Spaces:
Sleeping
Sleeping
File size: 7,267 Bytes
bf23476 a3c6281 bf23476 400f59d bf23476 a3c6281 bf23476 a3c6281 bf23476 270ebd9 bf23476 a3c6281 ed01d72 a3c6281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import glob
import json
import urllib.request
from pathlib import Path
from typing import Tuple
import numpy as np
import cv2
# import yt_dlp
import gradio as gr
from ultralytics import YOLO
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('dark_background')
plt.rcParams.update({'figure.figsize': (12, 20)})
plt.rcParams.update({'font.size': 9})
YOLO_CLASS_NAMES = json.loads(Path('yolo_classes.json').read_text())
YOLO_CLASS_NAMES = {int(k): v for k, v in YOLO_CLASS_NAMES.items()}
def download_model(model_name: str, models_dir: Path, models: dict) -> str:
model_path = models_dir / model_name
if not model_path.exists():
urllib.request.urlretrieve(models[model_name], model_path)
return str(model_path)
def detect_image(image_path: str, model: YOLO, conf: float, iou: float) -> np.ndarray:
gr.Progress()(0.5, desc='Image detection...')
detections = model.predict(source=image_path, conf=conf, iou=iou)
np_image = detections[0].plot()
np_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
return np_image
def detect_video(video_path_or_url: str, model: YOLO, conf: float, iou: float) -> Tuple[Path, Path]:
progress = gr.Progress()
video_path = video_path_or_url
# if 'youtube.com' in video_path_or_url or 'youtu.be' in video_path_or_url:
# progress(0.001, desc='Downloading video from YouTube...')
# ydl_opts = {'format': 'bestvideo[height<=720]'}
# with yt_dlp.YoutubeDL(ydl_opts) as ydl:
# video_info_dict = ydl.extract_info(video_path_or_url, download=True)
# video_path = ydl.prepare_filename(video_info_dict)
cap = cv2.VideoCapture(video_path)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
generator = model.predict(
source=video_path,
conf=0.5,
iou=0.5,
save=True,
save_txt=True,
save_conf=True,
stream=True,
verbose=False,
)
frames_count = 0
for result in generator:
frames_count += 1
progress((frames_count, num_frames), desc=f'Video detection, step {frames_count}/{num_frames}')
file_name = Path(result.path).with_suffix('.avi').name
result_video_path = Path(result.save_dir) / file_name
Path(video_path).unlink(missing_ok=True)
return result_video_path
def get_csv_annotate(result_video_path: Path) -> str:
if not isinstance(result_video_path, Path):
return None
txts_path = result_video_path.parent / 'labels'
escaped_pattern = glob.escape(result_video_path.stem)
matching_txts_path = sorted(txts_path.glob(f'{escaped_pattern}_*.txt'), key=os.path.getmtime)
df_list = []
for txt_path in matching_txts_path:
frame_number = int(txt_path.stem.rsplit('_')[-1])
with open(txt_path) as file:
df_rows = file.readlines()
for df_row in df_rows:
df_row = map(float, df_row.split())
df_list.append((frame_number, *df_row))
column_names = ['frame_number', 'class_label', 'x', 'y', 'w', 'h', 'conf']
df = pd.DataFrame(df_list, columns=column_names)
df.class_label = df.class_label.astype(int)
class_name_series = df.class_label.map(YOLO_CLASS_NAMES)
df.insert(loc=1, column='class_name', value=class_name_series)
cap = cv2.VideoCapture(str(result_video_path))
frames_fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
frame_sec_series = df.frame_number / frames_fps
df.insert(loc=1, column='frame_sec', value=frame_sec_series)
full_frames = pd.DataFrame({'frame_number': range(total_frames)})
df = pd.merge(full_frames, df, on='frame_number', how='outer')
df.frame_sec = df.frame_number / frames_fps
result_csv_path = f'{result_video_path.parent / result_video_path.stem}_annotations.csv'
df.to_csv(result_csv_path, index=False)
return result_csv_path
def get_matplotlib_fig(csv_annotations_path: str):
df = pd.read_csv(csv_annotations_path)
df_clean = df.dropna(subset=['class_name'])
fig, axes = plt.subplots(7, 1, figsize=(10, 20), constrained_layout=True)
sns.histplot(data=df_clean['conf'], kde=True, ax=axes[0])
axes[0].set_title('Распределение уверенности детекций')
axes[0].set_xlabel('Уверенность')
axes[0].set_ylabel('Количество обнаружений')
sns.boxplot(data=df_clean, x='class_name', y='conf', ax=axes[1])
axes[1].set_title('Распределение уверенности детекции по классам')
axes[1].set_xlabel('Класс объекта')
axes[1].set_ylabel('Уверенность')
# axes[1].tick_params(axis='x', labelrotation=45)
sns.countplot(
data=df_clean,
x='class_name',
hue='class_name',
order=df_clean['class_name'].value_counts().index,
palette='viridis',
legend=False,
ax=axes[2],
)
axes[2].set_title('Количество обнаружений объектов по классам')
axes[2].set_xlabel('Класс объекта')
axes[2].set_ylabel('Количество')
face_count_per_frame = df.groupby('frame_number')['box_detected'].sum()
axes[3].plot(face_count_per_frame.index, face_count_per_frame.values, marker='o', linestyle='-')
axes[3].set_title('Частота обнаружения объектов по кадрам')
axes[3].set_xlabel('Номер кадра')
axes[3].set_ylabel('Количество обнаруженных объектов')
face_count_per_frame = df.groupby('frame_sec')['box_detected'].sum()
axes[4].plot(face_count_per_frame.index, face_count_per_frame.values, marker='o', linestyle='-')
axes[4].set_title('Частота обнаружения объектов по секундам')
axes[4].set_xlabel('Время (сек)')
axes[4].set_ylabel('Количество обнаруженных объектов')
sns.scatterplot(
data=df_clean,
x='frame_sec',
y='class_name',
hue='class_name',
palette='deep',
s=50,
alpha=0.6,
legend=True,
ax=axes[5],
)
axes[5].set_title('Временная шкала обнаружения объектов по классам')
axes[5].set_xlabel('Время видео (секунды)')
axes[5].set_ylabel('Эмоция')
axes[5].grid(True, linestyle='--', alpha=0.7)
axes[5].legend(title='Классы объектов', bbox_to_anchor=(1.05, 1), loc='upper left')
emotion_timeline = df.pivot_table(index='frame_sec', columns='class_name', aggfunc='size', fill_value=0)
emotion_timeline.plot(kind='area', stacked=True, ax=axes[6])
axes[6].set_title('Динамика обнаружения классов во времени')
axes[6].set_xlabel('Время видео (секунды)')
axes[6].set_ylabel('Количество детекций')
axes[6].grid(True, linestyle='--', alpha=0.7)
axes[6].legend(title='Классы объектов', bbox_to_anchor=(1.05, 1), loc='upper left')
return fig |