score_threshold=score_threshold,
)
if len(docs_and_distances) > 0:
retriever_context = '\n\n'.join([doc[0].page_content for doc in docs_and_distances])
user_message_with_context = CONTEXT_TEMPLATE.format(
user_message=user_message,
context=retriever_context,
)
return user_message_with_context
# model response generation
def get_llm_response(
chatbot: CHAT_HISTORY,
llm_model_dict: LLM_MODEL_DICT,
user_message_with_context: str,
rag_mode: bool,
system_prompt: str,
support_system_role: bool,
history_len: int,
do_sample: bool,
*generate_args,
) -> CHAT_HISTORY:
user_message = chatbot[-1][0]
if not user_message.strip():
yield chatbot[:-1]
return None
if rag_mode:
if user_message_with_context:
user_message = user_message_with_context
else:
gr.Info((
f'No documents relevant to the query were found, generation in RAG mode is not possible.\n'
f'Try reducing searh_score_threshold or disable RAG mode for normal generation'
))
yield chatbot[:-1]
return None
llm_model = llm_model_dict.get('model')
gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args))
gen_kwargs['top_k'] = int(gen_kwargs['top_k'])
if not do_sample:
gen_kwargs['top_p'] = 0.0
gen_kwargs['top_k'] = 1
gen_kwargs['repeat_penalty'] = 1.0
messages = []
if support_system_role and system_prompt:
messages.append({'role': 'system', 'content': system_prompt})
if history_len != 0:
for user_msg, bot_msg in chatbot[:-1][-history_len:]:
messages.append({'role': 'user', 'content': user_msg})
messages.append({'role': 'assistant', 'content': bot_msg})
messages.append({'role': 'user', 'content': user_message})
stream_response = llm_model.create_chat_completion(
messages=messages,
stream=True,
**gen_kwargs,
)
try:
chatbot[-1][1] = ''
for chunk in stream_response:
token = chunk['choices'][0]['delta'].get('content')
if token is not None:
chatbot[-1][1] += token
yield chatbot
except Exception as ex:
gr.Info(f'Error generating response, error code: {ex}')
yield chatbot |