import csv from pathlib import Path from shutil import rmtree from typing import List, Tuple, Dict, Union, Optional, Any, Iterable from tqdm import tqdm import psutil import requests from requests.exceptions import MissingSchema import torch import gradio as gr from llama_cpp import Llama from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled from huggingface_hub import hf_hub_download, list_repo_tree, list_repo_files, repo_info, repo_exists, snapshot_download from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings # imports for annotations from langchain.docstore.document import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore from config import ( LLM_MODELS_PATH, EMBED_MODELS_PATH, GENERATE_KWARGS, LOADER_CLASSES, CONTEXT_TEMPLATE, ) # type annotations CHAT_HISTORY = List[Tuple[Optional[str], Optional[str]]] LLM_MODEL_DICT = Dict[str, Llama] EMBED_MODEL_DICT = Dict[str, Embeddings] # ===================== ADDITIONAL FUNCS ======================= # getting the amount of free memory on disk, CPU and GPU def get_memory_usage() -> str: print_memory = '' memory_type = 'Disk' psutil_stats = psutil.disk_usage('.') memory_total = psutil_stats.total / 1024**3 memory_usage = psutil_stats.used / 1024**3 print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n' memory_type = 'CPU' psutil_stats = psutil.virtual_memory() memory_total = psutil_stats.total / 1024**3 memory_usage = memory_total - (psutil_stats.available / 1024**3) print_memory += f'{memory_type} Menory Usage: {memory_usage:.2f} / {memory_total:.2f} GB\n' if torch.cuda.is_available(): memory_type = 'GPU' memory_free, memory_total = torch.cuda.mem_get_info() memory_usage = memory_total - memory_free print_memory += f'{memory_type} Menory Usage: {memory_usage / 1024**3:.2f} / {memory_total:.2f} GB\n' print_memory = f'---------------\n{print_memory}---------------' return print_memory # clearing the list of documents def clear_documents(documents: Iterable[Document]) -> Iterable[Document]: def clear_text(text: str) -> str: lines = text.split('\n') lines = [line for line in lines if len(line.strip()) > 2] text = '\n'.join(lines).strip() return text output_documents = [] for document in documents: text = clear_text(document.page_content) if len(text) > 10: document.page_content = text output_documents.append(document) return output_documents # ===================== INTERFACE FUNCS ============================= # ------------- LLM AND EMBEDDING MODELS LOADING ------------------------ # функция для загрузки файла по URL ссылке и отображением прогресс баров tqdm и gradio def download_file(file_url: str, file_path: Union[str, Path]) -> None: response = requests.get(file_url, stream=True) if response.status_code != 200: raise Exception(f'The file is not available for download at the link: {file_url}') total_size = int(response.headers.get('content-length', 0)) progress_tqdm = tqdm(desc='Loading GGUF file', total=total_size, unit='iB', unit_scale=True) progress_gradio = gr.Progress() completed_size = 0 with open(file_path, 'wb') as file: for data in response.iter_content(chunk_size=4096): size = file.write(data) progress_tqdm.update(size) completed_size += size desc = f'Loading GGUF file, {completed_size/1024**3:.3f}/{total_size/1024**3:.3f} GB' progress_gradio(completed_size/total_size, desc=desc) # loading and initializing the GGUF model def load_llm_model(model_repo: str, model_file: str) -> Tuple[LLM_MODEL_DICT, str, str]: llm_model = None load_log = '' support_system_role = False if isinstance(model_file, list): load_log += 'No model selected\n' return llm_model, load_log if '(' in model_file: model_file = model_file.split('(')[0].rstrip() progress = gr.Progress() progress(0.3, desc='Step 1/2: Download the GGUF file') model_path = LLM_MODELS_PATH / model_file if model_path.is_file(): load_log += f'Model {model_file} already loaded, reinitializing\n' else: try: gguf_url = f'https://huggingface.co/{model_repo}/resolve/main/{model_file}' download_file(gguf_url, model_path) load_log += f'Model {model_file} loaded\n' except Exception as ex: model_path = '' load_log += f'Error loading model, error code:\n{ex}\n' if model_path: progress(0.7, desc='Step 2/2: Initialize the model') try: llm_model = Llama(model_path=str(model_path), n_gpu_layers=-1, verbose=False) support_system_role = 'System role not supported' not in llm_model.metadata['tokenizer.chat_template'] load_log += f'Model {model_file} initialized, max context size is {llm_model.n_ctx()} tokens\n' except Exception as ex: load_log += f'Error initializing model, error code:\n{ex}\n' llm_model = {'model': llm_model} return llm_model, support_system_role, load_log # loading and initializing the embedding model def load_embed_model(model_repo: str) -> Tuple[Dict[str, HuggingFaceEmbeddings], str]: embed_model = None load_log = '' if isinstance(model_repo, list): load_log = 'No model selected' return embed_model, load_log progress = gr.Progress() folder_name = model_repo.replace('/', '_') folder_path = EMBED_MODELS_PATH / folder_name if Path(folder_path).is_dir(): load_log += f'Reinitializing model {model_repo} \n' else: progress(0.5, desc='Step 1/2: Download model repository') snapshot_download( repo_id=model_repo, local_dir=folder_path, ignore_patterns='*.h5', ) load_log += f'Model {model_repo} loaded\n' progress(0.7, desc='Шаг 2/2: Инициализация модели') model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'} embed_model = HuggingFaceEmbeddings( model_name=str(folder_path), model_kwargs=model_kwargs, # encode_kwargs={'normalize_embeddings': True}, ) load_log += f'Embeddings model {model_repo} initialized\n' load_log += f'Please upload documents and initialize database again\n' embed_model = {'embed_model': embed_model} return embed_model, load_log # adding a new HF repository new_model_repo to the current list of model_repos def add_new_model_repo(new_model_repo: str, model_repos: List[str]) -> Tuple[gr.Dropdown, str]: load_log = '' repo = new_model_repo.strip() if repo: repo = repo.split('/')[-2:] if len(repo) == 2: repo = '/'.join(repo).split('?')[0] if repo_exists(repo) and repo not in model_repos: model_repos.insert(0, repo) load_log += f'Model repository {repo} successfully added\n' else: load_log += 'Invalid HF repository name or model already in the list\n' else: load_log += 'Invalid link to HF repository\n' else: load_log += 'Empty line in HF repository field\n' model_repo_dropdown = gr.Dropdown(choices=model_repos, value=model_repos[0]) return model_repo_dropdown, load_log # get list of GGUF models from HF repository def get_gguf_model_names(model_repo: str) -> gr.Dropdown: repo_files = list(list_repo_tree(model_repo)) repo_files = [file for file in repo_files if file.path.endswith('.gguf')] model_paths = [f'{file.path} ({file.size / 1000 ** 3:.2f}G)' for file in repo_files] model_paths_dropdown = gr.Dropdown( choices=model_paths, value=model_paths[0], label='GGUF model file', ) return model_paths_dropdown # delete model files and folders to clear space except for the current model gguf_filename def clear_llm_folder(gguf_filename: str) -> None: if gguf_filename is None: gr.Info(f'The name of the model file that does not need to be deleted is not selected.') return if '(' in gguf_filename: gguf_filename = gguf_filename.split('(')[0].rstrip() for path in LLM_MODELS_PATH.iterdir(): if path.name == gguf_filename: continue if path.is_file(): path.unlink(missing_ok=True) gr.Info(f'All files removed from directory {LLM_MODELS_PATH} except {gguf_filename}') # delete model folders to clear space except for the current model model_folder_name def clear_embed_folder(model_repo: str) -> None: if model_repo is None: gr.Info(f'The name of the model that does not need to be deleted is not selected.') return model_folder_name = model_repo.replace('/', '_') for path in EMBED_MODELS_PATH.iterdir(): if path.name == model_folder_name: continue if path.is_dir(): rmtree(path, ignore_errors=True) gr.Info(f'All directories have been removed from the {EMBED_MODELS_PATH} directory except {model_folder_name}') # ------------------------ YOUTUBE ------------------------ # function to check availability of subtitles, if manual or automatic are available - returns True and logs # if subtitles are not available - returns False and logs def check_subtitles_available(yt_video_link: str, target_lang: str) -> Tuple[bool, str]: video_id = yt_video_link.split('watch?v=')[-1].split('&')[0] load_log = '' available = True try: transcript_list = YouTubeTranscriptApi.list_transcripts(video_id) try: transcript = transcript_list.find_transcript([target_lang]) if transcript.is_generated: load_log += f'Automatic subtitles will be loaded, manual ones are not available for video {yt_video_link}\n' else: load_log += f'Manual subtitles will be downloaded for the video {yt_video_link}\n' except NoTranscriptFound: load_log += f'Subtitle language {target_lang} is not available for video {yt_video_link}\n' available = False except TranscriptsDisabled: load_log += f'No subtitles for video {yt_video_link}\n' available = False return available, load_log # ------------- UPLOADING DOCUMENTS FOR RAG ------------------------ # extract documents (in langchain Documents format) from downloaded files def load_documents_from_files(upload_files: List[str]) -> Tuple[List[Document], str]: load_log = '' documents = [] for upload_file in upload_files: file_extension = f".{upload_file.split('.')[-1]}" if file_extension in LOADER_CLASSES: loader_class = LOADER_CLASSES[file_extension] loader_kwargs = {} if file_extension == '.csv': with open(upload_file) as csvfile: delimiter = csv.Sniffer().sniff(csvfile.read(4096)).delimiter loader_kwargs = {'csv_args': {'delimiter': delimiter}} try: load_documents = loader_class(upload_file, **loader_kwargs).load() documents.extend(load_documents) except Exception as ex: load_log += f'Error uploading file {upload_file}\n' load_log += f'Error code: {ex}\n' continue else: load_log += f'Unsupported file format {upload_file}\n' continue return documents, load_log # extracting documents (in langchain Documents format) from WEB links def load_documents_from_links( web_links: str, subtitles_lang: str, ) -> Tuple[List[Document], str]: load_log = '' documents = [] loader_class_kwargs = {} web_links = [web_link.strip() for web_link in web_links.split('\n') if web_link.strip()] for web_link in web_links: if 'youtube.com' in web_link: available, log = check_subtitles_available(web_link, subtitles_lang) load_log += log if not available: continue loader_class = LOADER_CLASSES['youtube'].from_youtube_url loader_class_kwargs = {'language': subtitles_lang} else: loader_class = LOADER_CLASSES['web'] try: if requests.get(web_link).status_code != 200: load_log += f'Ссылка недоступна для Python requests: {web_link}\n' continue load_documents = loader_class(web_link, **loader_class_kwargs).load() if len(load_documents) == 0: load_log += f'No text chunks were found at the link: {web_link}\n' continue documents.extend(load_documents) except MissingSchema: load_log += f'Invalid link: {web_link}\n' continue except Exception as ex: load_log += f'Error loading data by web loader at link: {web_link}\n' load_log += f'Error code: {ex}\n' continue return documents, load_log # uploading files and generating documents and databases def load_documents_and_create_db( upload_files: Optional[List[str]], web_links: str, subtitles_lang: str, chunk_size: int, chunk_overlap: int, embed_model_dict: EMBED_MODEL_DICT, ) -> Tuple[List[Document], Optional[VectorStore], str]: load_log = '' all_documents = [] db = None progress = gr.Progress() embed_model = embed_model_dict.get('embed_model') if embed_model is None: load_log += 'Embeddings model not initialized, DB cannot be created' return all_documents, db, load_log if upload_files is None and not web_links: load_log = 'No files or links selected' return all_documents, db, load_log if upload_files is not None: progress(0.3, desc='Step 1/2: Upload documents from files') docs, log = load_documents_from_files(upload_files) all_documents.extend(docs) load_log += log if web_links: progress(0.3 if upload_files is None else 0.5, desc='Step 1/2: Upload documents via links') docs, log = load_documents_from_links(web_links, subtitles_lang) all_documents.extend(docs) load_log += log if len(all_documents) == 0: load_log += 'Download was interrupted because no documents were extracted\n' load_log += 'RAG mode cannot be activated' return all_documents, db, load_log load_log += f'Documents loaded: {len(all_documents)}\n' text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, ) documents = text_splitter.split_documents(all_documents) documents = clear_documents(documents) load_log += f'Documents are divided, number of text chunks: {len(documents)}\n' progress(0.7, desc='Step 2/2: Initialize DB') db = FAISS.from_documents(documents=documents, embedding=embed_model) load_log += 'DB is initialized, RAG mode is activated and can be activated in the Chatbot tab' return documents, db, load_log # ------------------ ФУНКЦИИ ЧАТ БОТА ------------------------ # adding a user message to the chat bot window def user_message_to_chatbot(user_message: str, chatbot: CHAT_HISTORY) -> Tuple[str, CHAT_HISTORY]: chatbot.append([user_message, None]) return '', chatbot # formatting prompt with adding context if DB is available and RAG mode is enabled def update_user_message_with_context( chatbot: CHAT_HISTORY, rag_mode: bool, db: VectorStore, k: Union[int, str], score_threshold: float, ) -> Tuple[str, CHAT_HISTORY]: user_message = chatbot[-1][0] user_message_with_context = '' if db is not None and rag_mode and user_message.strip(): if k == 'all': k = len(db.docstore._dict) docs_and_distances = db.similarity_search_with_relevance_scores( user_message, k=k, score_threshold=score_threshold, ) if len(docs_and_distances) > 0: retriever_context = '\n\n'.join([doc[0].page_content for doc in docs_and_distances]) user_message_with_context = CONTEXT_TEMPLATE.format( user_message=user_message, context=retriever_context, ) return user_message_with_context # model response generation def get_llm_response( chatbot: CHAT_HISTORY, llm_model_dict: LLM_MODEL_DICT, user_message_with_context: str, rag_mode: bool, system_prompt: str, support_system_role: bool, history_len: int, do_sample: bool, *generate_args, ) -> CHAT_HISTORY: user_message = chatbot[-1][0] if not user_message.strip(): yield chatbot[:-1] return None if rag_mode: if user_message_with_context: user_message = user_message_with_context else: gr.Info(( f'No documents relevant to the query were found, generation in RAG mode is not possible.\n' f'Try reducing searh_score_threshold or disable RAG mode for normal generation' )) yield chatbot[:-1] return None llm_model = llm_model_dict.get('model') gen_kwargs = dict(zip(GENERATE_KWARGS.keys(), generate_args)) gen_kwargs['top_k'] = int(gen_kwargs['top_k']) if not do_sample: gen_kwargs['top_p'] = 0.0 gen_kwargs['top_k'] = 1 gen_kwargs['repeat_penalty'] = 1.0 messages = [] if support_system_role and system_prompt: messages.append({'role': 'system', 'content': system_prompt}) if history_len != 0: for user_msg, bot_msg in chatbot[:-1][-history_len:]: messages.append({'role': 'user', 'content': user_msg}) messages.append({'role': 'assistant', 'content': bot_msg}) messages.append({'role': 'user', 'content': user_message}) stream_response = llm_model.create_chat_completion( messages=messages, stream=True, **gen_kwargs, ) try: chatbot[-1][1] = '' for chunk in stream_response: token = chunk['choices'][0]['delta'].get('content') if token is not None: chatbot[-1][1] += token yield chatbot except Exception as ex: gr.Info(f'Error generating response, error code: {ex}') yield chatbot